• 검색 결과가 없습니다.

저작자표시

N/A
N/A
Protected

Academic year: 2022

Share "저작자표시"

Copied!
63
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

(2)

2013년 8월 석사학위논문

A St udyonDet ect i onof Wal l -Thi nnedDef ect sUsi ng I R

Thermography i nNPPs

조 선 대 학 교 대 학 원

원 자 력 공 학 과

김 주 현

(3)

A St udyonDet ect i onof Wal l -Thi nnedDef ect sUsi ng I R

Thermography i nNPPs

적외선열화상기술을 적용한 원전 배관 감육결함 검출에 관한 연구

2013년 8월 23일

조 선 대 학 교 대 학 원

원 자 력 공 학 과

김 주 현

(4)

A St udyonDet ect i onof Wal l -Thi nnedDef ect sUsi ng I R

Thermography i nNPPs

지도교수 나 만 균

이 논문을 공학 석사학위신청 논문으로 제출함

2013년 5월

조 선 대 학 교 대 학 원

원 자 력 공 학 과

김 주 현

(5)

김주현의 석사학위 논문을 인준함

위원장 조선대학교 교 수 김 진 원 ( 인) 위 원 조선대학교 교 수 송 종 순 ( 인) 위 원 조선대학교 교 수 나 만 균 ( 인)

2013년 5월

조 선 대 학 교 대 학 원

(6)

CONTENTS

Abst r act· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·ⅴ

Ⅰ.I nt r oduct i on· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1

Ⅱ.Theor et i calBackgr ound· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3

A.IR Thermography··· 3

B.Theory··· 4

Ⅲ.Opt i malHeat i ng/ Cool i ng Met hod· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6

A.Heating Methods··· 6

1.HalogenLamp··· 6

2.InfraredLamp··· 7

3.UltravioletLamp··· 7

4.XenonLamp··· 7

5.Induction Heating Device··· 8

6.AirHeater··· 8

7.SelectionofaHeating Method··· 8

B.Cooling Methods···11

1.TubeAirCooler···11

2.Water-cooledAirCoolerandAir-cooledAirCooler···11

3.HeatPipe-TypeCooler···12

4.Fan···12

5.SelectionofaCooling Method···13

(7)

Ⅳ.Si mul at i on and Exper i ment· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·15

A.SpecimenandEquipment···15

1.Specimen···15

2.Heating andCooling Devices···17

B.Simulation Method···19

1.PipeSpecimen Modeling andBoundary Condition···19

2.Heating Method···19

3.Cooling Method···22

C.SimulationResults···24

1.Heating Simulation Results···24

2.Cooling SimulationResults···29

D.ExperimentMethod···35

1.Heating Method···35

2.Cooling Method···36

E.ExperimentResults···39

1.Heating ExperimentalResults···39

2.Cooling ExperimentalResults···43

Ⅴ.Concl usi ons· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·46

Ref er ences· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·48

(8)

Li stofFi gur es

Fig.1.Diagram ofIR thermography··· 4

Fig.2.Designofapipespecimen··· 16

Fig.3.Pipespecimen··· 16

Fig.4.Heatingandcoolingdevices··· 18

Fig.5.Configurationofmodelledhalogenlampandpipespecimenmodel··· 21

Fig.6.Configurationofmodelledfanandpipespecimenmodel··· 23

Fig.7.50% powerof1kW halogenlampmodel··· 26

Fig.8.60% powerof1kW halogenlampmodel··· 27

Fig.9.80% powerof1kW halogenlampmodel··· 28

Fig.10.Differentialpressureof100Paonfanmodel··· 31

Fig.11.Differentialpressureof150Paonfanmodel··· 33

Fig.12.Configurationofexperimentalequipmentusingheatingdevice··· 36

Fig.13.Innerheatingdeviceofpipespecimen··· 37

Fig.14.Temperaturedistributionofinnerheatingdevice··· 38

Fig.15.Configurationofexperimentalequipmentusingcoolingdevice··· 39

Fig.16.60% powerof1kW halogenlamp··· 41

Fig.17.80% powerof1kW halogenlamp··· 42

Fig.18.Coolingexperimentusing1fan··· 44

Fig.19.Coolingexperimentusing2fan··· 45

(9)

