• 검색 결과가 없습니다.

유한 요소 분석을 이용해, 임플란트의 즉시 부하 상황을 재현해서 임플란트 주위 골의 응력 분포에 대한 임플란트 디자인의 영향을 연구한 결과는 다음과 같다.

1. 지연 부하와 비교해서 즉시 부하에서는 응력이 피질골 뿐만 아니라, 임플란트-골 계면을 따라 임플란트 근단까지 해면임플란트-골에도 광범위하게 분포하며, 최대 등가 응력도 더 높게 나타났다.

2. 지연 부하에서는, tapered 형 직경 4.3 mm 의 임플란트 모델이 10 mm 에서 11.5 mm 로 길이가 증가 시 최대 응력이 다소 증가하는 양상을 보인 것을 제외하고는, 임플란트의 길이가 길어질수록 최대 응력이 감소했다. 또한 임플란트 직경이 커지면 최대 응력이 감소했으며, tapered 형 임플란트가 straight 형 임플란트보다 최대 응력이 더 높았다.

3. 즉시 부하에서, tapered 형의 임플란트는 길이가 8.5 mm 에서 10 mm 로 증가 시에는 최대 응력이 감소하나, 10 mm 에서 11.5 mm 로 증가 시에는 최대 응력이 증가했으며, 직경이 증가할수록 최대 응력이 감소했다. 바디 형태에서는 4.3 X 8.5 mm 의 임플란트 모델을 제외하고, tapered 형 임플란트가 straight 형 임플란트보다 최대 응력이 더 낮게 나타났다. 즉시 부하 시 임플란트-골 계면의 최대 변위 거리는 허용되는 미세동요도인 50 μm 이하의 값을 나타냄으로써, 골형성을 방해하지 않는 것으로 보인다.

- 29 -

4. 지연 부하에서는 길이, 직경, 바디 형태들의 변화에 따른 최대 응력에 대한 영향이 비교적 규칙적인 양상을 보였으나, 즉시 부하에서는 이들의 영향이 다양하게 나타나는 모습을 보여주었다. 즉 지연 부하에서의 변수들의 영향과 일치하지 않을 수 있다는 것을 보여주었다.

- 30 -

참고 문헌

1. P.I. Branemark, B.O. Hansson, R. Adell, U. Breine, J. Lindstrom and O.

Hallen et al. Osseointegrated implants in the treatment of the edentulous jaw: experience from a 10-year period, Scand J Plast Reconstr Surg Suppl.

1977;11 :1–132.

2. P.I. Branemark, G. Zarb and T. Albrektsson, Tissue integrated prostheses:

osseointegration in clinical dentistry, Quintessence, Chicago. 1985:11-77.

3. Chiapasco M. Early and immediate restoration and loading of implants in completely edentulous patients. Int J Oral Maxillofac implants.2004;19 (Suppl.);6–91.

4. Ganeles J, Wismeijer D. Early and immediately restored and loaded dental implants for single-tooth and partial arch applications. Int J Oral Maxillofac Implants. 2004;19(Suppl):92–102

5. O¨ stman PO, Hellman M, Sennerby L. Direct implant loading in the edentulous maxilla using a bone density-adapted surgical protocol and primary implant stability criteria for inclusion. Clin Implant Dent Relat Res 2005;7 Suppl 1:S60–S69.

6. Romanos GE, Nentwig GH. Immediate versus delayed functional loading of implants in the posterior mandible: a 2-year prospective clinical study of 12 consecutive cases. Int J Periodontics Restorative Dent 2006;26:459–469 7. Avila G, Galindo P, Rios H, Wang HL. Immediate implant loading: current

status from available literature. Implant Dent. 2007 Sep;16(3):235-45.

- 31 -

8. Wang HL, Ormianer Z, Palti A, et al. Consensus Conference on Immediate Loading: The Single Tooth and Partial Edentulous Areas. Implant Dent.

2006;15:324-333.

9. Linkow LI. Endosseous blade-vent implants: a two-year report. J Prosthet Dent.1970;23:441-448.10.

10. Linkow LI, Donath K, Lemons JE. Retrieval analyses of a blade implant after 231 months of clinical function. Implant Dent.1992;1:37-43.

