• 검색 결과가 없습니다.

결론

문서에서 저작자표시 (페이지 69-79)

58

4. 전체 측정 기간 동안의 두 번의 고농도 사례에 대한 탄소에어로졸의 생성원 인을 규명하기 위해 15년 11월 9일과 15년 5월 22일의 역궤적 분석 및 위성 관 측 결과, 탄소 성분의 구성 분포를 비교하였다. 15년 11월 9일의 경우 다수의 산 불과 함께 한반도 전역에 두꺼운 연무층이 관측되었으며, WISOC와 HULIS-C의 탄소에어로졸 내 구성 비율이 전체 측정 기간 동안의 평균 구성 비율에 비해 증 가하였다. 16년 5월 22일의 경우 미비한 산불과 얇은 연무층이 관측되었으며, EC의 구성 비율이 증가하였다. 따라서 15년 11월 9일은 바이오매스 연소와 대기 중 2차생성에 의한 영향을 받았으며, 16년 5월 22일은 화석연료의 불완전연소 또 는 자동차에 의한 배출에 영향을 받았을 것으로 판단된다.

60

-【참고문헌】

1. 김용표. (2006). 서울의 미세먼지에 의한 대기오염. 한국대기환경학회지, 22(5), 535-553.

2. Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., ... & Swietlicki, E. (2005). Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5(4), 1053-1123.

3. Novakov, T., & Penner, J. E. (1993). Large contribution of organic aerosols to cloud-condensation-nuclei concentrations.

4. Laskin, A., Laskin, J., & Nizkorodov, S. A. (2015). Chemistry of atmospheric brown carbon. Chemical reviews, 115(10), 4335-4382.

5. Lim, H. J., Turpin, B. J., Edgerton, E., Hering, S. V., Allen, G., Maring, H.,

& Solomon, P. (2003). Semicontinuous aerosol carbon measurements:

Comparison of Atlanta Supersite measurements. Journal of Geophysical Research: Atmospheres, 108(D7).

6. Seinfeld, J. H., & Pankow, J. F. (2003). Organic atmospheric particulate material. Annual review of physical chemistry, 54(1), 121-140.

7. Yu, S., Dennis, R. L., Bhave, P. V., & Eder, B. K. (2004). Primary and secondary organic aerosols over the United States: estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OC/EC ratios. Atmospheric Environment, 38(31), 5257-5268.

8. Duarte, R. M., Santos, E. B., Pio, C. A., & Duarte, A. C. (2007).

Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmospheric

Environment, 41(37), 8100-8113.

9. Kawamura, K., & Kaplan, I. R. (1987). Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air.

Environmental Science & Technology, 21(1), 105-110.

10. Graber, E. R., & Rudich, Y. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics, 6(3), 729-753.

11. Simoneit, B. R., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim, H. J., ... & Komazaki, Y. (2004). Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE

‐Asia campaign. Journal of Geophysical Research: Atmospheres, 109(D19).

12. Miyazaki, Y., Kondo, Y., Takegawa, N., Komazaki, Y., Fukuda, M., Kawamura, K., ... & Weber, R. J. (2006). Time‐resolved measurements of water‐soluble organic carbon in Tokyo. Journal of Geophysical Research:

Atmospheres, 111(D23).

13. Lin, P., Huang, X. F., He, L. Y., & Yu, J. Z. (2010). Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China.

Journal of Aerosol Science, 41(1), 74-87.

14. Lin, P., Engling, G., & Yu, J. Z. (2010). Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmospheric Chemistry and Physics, 10(14), 6487-6500.

15. El Haddad, I., Marchand, N., Dron, J., Temime-Roussel, B., Quivet, E., Wortham, H., ... & Gille, G. (2009). Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France.

Atmospheric Environment, 43(39), 6190-6198.

16. Park, S. S., Hur, J. Y., Cho, S. Y., Kim, S. J., & Kim, Y. J. (2007).

62

-Characteristics of organic carbon species in atmospheric aerosol particles at a Gwangju area during summer and winter. Journal of Korean Society for Atmospheric Environment, 23(6), 675-688.

17. Yin, J., Harrison, R. M., Chen, Q., Rutter, A., & Schauer, J. J. (2010).

Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmospheric Environment, 44(6), 841-851.

18. de Koning, H., & Kohler, A. (1978). Monitoring global air pollution.

Environmental Science & Technology, 12(8), 884-889.

19. Heo, J. B., Hopke, P. K., & Yi, S. M. (2009). Source apportionment of PM 2.5 in Seoul, Korea. Atmospheric Chemistry and Physics, 9(14), 4957-4971.