Li stofTabl es

Table1.Applicabilityoftheheatingmethods··· 9

Table2.Applicabilityofthecoolingmethods··· 14

Table3.Dimensionsofthedefectsinthepipespecimen··· 17

Table4.Conditionsoftheheatingsimulation··· 25

Table5.Conditionsofthecoolingsimulation··· 30

Table6.Conditionsoftheexperimentusingtheheatingdevice··· 40

Table7.Conditionsoftheexperimentusingthecoolingdevice··· 44

(10)

초 록

적외선열화상기술을 적용한 원전 배관 감육결함 검출에 관한 연구

김 주 현

지도 교수 :나 만 균 원자력공학과

조선대학교 대학원

최근 장기가동으로 노후화된 원전의 수가 증가하고 있고,그에 따라 원전 2차계통 설비의 문제로 인한 발전정지 사례가 증가하고 있다.이러한 사례들은 피로,부식,감 육 등에 의해 원전 2차계통의 각종 구조물에서 발생한다.그 중 감육결함은 배관 내부 유체의 유동에 의한 부식의 가속화로 인해 발생하며,Cr함량이 낮은 탄소강 배관에서 자주 발생한다.이러한 감육결함은 사전 징후 없이 바로 손상으로 진행되고 모재부에 서도 흔히 발생하며 배관의 건전성을 저하시키는 주요 원인 중 하나로 알려져 있다.

감육결함의 체계적인 관리를 위해서는 주기적인 검사가 필요하며,특히 원전의 가동 을 멈추지 않은 상태에서도 정밀검사가 요구된다.대부분의 원전 2차계통 설비는 원자 력발전소의 안전성과 직접적인 관련은 없으나 일부 기기는 고장 발생 시 출력 감소 또 는 발전 정지로 이어져 경제적인 손실을 초래한다.특히 원전 2차계통은 정상운전 중 운전원 또는 작업자들이 쉽게 접근하여 작업을 하는 곳으로 예상하지 못한 배관의 손 상은 심각한 사회적 영향을 미치기 때문에 매우 중요하다.그로인하여 주요설비에 대 한 건전성 여부 확인을 위해 비파괴검사에 대한 관심이 고조되고 있고 비교적 안전하 면서 빠르고 쉽게 측정할 수 있는 비파괴검사의 요구가 증대되고 있다.

현재 원전 2차계통에는 초음파검사,와전류검사,자기탐상검사 등 여러 가지 비파괴 검사가 수행되고 있다.이러한 비파괴검사는 적외선열화상기술을 포함하고 있다.적외 선열화상기술은 결함부와 미결함부의 온도차를 관찰하여 결함의 유무를 확인함으로써

(11)

기존의 비파괴검사에 대한 제약을 해결할 수 있을 것이고 현장에서의 활용도가 높을 것으로 예상된다.

따라서 본 연구에서는 원전 배관 내부의 감육결함을 검출하기 위하여 적외선열화상 기술을 적용하였다.적외선열화상기술을 적용하여 정상운전 중인 원전과 정비기간인 원전의 결함을 검출하기 위해서는 실제 원전과 비슷한 조건에서 시험이 수행되어야 한 다.이를 위하여 정비기간 중인 원전은 배관의 온도가 상온을 유지하므로 가열장치를 이용한 시험을,정상운전 중인 원전은 배관의 온도가 고온을 유지하므로 냉각장치를 이용한 시험을 수행하였다.가열 및 냉각장치를 이용한 시험에 앞서 본 연구에 적용 가능한 가열 및 냉각장치를 조사하고 검토하여 최적의 장치를 선정하여 가열 및 냉각 효과와 시험조건을 알아보기 위한 유한요소 해석을 수행하였다.수치적인 기법을 사용 하여 수행된 유한요소 해석을 통하여 각 장치들의 가열 및 냉각효과를 확인할 수 있었 고,시험조건을 알아볼 수 있었다.유한요소 해석 결과를 적용한 가열 및 냉각시험은 인위적으로 결함을 가공한 배관 시험편의 결함을 검출하는 결과를 얻을 수 있었다.가 열장치를 이용한 시험에서는 정비기간의 원전에 적용하여 결함을 검출할 수 있을 것으 로 예측할 수 있었다.반면에,냉각장치를 이용한 시험에서는 결함을 부분적으로 검출 할 수 있었고,정상운전 중인 원전에 적용하기 위해서는 냉각장치를 개선 보완하는 것 이 필요하다고 판단되었다.