11. Linkow LI, Glassman PE, Asnis ST. Macroscopic and microscopic studies of endosteal bladevent implants (6 month dog study). Oral Implantol.

1973;3:281-309.

12. Brunski JB, Moccia AF, Jr, Pollack SR, et al. The influence of functional use of endosseous dental implants on the tissue-implant interface. I.

Histological aspects J Dent Res. 1979;58:1953-1969.

13. Georgiopoulos B, Kalioras K, Provatidis C, Manda M, Koidis P. The effects of implant length and diameter prior to and after osseointegration: a 2-D finite element analysis. J Oral Implantol. 2007;33(5):243-56.

14. Horiuchi K, Uchida H, Yamamoto K, Sugimura M. Immediate loading of Brånemark system implants following placement in edentulous patients: a clinical report. Int J Oral Maxillofac Implants. 2000 Nov-Dec;15(6):824-30.

15. Tealdo T, Bevilacqua M, Pera F, Menini M, Ravera G, Drago C, Pera P.

Immediate function with fixed implant-supported maxillary dentures: a 12-month pilot study. J Prosthet Dent. 2008 May;99(5):351-60.

- 32 -

16. Nikellis I, Levi A, Nicolopoulos C. Immediate loading of 190 endosseous dental implants: a prospective observational study of 40 patient treatments with up to 2-year data. Int J Oral Maxillofac Implants. 2004 Jan-Feb;19(1):116-2.

17. Chiapasco M, Gatti C. Implant-retained mandibular overdentures with immediate loading: a 3- to 8-year prospective study on 328 implants. Clin Implant Dent Relat Res. 2003;5(1):29-38.

18. Romanos GE, Toh CG, Siar CH, Swaminathan D. Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with Macaca fascicularis. Int J Oral Maxillofac Implants. 2002 Jan-Feb;17(1):44-51.

19. Romanos GE, Toh CG, Siar CH, Wicht H, Yacoob H, Nentwig GH. Bone-implant interface around titanium Bone-implants under different loading conditions: a histomorphometrical analysis in the Macaca fascicularis monkey. J Periodontol. 2003 Oct;74(10):1483-90.

20. Gapski R, Wang HL, Mascarenhas P, et al. Critical review of immediate implant loading. Clinical Oral Implants Research. 2003;14:515-527.

21. Misch CE, Wang HL, Misch CM, Sharawy M, Lemons J, Judy KW. Rationale for the application of immediate load in implant dentistry: part II. Implant Dent. 2004 Dec;13(4):310-21.

22. Kong L, Sun Y, Hu K, Li D, Hou R, Yang J, Liu B. Bivariate evaluation of cylinder implant diameter and length: a three-dimensional finite element analysis. J Prosthodont. 2008 Jun;17(4):286-93. Epub 2008 Jan 15

- 33 -

23. Huang HL, Chang CH, Hsu JT, Fallgatter AM, Ko CC. Comparison of implant body designs and threaded designs of dental implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2007 Jul-Aug;22(4):551-62.

24. Petrie CS, Williams JL. Comparative evaluation of implant designs:

influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res. 2005 Aug;16(4):486-94.

25. Himmlová L, Dostálová T, Kácovský A, Konvicková S. Influence of implant length and diameter on stress distribution: a finite element analysis.J Prosthet Dent. 2004 Jan;91(1):20-5.

26. Ding X, Liao SH, Zhu XH, Zhang XH, Zhang L.Effect of Diameter and Length on Stress Distribution of the Alveolar Crest around Immediate Loading Implants.Clin Implant Dent Relat Res. 2008 Sep 9.

27. Huang HL, Fuh LJ, Hsu JT, Tu MG, Shen YW, Wu CL.Effects of implant surface roughness and stiffness of grafted bone on an immediately loaded maxillary implant: a 3D numerical analysis.J Oral Rehabil. 2008 Apr;35(4):283-90.

28. Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study.J Dent. 2008 Jun;36(6):409-17. Epub 2008 Apr 1.

- 34 -

29. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001 Jun;85(6):585-98.

30. Winter W, Heckmann SM, Weber HP. A time-dependent healing function for immediate loaded implant. J Biomech. 2004 Dec;37(12):1861-7.