20. Kim, H. S., Huh, J. B., Hopke, P. K., Holsen, T. M., & Yi, S. M. (2007).

Characteristics of the major chemical constituents of PM 2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmospheric Environment, 41(32), 6762-6770.

21. Choi, J. K., Heo, J. B., Ban, S. J., Yi, S. M., & Zoh, K. D. (2013). Source apportionment of PM 2.5 at the coastal area in Korea. Science of the Total Environment, 447, 370-380.

22. Son, S. C., Bae, M. S., & Park, S. S. (2015). 도시지역 PM2. 5 의 HULIS 화학 특성 및 발생 과정 조사. Journal of Korean Society for Atmospheric Environment, 31(3), 239-254.

23. Kim, Y. J., Woo, J. H., Ma, Y. I., Kim, S., Nam, J. S., Sung, H., ... &

Lee, G. (2009). Chemical characteristics of long-range transport aerosol at background sites in Korea. Atmospheric Environment, 43(34), 5556-5566.

24. Lee, J. H., Kim, Y. P., Moon, K. C., Kim, H. K., & Lee, C. B. (2001).

Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment, 35(4), 635-643.

25. 이선영, 이지이, 이승묵, & 김용표. (2011). 서울시 대기 중 미세먼지 (PM₁

�) 내 수용성 유기탄소성분 특성 파악. 한국대기환경학회 2011 년 춘계학술 대회 논문집, 273-273.

26. Aggarwal, S. G., & Kawamura, K. (2009). Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan:

Implication for aging of water-soluble organic fraction. Atmospheric Environment, 43(16), 2532-2540.

27. Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., ... & Hillamo, R. (2008). Sources of organic carbon in fine particulate matter in northern European urban air. Atmos. Chem. Phys, 8(20), 6281-6295.

28. Sahu, L. K., Kondo, Y., Miyazaki, Y., Kuwata, M., Koike, M., Takegawa, N., ... & Kim, Y. J. (2009). Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. Journal of Geophysical Research: Atmospheres, 114(D3).

29. Zhao, M., Qiao, T., Li, Y., Tang, X., Xiu, G., & Yu, J. Z. (2016). Temporal variations and source apportionment of Hulis-C in PM 2.5 in urban Shanghai. Science of The Total Environment, 571, 18-26.

30. Fan, X., Song, J., & Peng, P. A. (2016). Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM 2.5 at Guangzhou, China. Atmospheric Research, 172, 8-15.

31. Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencser, A., Kiss, G., ... & Rosman, K. (1999). Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmospheric Environment, 33(17), 2733-2743.

32. Chow, J. C., Watson, J. G., Louie, P. K., Chen, L. W. A., & Sin, D.

(2005). Comparison of PM 2.5 carbon measurement methods in Hong

64

-Kong, China. Environmental Pollution, 137(2), 334-344.

33. Jaffrezo, J. L., Aymoz, G., Delaval, C., & Cozic, J. (2005). Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps. Atmospheric Chemistry and Physics, 5(10), 2809-2821.

34. Pöschl, U. (2005). Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46), 7520-7540.

35. Pandis, S. N., Harley, R. A., Cass, G. R., & Seinfeld, J. H. (1992).

Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics, 26(13), 2269-2282.

36. Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Nel, A., Peden, D., ... & Williams, P. B. (2004). Health effects of air pollution. Journal of Allergy and Clinical Immunology, 114(5), 1116-1123.

37. Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM 2.5 and potential mechanisms. Ecotoxicology and environmental safety, 128, 67-74.

38. Lancet, T. (2006). WHO's global air-quality guidelines.

39. 기상청. (2008). 2007 지구대기감시 보고서

40. Park, S. S., & Cho, S. Y. (2011). Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea. Atmospheric environment, 45(1), 60-72.

41. Park, S. S., Kim, Y. J., & Fung, K. (2001). Characteristics of PM 2.5 carbonaceous aerosol in the Sihwa industrial area, Korea. Atmospheric Environment, 35(4), 657-665.

42. Miyazaki, Y., Kondo, Y., Shiraiwa, M., Takegawa, N., Miyakawa, T., Han, S., ... & Sugimoto, N. (2009). Chemical characterization of water‐soluble

organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. Journal of Geophysical Research: Atmospheres, 114(D14).

43. Mayol‐Bracero, O. L., Guyon, P., Graham, B., Roberts, G., Andreae, M. O., Decesari, S., ... & Artaxo, P. (2002). Water‐soluble organic compounds in biomass burning aerosols over amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research: Atmospheres, 107(D20).