본 연구의 결과를 통하여 적외선열화상기술을 이용한 신뢰성 있는 결함 검사 기술을 개발함으로써 2차계통 배관 설비에 대한 유지보수를 용이하게 할 수 있도록 하여 감육 결함 검사 시 기초자료로 사용할 수 있도록 할 것이다.또한,원전 설비의 가동 효율과 가동 중단으로 인한 에너지 및 경제적 손실을 최소화할 수 있을 것으로 기대된다.

(12)

Ⅰ.I nt r oduct i on

The number of aging nuclear power plants after long-term operation has increased recently. Accordingly, the number of operational interruptions has increased dueto malfunctionsoftheNPPssecondary systems.Thesecasesoccur in the secondary systems ofNPPs with a range ofstructures due to fatigue, wall-thinning,corrosionsetc..Oftheseproblems,wall-thinneddefectsoccurin the pipesby thediffusion ofthecorrosion withtheflow ofthefluids,andthedefects frequently take place in the carbon steelpipes with lower  contents.Such wall-thinneddefectscan leadtodamagewithoutwarning signswhilethey can be foundfrequentlyinthebasematerialpart.Therefore,theyareknowntobeoneof themajorfactorsthatdegradetheintegrityofapipe[1]-[2].

Periodicinspectionsarerequired forsystematicmanagementofthewall-thinned defects.In particular,they are also needed during the normaloperations ofthe NPPs.MostoftheNPP'ssecondary systemsarenotrelateddirectly tothesafety oftheNPPs.However,ifafailureoccursinsomeofthesecondarysystem,itmay cause the powerramping orreactorshutdown whatresults in economic loss.In particular,systematicmanagementrequiresacloseinspectionevenwhen theNPPs is in operation.The secondary system ofthe NPPs is the place to which the operatororworkersgainaccessfortheirworkfrequently.Unexpecteddamagetoa pipecan havesocialimpactsthatcannotbecomparedwith thelossofordamage to people, which highlights the importance of systematic management of wall-thinned defects. Consequently, considerable attention has been paid to non-destructive inspections (NDI)to examine the integrity ofmajorfacilities.In addition,thereisincreasing demandfortheNDIthatarerelativelysafeandenable measurementsinaquickandeasymanner[3].

Currently,a rangeofNDIare conducted such asultrasonic testing (UT),eddy current testing (ECT) and magnetic particle testing (MT) [4]-[5]. Such NDI

(13)

involve infrared (IR)thermography.IR thermography is expected to help resolve the issues related to the limitations on the existing NDIbecause itis used to examine defects based on measurements of the temperature difference between defectpartandnon-defectparts.IR thermographyisalsoexpectedtobeusefulon aNPP site[6].

IR thermography isareliabletechniquefordetecting wall-thinneddefectsin the innerpipes ofNPPs thatare in normaloperation orthe overhaulperiod,and is expected to facilitate the maintenance ofplumbing fixtures ofNPP’s secondary system.The results of this study willbe used as the basic materialfor the inspectionsofwall-thinneddefects.

(14)

Ⅱ.Theor et i calBackgr ound

A.I R Ther mogr aphy

When an object is heated or cooled from an outside,thermal diffusion is disturbed on the surface ofthe targetdepending on the existence ofthe defects inside the target.In this case,the insulation effectby defects inside the target causes temperature difference on the targetsurface.IR thermography is used to measurethetemperatureonthesurfaceofthetargetandconvertthemeasurement results to an image in real-time.Based on a real-time image obtained using an infrared(IR)camera,itispossibletomeasuretheshapeandlocationofthedefects insidethetarget.