31. Rieger MR, Adams WK, Kinzel GL, Brose MO. Finite element analysis of bone-adapted and bone-bonded endosseous implants. J Prosthet Dent.

1989 Oct;62(4):436-4.

32. Pérez del Palomar A, Arruga A, Cegoñino J, Doblaré M. A finite element comparison between the mechanical behaviour of rigid and resilient oral implants with respect to immediate loading. Comput Methods Biomech Biomed Engin. 2005 Feb;8(1):45-57.

33. Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res. 2004 Apr;15(2):239-48.

34. Lekholm U, Zarb GA.Tissue-integrated Prostheses: Osseointegration in clinical dentistry.1985;199-209.

35. Rancourt D, Shirazi-Adl A, Drouin G, Paiement G. Friction properties of the interface between porous-surfaced metals and tibial cancellous bone.

J Biomed Mater Res. 1990 Nov;24(11):1503-19.

- 35 -

36. Rubin PJ, Rakotomanana RL, Leyvraz PF, Zysset PK, Curnier A, Heegaard JH. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component. J Biomech. 1993 Jun;26(6):725-39.

37. Morneburg TR, Proschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont.

2002;15:20-27

38. Misch CE. Dental Evaluation: Factors of Stress.& Occlusal Considertations for Implant-Supported Prostheses. Contemporary Implant Dentistry, 2nd ed. St. Louis: Mosby;1999:119.&609

39. Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, Puers R, Naert I. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants.

Clin Oral Implants Res. 1998 Dec;9(6):407-18.

40. Cochran DL. The evidence for immediate loading of implants. J Evid Based Dent Pract. 2006 Jun;6(2):155-63.

41. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. 2003 Jun;14(3):251-62.

42. Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech. 2000 Dec;33(12):1611-8.

- 36 -

43. Mailath G, Stoiber B, Watzek G, Matejka M. Bone resorption at the entry of osseointegrated implants—a biomechanical phenomenon. Finite element study [in German]. Z Stomatol 1989;86:207-16.

44. Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 1989;4:333-40.

45. Patra AK, DePaolo JM, D’Souza KS, DeTolla D, Meenaghan MA. Guidelines for analysis and redesign of dental implants. Implant Dent 1998;7:355-68.

46. Attard NJ, Zarb GA. Immediate and early implant loading protocols: a literature review of clinical studies. J Prosthet Dent 2005;94;242–258.

47. Schnitman PA, Wohrle PS, Rubenstein JE. Immediate fixed interim prostheses supported by two-stage threaded implants: methodology and results. J Oral Implantol. 1990;16:96–105.

48. D.P. Tarnow, S. Emtiaz and A. Classi, Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1- to 5-year data, Int J Oral Maxillofac Implants.

1997;12:319–324.

49. I. Ericsson, H. Nilson, T. Lindh, K. Nilner and K. Randow, Immediate functional loading of Branemark single-tooth implants. An 18 months' clinical pilot follow-up study, Clin Oral Implants Res. 2000 Feb; 11(1):26–

33.

50. Degidi M, Piattelli A, Iezzi G, Carinci F. Do longer implants improve clinical

- 37 -

outcome in immediate loading? Int. J. Oral Maxillofac. Surg.

2007;36:1172-1176.

51. Ostman PO. Immediate/early loading of dental implants. Clinical documentation and presentation of a treatment concept. Periodontol 2000.

2008;47:90-112.

52. Calandriello R, Tomatis M, Vallone R, Rangert B, Gottlow J. Immediate occlusal loading of single lower molars using Brånemark System Wide-Platform TiUnite implants: an interim report of a prospective open-ended clinical multicenter study. Clin Implant Dent Relat Res. 2003;5 Suppl 1:74-80.

53. Cornelini R, Cangini F, Covani U, Barone A, Buser D. Immediate restoration of single-tooth implants in mandibular molar sites: a 12-month preliminary report. Int J Oral Maxillofac Implants. 2004 Nov-Dec;19(6):855-60.

54. Schincaglia GP, Marzola R, Giovanni GF, Chiara CS, Scotti R. Replacement of mandibular molars with single-unit restorations supported by wide-body implants: immediate versus delayed loading. A randomized controlled study. Int J Oral Maxillofac Implants. 2008 May-Jun;23(3):474-80.