44. Lim, H. J., & Turpin, B. J. (2002). Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta supersite experiment. Environmental Science & Technology, 36(21), 4489-4496.

45. Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., &

Vonmont, H. (2005). Chemical characterisation of PM2. 5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland.

Atmospheric Environment, 39(4), 637-651.

46. Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M. O., Helas, G., ... & Herrmann, H. (2007). Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. Journal of Geophysical Research: Atmospheres, 112(D8).

47. Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., & Merrifield, T.

(2001). Comparison of IMPROVE and NIOSH carbon measurements.

Aerosol Science & Technology, 34(1), 23-34.

48. Baltensperger, U., Barrie, L., Fröhlich, C., Gras, J., Jäger, H., Jennings, S.

G., ... & Wilson, J. (2003). WMO/GAW aerosol measurement procedures, guidelines and recommendations. World Meteorological Organization Global

66 -Atmosphere Watch, (153).

49. Huang, H., Ho, K. F., Lee, S. C., Tsang, P. K., Ho, S. S. H., Zou, C. W., ... & Xu, H. M. (2012). Characteristics of carbonaceous aerosol in PM 2.5:

Pearl Delta River region, China. Atmospheric Research, 104, 227-236.

50. Khan, M. F., Shirasuna, Y., Hirano, K., & Masunaga, S. (2010).

Characterization of PM 2.5, PM 2.5–10 and PM> 10 in ambient air, Yokohama, Japan. Atmospheric Research, 96(1), 159-172.

51. Pio, C. A., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., ...

& Kasper‐Giebl, A. (2007). Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west‐east transect across Europe. Journal of Geophysical Research: Atmospheres, 112(D23).

52. Krivacsy, Z., Hoffer, A., Sarvari, Z., Temesi, D., Baltensperger, U., Nyeki, S., ... & Jennings, S. G. (2001). Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites.

Atmospheric Environment, 35(36), 6231-6244.

53. Liu, D., Li, J., Zhang, Y., Xu, Y., Liu, X., Ding, P., ... & Zhang, G. (2013).

The use of levoglucosan and radiocarbon for source apportionment of PM2. 5 carbonaceous aerosols at a background site in East China.

Environmental science & technology, 47(18), 10454-10461.

54. Zhou, S., Wang, Z., Gao, R., Xue, L., Yuan, C., Wang, T., ... & Zhang, Q.

(2012). Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric environment, 63, 203-212.

55. Wang, G., Wang, H., Yu, Y., Gao, S., Feng, J., Gao, S., & Wang, L.

(2003). Chemical characterization of water-soluble components of PM 10 and PM 2.5 atmospheric aerosols in five locations of Nanjing, China.

Atmospheric Environment, 37(21), 2893-2902.

56. Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., ... & Weber, R.

(2014). A yearlong study of water-soluble organic carbon in Beijing I:

Sources and its primary vs. secondary nature. Atmospheric Environment, 92, 514-521.

57. Kumagai, K., Iijima, A., Tago, H., Tomioka, A., Kozawa, K., & Sakamoto, K. (2009). Seasonal characteristics of water-soluble organic carbon in atmospheric particles in the inland Kanto plain, Japan. Atmospheric Environment, 43(21), 3345-3351.

58. Feczko, T., Puxbaum, H., Kasper‐Giebl, A., Handler, M., Limbeck, A., Gelencsér, A., ... & Legrand, M. (2007). Determination of water and alkaline extractable atmospheric humic‐like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe.

Journal of Geophysical Research: Atmospheres, 112(D23).

59. 이세표. (2016). 서울대기 중 PM2.5 내 HUmic-LIke Substances-Carbon(HULIS-C)의 농도 및 생성원인 연구. 석사학위논문, 조 선대학교 대학원, 광주.

60. Lukács, H., Gelencsér, A., Hammer, S., Puxbaum, H., Pio, C., Legrand, M., ... & Preunkert, S. (2007). Seasonal trends and possible sources of brown carbon based on 2‐year aerosol measurements at six sites in Europe.

Journal of Geophysical Research: Atmospheres, 112(D23).

61. 박종성, 송인호, 박승명, 신혜정, & 홍유덕. (2015). 서울지역의 PM2. 5 중 OC 와 EC 의 특성 및 계절적 변화에 관한 연구. 환경영향평가, 24(6), 578-592.

62. Ryu, S. Y., Kim, J. E., Zhuanshi, H., Kim, Y. J., &Kang, G. U. (2004).

Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of the Air &Waste Management Association, 54(9), 1124-1137.

문서에서 저작자표시 (페이지 69-79)

관련 문서