IR thermographyhasthefollowingfeatures[7]: -Non-contacttechnique

-Fullfieldimageofstress -Energymeasurementtechnique

-Easyinterpretationoftheresults by visualeffects

Currently,IR thermography is applied to the military field, stress analysis, welding monitoring,evaluation of the heat transfer characteristics,deterioration diagnosisofpowerfacilities,defectinspection in composites,andmedicaldiagnosis [8].Fig.1showstheprincipleofIR thermography.

(15)

IR Camera

Pipe Specimen

Power Supply Function Generator Heating or Cooling

Device

Fig.1.Diagram ofIR thermography

B.Theor y

Alltheobjectshaveatemperaturethatisaboveabsolutezerodegreeand they emitradiantenergythatcorrespondstotheirtemperature[9].





   

 

(1)

Plank’sconstant   ×   ∙  Boltzmann’sconstant   ×  

Speedoflight   ×  

Eq.(1)describes the Plank’s theory ofblack body radiation.According to the theory,thereisasimplerelationshipbetweencharacteristicsofblackbodyradiation (energy intensity and wavelength)and its temperature.Moreover,the amountof radiation emitted from a black body radiatorperunittimeisdetermined only by

(16)

temperature,whichisthecharacteristicofblackbody radiation.Thecharacteristics can beused to calculatethetemperatureofblack body.IR thermography enables measuring amountofemittedenergy toprovideatemperatureimagebasedon the correlationbetweenamountofthedetectedenergyandtemperature[9].





  (2)

Stefan-Boltzmann’sconstant   ×  

Eq.(2)describes the Stefan-Boltzmann’s law.This theory states thatthe total energy radiatedperunitsurfaceareaofablackbodyandperunittimeisdirectly proportionalto the fourth powerofthe absolute temperature,.In this case,

representstheabsolutetemperaturein Kelvin ofan objectand  isthereflection intensity of a blackbody.Based on the Eqs.(1) and (2) mentioned above,IR cameraisusedtomeasurethetemperature.

An idealblackbody emitterdoesnotexistinreality.Iftheenergyemittedfrom arealobjectis andtheenergy emittedfrom ablackbody is,theemissivity ofan objectto black body surfaceatthesametemperaturecan beexpressed by Eq.(3)[9].

  

:Emissivity (3)

In thiscase,if=1,theobjectiscalled ablack body.Therefore,formetalwith low emissivity,theemissivity canbekeptat0.95ifamattecolorspray,whichis closetoablackbody,isapplied.

(17)

Ⅲ.Opt i malHeat i ng/ Cool i ng Met hods

A.Heat i ng Met hods

During theshutdown ofan NPP such asoverhaulperiod,thepipeoftheNPP’s secondary system showsthedistribution ofthetemperaturethatisalmostsimilar tothatoftheroom temperature.In addition,when apipein theroom temperature isheateduprapidly,thethermaldiffusionisinterrupteddependingontheexistence ofthe defects inside the pipe.The insulation effectdue to such defects causes difference in the temperature change thatappears locally in the pipe.A proper heating deviceto causesuch temperaturedifferenceisa very importantfactorto usetheIR thermography.Thispaperexaminedthevariousheatingmethodsforthe optimalheatingdeviceandinvestigatedtheapplicabilityofthemethods.

1.Hal ogen Lamp

As a kind of incandescent lamp,a halogen lamp is based on the chemical reaction ofthehalogen materialwith inertgas including halogen materialin tiny quantity filled in the lamp.The halogen lamp shows linear changes in spectral energy distribution when alightsourceisvisibleray (380-760nm).Therefore,the lamp is highly stable forlightsource and showshigh radiantenergy in infrared light(higherthan 760nm)region.Consequently,thehalogen lamp can beused as heat source.Moreover,the lifespan of the lamp is greatly influenced by high voltagewhileratedvoltageisanimportantfactortoperformanceofthelamp.The halogen lamp showsasmalldecreasein luminousflux atthemomentoflighting compared to othercommon lampsand a smallchangein distribution temperature (colortemperature)duringtheperiodofthelifespan.