55. Degidi M, Piatelli A. Immediate functional and non-functional loading of dental implants: a 2 to 60 month follow-upstudy of 646 titanium implants.

J Periodontol. 2003 Feb;74(2):225-41.

- 38 -

56. Testori T, Smukler-Moncler S, Francetti L, et al. The immediate-loading of Osseotite implants. A clinical and histological assessment 4 months after being brought into function. Parodontie-Dentisterie Restauratrice.

2001;21:451–459.

57. Piatelli A, Corigliano M, Scarano A, et al. Bone reactions to early occlusal loading of two-stage titanium plasmasprayed implants: a pilot study in monkeys. Int J Perio Rest Dent. 1997;17:162–169.

58. Ostman PO, Hellman M, Albrektsson T, Sennerby L. Direct loading of Nobel Direct and Nobel Perfect one-piece implants: a 1-year prospective clinical and radiographic study. Clin Oral Implants Res. 2007 Aug;18(4):409-18.

59. Glauser R, Zembic A, Ruhstaller P, Windisch S. Five-year results of implants with an oxidized surface placed predominantly in soft quality bone and subjected to immediate occlusal loading. J Prosthet Dent. 2007 Jun;97(6 Suppl):S59-68.

60. Kayabasi O, Yüzbasioğlu E, Erzincanli F, Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering software 37(2006) 649-658.

61. Carr AB, Laney WR. Maximum occlusal force levels in patients with osseointegrated oral implant prostheses and patients with complete dentures. Int J OralMaxillofac Implants. 1987; 2: 101-108.

- 39 -

Abstract

The effect of implant designs on stress distribution of the bone around immediate loading implants

: A 3-dimensional finite element analysis Jung Yoon Bae

Department of Dentistry

The Graduate School, Yonsei University (Directed by Professor Chong Hyun Han)

Until recently, the healing period from dental implant placement to the prosthesis delivery has become shorter and even immediate loading procedure become popular. Implant primary stability is the most important clinical factor influencing success of immediate loading. The surface area of implant support may be increased by modifications in implant designs, so the stress in the bone be decreased. But, the effect of implant designs in immediately loaded implants has recently been investigated and will affect different compared to in delayed loaded implants. The purpose of this study was to investigate the effect of implant designs on stress distribution of the bone around immediate loading implants by a 3-dimensional finite element analysis and to help to select proper implant for immediate loading treatment.

- 40 -

A 3-dimensional model of a single implant supported crown substituting a lower first premolar was simulated. The von-Mises stresses of the bone around different implant length (8, 10, 11.5 mm), diameter (4.3, 5.3 mm) and body design (tapered, straight) with delayed loaded and immediately loaded condition were analyzed.

The results were as followings;

1. Compared to the delayed loaded implants, in immediately loaded implants, the stresses were widely distributed in trabecular bone to the implant apex along implant-bone interfaces as well as in cortical bone surrounding the implant neck and the maximum von-Mises stresses were higher.

2. For the delayed loaded implants, except that increasing implant length from 10 mm to 11.5 mm resulted in the maximum stress increasing, in diameter 4.3 mm tapered implants, increasing implant length resulted in the maximum stress reduction. And increasing implant diameter decreased the maximum stress, tapered implants showed higher maximum stresses than straight implants.

3. For the immediately loaded implants, increasing implant length from 8.5 mm to 10 mm resulted in the maximum stress reduction, but increasing implant length from 10 mm to 11.5 mm resulted in the maximum stress increasing and increasing implant diameter resulted in the maximum stress reduction in tapered implants. Except for 4.3 X 8.5 mm implant, tapered implants showed

- 41 -

lower maximum stresses than straight implants. The maximum sliding distance of model of contact implant-bone interfaces was less than accepted micromotion value (50 μm), so did not disturb osseointegration.

4. For the delayed loaded implants, the effects of the implant length, diameter, and body design on maximum stresses showed relatively regular appearance, but the effect of implant designs in immediately loaded implants showed various appearances, in other words, did not accord in delayed loaded implant

--- Key word : immediate loading, finite element analysis, dental implant, length,

diameter, design, stress

관련 문서