(18)

2.I nf r ar edLamp

Asakindofincandescentlamp,theinfraredlampreinforcescharacteristicofthe infraredradiation.Theinfraredlampemitsvisibleray lessthanincandescentlamp.

Instead,the lamp emits mostofinputenergy in theform oftheinfrared energy thathasthermaleffect.Themostsignificantcharacteristicoftheinfrared lamp is high efficiency oftheheattransferbecausethesurfaceofobjectisdirectly heated upduetoradiation.However,thelamphastheweakpointthatithastheshorter lifespanthanthehalogenlamp.

3.Ul t r avi ol etLamp

Theultravioletray hasthewavelength of100-400nm asashort-wavelength ray thathasthehighestenergyamongvariousraysthatreachtheearthfrom thesun.

A common ultravioletlamp emits70-80% oftheinputenergy whilein operation.

Due to a conduction,a radiation and a convection,such the high temperature increasesthetemperaturesofaglasstube,areflectorandhardening materialsthat enclosethelamp.Themostsignificantcharacteristicoftheultravioletlampisthat multi-purposelampcanbeproduceddependingonusageofthelamp.

4.Xenon Lamp

A xenonlampemitsrayduetoelectricarcdischargethathappensinsidetubeof thequartzcrystalchargedwithhigh-pressurexenongas.A spectraldistributionof the xenon lamp consists of a continuous spectrum that is uniform from the ultraviolentregion to visible region and a strong line spectrum in the partof near-infrared ray. In regard to natural lighting and performance, the color temperatureisalmostconstantwhilethebrightnessisveryhigh.Moreover,optical powerbecomesstableimmediately atthemomentofthelighting.Instantstartis

(19)

alsopossibleafterlightsgoout.

5.I nduct i on Heat i ng Devi ce

The induction heating device heats up objectby converting electric energy to thermal energy in the electromagnetic induction.The induction heating device enablesintensiveheatinginashortperiodofthetime.Furthermore,thedevicecan beusedsemi-permanently withoutthemaintenance,which providestheeconomical strong points.However,thedevicehastheweak pointsthatitcan beused only formetalandrequiresthehighinitialcostoftheproduction.

6.Ai rHeat er

An airheatergenerateshotairin thehigh temperatureandhasNi-Crhotwire thatiscoiledinthecenteroftheceramicinsidequartztubeandthestainlesspipe. Theairheaterabsorbsambientairand atthesametime,sendsheatin hotwire to nozzle, which heats up surface of the object. The air heater can be manufactured in a smallsize whileitcan generate high temperature.In addition, theheatingrateishighwithuseofthediversenozzles.Therefore,itispossibleto heatup a specificpartoftheobjectintensively.However,theairheaterhasthe weakpointsthatitcauseshighnoiseandalsoheatsupambientairtogether.

7.Sel ect i on ofaHeat i ng Met hod

Thispaperintended toderivetheoptimalheating method in ordertoobtain the thermalimageofthegeometricshapeofthedefectssuch asasizeofthedefects and adepth from thesurfacein an easierand quickerway.Theheating methods examinedtobeappliedtothisstudyincludedthemethodtoheatuppipeusingthe lampssuchasahalogenlamp,aninfraredlampandaxenonlampandthemethod

(20)

Heatingmethod Applicability

Halogenlamp

A halogenlampcanbemanufacturedinasmallsizeandlight weight.Thelampitselfgeneratesheatalotand isrelatively strong against thermalshock compared to other lamps.In addition,thebrightnessandtemperatureareconstantuntilthe end oflifespan while lifespan ofthe lamp islong thanks to halogenregenerativecycle.

Infraredlamp

A heatisnotabsorbed by airwhileitgoesstraightthrough space for heating.As surface of the object is heated up directly,thethermalefficiencyishigh.Ontheotherhand,the emission ofthe infrared ray decreases performance ofan IR camerabecausetheemissioninterfereswithacquisitionofthe thermalimagebyanIR camera.

Xenonlamp

The xenon lamp has excellentproductivity ofthe lightand showsthelong distanceandlargeareaofthelightemission.

In addition,the lamp can be used without stabilizer and manufactured in lightweight.On the other hand,the lamp hasthelargearea ofthelightemission so thatitmay heat TABLE 1.Applicabilityoftheheatingmethods

to heatup pipe using an induction heating deviceand an airheater.Among the aforementionedheatingmethods,weexaminedthecharacteristicsofvariousheating methodstoinvestigateapplicability ofsuch methodstothisstudy.Table1shows theexaminationresultsofapplicability.

Asshown in Table1,ahalogen lampwasevaluatedtobethemostexcellent among theheating methodstousetheIR thermography and detectthedefectsin the pipe of the NPPs. In addition, the halogen lamp is currently used by universities and research institutes as a heating device to investigate the defects using theIR thermography.Therefore,performanceofthehalogen lamp hasbeen provedinmanystudies.Inthispaper,theIR thermographywasusedasaheating devicewiththehalogenlamptodetectthewall-thinneddefectsinsidethepipe.

(21)

up airin the surroundings.Thelamp isexpensivecompared tootherlamps.

Ultravioletlamp

TheUV lamp can beproduced in diversekindsaccording to usage.The lamp can be used forthick materialbecause it has the high penetrating power. On the other hand, high-temperatureheatin lampitselfhasan adverseeffecton qualityofthelamp.

Inductionheating device

The induction heating device enables rapid heating and local heating. It can be used semi-permanently without maintenance.Moreover,thedevicecan becontrolledasithas diverse outputs and enables selecting frequencies in wide range.On theotherhand,itisrequired todesign coilin the pipe.Thedeviceislargein volumesothatitisnoteasy to movethedevice.

Airheater

An airheateris smallin size with high heating rate.The nozzle can be manufactured in various forms so thatitis possible to provide heatto the straightpipe and bend pipe properly.On the other hand,the heater heats up notonly objectbutalsoambientair.Therefore,itisdifficulttoobtain thethermalimagewithuseofanIR camera.

(22)

B.Cool i ng Met hods

InanNPP thatisinnormaloperation,thepipesarecoveredwithinsulatorsand areathightemperature,transferringheatuptothesurfaceoftheinsulators.When acoolingdeviceisusedtocoolthepipesathightemperatures,thermaldiffusionis disturbed depending on the existence ofdefects inside the pipes.The insulation effects by defects cause localdifferences in temperature on the surface ofthe pipes.When an IR cameraisused toobtain athermalimageofthepipes,where suchatemperaturedifferenceoccurrs,defectsinthepipesareshownintheimage depending on the existence ofdefects.Therefore,afterexamining various cooling methods and investigating applicability of such methods,we found out on an optimal cooling method to detect defects in the NPP’s pipes using the IR thermography.

1.TubeAi rCool er

A tubeaircoolerisacooling devicewherepathway ofaircurrentisnarrowed to increasefluid velocity ascompressed airrotates in high speed,which aimsat separating hot air current from cool air current. The tube air cooler uses compressedairinageneralcompressortocoolairreadily.Inaddition,thecooleris fundamentallysafebecauserefrigerant,electricityoranychemicalsarenotusedfor thecooler.Thecooleriseffectivespeciallyforlocalcoolingeventhoughithaslow capacity.However,thecoolerhassomedrawbacksbecauseitrequiresanadditional equipmentto use compressed airand needs to be installed with equipmentthat producescompressedairinordertobeusedportably.

2.Wat er -cool edAi rcool erandAi r -cool edAi rCool er

A cooler is a device that converts high-temperature high-pressure gaseous

(23)

refrigerant to low-temperature liquid refrigerant.Gaseous refrigerant containing heat that is taken away from evaporator gets cooled as it passes through condenser.Therefore,heatisreleased to theoutsideasthegaseousrefrigerantis turned totheliquid refrigerant.Coolercan beclassified towater-cooled aircooler and air-cooled air cooler.The air-cooled air cooler has the excellent cooling capability as it prevents degradation of cooling function that is attributable to increase in room temperature.Moreover,the air-cooled aircoolerenables keeping temperatureconstantprecisely andcan beadjustedin thewiderangeofuse.The water-cooled air cooler uses water from a cooling tower to work in the condensation cooling method.It minimizes indoor noise and shows the higher coolingefficiencythantheair-cooledaircooler.

3.HeatPi pe-TypeCool er

A heatpipe-typecoolerisacooling devicethattransfersheatin largequantity to condenserpriorto using thepin installed in thecondenserforcooling through naturalconvection orforced convection.The heatpipe-type cooleruses working fluid ofFC-27 in the maximum thermalload of1.5kW.In addition,ithas the operating temperatureof-30∼120℃ with thehigh cooling efficiency.Sincewater quantity in heat pipe can be adjusted, the heat pipe-type cooler can be manufactured in variousforms.However,theheatpipe-typecoolerhasdrawbacks thatittakeslongertimeforcoolingthanothercoolersandrequirestheinstallation ofadditionalfantoincreasecoolingefficiency.

4.Fan

A fan is a device thatstirs up the wind as wings installed on the axis of electric motorrotate.The fan can be classified to desk fan,ventilating fan and stand fan depending on shapeand purposeofuse.Majorpartsofthefan include

(24)

stand,pillar,motor,and wing.Itcan be adjusted quite freely according to angle and direction ofmovement(up and down orrightand left).Thepillarofthefan alsocan beadjusted upwardly ordownwardly.Thefan hasthefront-sidecontrol panelthatenablesan easy controlasallofthedevicesareinstalled on thefront sideofstand.Thefancanbealsoclassifiedtoturbofan,limitfanandsiroccofan dependingonshapeofwing.Theturbofanhasthewingthatitstipisbenttothe backward ofrotation direction,which includestheonewith curved wing and the one with straight wing.The turbo fan shows the high efficiency and can be operated relatively quietly even ata high speed.The limitfan is an upgraded version oftheturbo fan and thesirocco fan.Ithasthestreamlined wing thatis manufactured by folding athin plate.Therefore,thelimitfan can berotated in a highspeedwithlow noise.Thesiroccofanhasabentshapeasthetipofwingis benttoward the rotation direction.Compared to othertypes offans in the same capacity,thesiroccofanfeaturesthesignificantlylow numberofrotation.

5.Sel ect i on ofaCool i ng Met hod

In thisstudy,an optimalcooling methodwasselectedtoobtain theIR imageof defectsinageometricshapeinaneasierandquickerwaywithaview toexamine the defectsize and depth from the surface.Previous cooling methods include a method for cooling a pipe using a water-cooled air cooler oran air-cooled air cooler,a tube air cooler,a heatpipe-type cooler,and a fan.Table 2 lists the characteristicsoftheirrespectivecoolingmethods.

Asshown in Table2,thecooling method using afan wasevaluated to bethe bestamong thevariouscooling methods.Thefancooling methodcanbecombined with other cooling methods or can be used independently.Therefore,the fan cooling method was used in this study to detectwall-thinned defects inside the pipebasedonIR thermography.

(25)

Coolingmethod Applicability

Tubeaircooler

Ascompressedairisusedforcooling,thecoolerischeapand portable.The coolerhas low capacity,which is effective for cooling locally. On the other hand, it requires additional equipment to use compressed air. Some limitations are expectedwhenacoolerisusedonthesiteoftheNPPs.

Air-cooledair coolerand Water-cooledair

cooler

Thecoolersenablethemaintenanceofaconstanttemperature and can be adjusted overa wide range ofuse.They show excellentcooling capability with high efficiency.On theother hand,theinitialcostofmanufacturingishigh.Theyareheavy andunsuitableforportableuse.

Heatpipe-type cooler

The cooler has high cooling efficiency while the water quantity in a heat pipe can be adjusted, which enables manufacture in a range offorms.In addition,the intervalof the heatpipe itselfcan be adjusted.On the otherhand,the cooler shows high cooling efficiency when it is installed directlyonthetarget.A fanalsoneedstobeinstalled.

Fancooler

A fan isreadily available,and itswing can bemanufactured inavarietyofforms.Theangleofthecoolercanbeadjusted while the rotation speed of the fan can be adjusted continuously and freely. In addition, the cooler can be manufactured tobelightweight.Therefore,itisbelievedthat thecoolerwillbeeasytouseandportable.

TABLE 2.Applicabilityofthecoolingmethods

(26)

Ⅳ.Si mul at i on andExper i ment

In this study,thehalogen lamp heating device and the fan-type cooling device wereselected astheequipmentforheating and cooling thepipespecimen.Before the experiments, finite element analysis (FEA) simulation was conducted to examinetheheating and cooling effectoftheselected heating and cooling device aswellastheoptimalexperimentconditions.FEA simulationwasperformedusing ANSYS FLUENT 13.0,and the GAMBIT program was used to generate the meshesthatweremodeledtoconductFEA simulation [10]-[11].In addition,based on the simulation results,theheating and cooling experiments wereperformed to detectdefectsinsidethepipespecimen.

A.Speci men andEqui pment

1.Speci men

The pipe specimen used in this study has defects inside forthe heating and cooling experiments.Fortheexperiments,thepipespecimen,4inchesin diameter, wasmanufacturedwith thematerialofShc.80ASTM A106Gr.B,which issimilar totheactualpipeusedintheNPPs.Asshown inFig.2,thepipespecimenhasa totallength of500mm,thickness of7.5mm,and externaldiameterof113mm.On theinnersurface,fourdefectswerecreatedin aconstantlength.Thefourdefects had adepth of50% and 75%,respectively,ofthethicknessofthepipespecimen.

Table3showsthedimensionsofthecreateddefectsinthepipespecimen.A matte colorspray was also applied to the surface ofthe pipe specimen to maintain a surface emissivity of0.95 and minimize the reflection oflight.Fig.3 shows the pipespecimenthatwasmanufacturedinthisstudy.

(27)

Fig.2.Designofapipespecimen

Fig.3.Pipespecimen

(28)

Size Circ.Angle,θ/π 0.25

Depth,d/t 0.5,0.75 length,L/D0 0.5 TABLE 3.Dimensionsofthedefectsinthepipespecimen

2.Heat i ng and Cool i ng Devi ces

In this study,we investigated and examined the devicesthatcould beused to heatup and cooloffpipe specimen before selecting each device.As forheating device,two1kW halogen lampswereused along with powersupply toadjustthe power.The 1kW halogen lamp was PAR64 CP61 EXD NSP ofPhilips,which features 20cm ofthe diameter,3,200K ofthe colortemperatureand 300 hours of theaveragelifespan.

A blower fan was used as a cooling device to coolthe pipe specimen.The blowerfan had 6wingswith amaximum wind speed of16.5m/s.Thesizeofits wingwas27cm.Theblowerfanallowsuniform coolingofthepipespecimen.

(29)

(a)heatingdevice

(b)coolingdevice

Fig.4.Heatingandcoolingdevices

(30)

B.Si mul at i on Met hod

In regard to experiments for wall-thinned defects inside the pipe, thermal analysiscan bedetermined based on theFEA simulation thatusesthenumerical technique priorto experiment.The FEA simulation provides the data to predict problemsin thethermaldistribution ofthepipespecimen based on an analysisof the simulation results,to configure the heating and cooling device thatcan be appliedtoanactualenvironment,andinvestigatetheoptimalexperimentconditions.

1.Pi peSpeci men Model i ng andBoundar y Condi t i on

Inthisstudy,thepipespecimenusedfortheexperimentwasASTM A106Gr.B, which is frequently used foran actualpipe ofthe NPP’s secondary system that was manufactured from carbon steel.Therefore,pipespecimen modeling forFEA simulationwasperformedunderthesameconditionsasthoseforthepipespecimen thatwasusedforexperimentontheheatingandcoolingdevices.

The basic boundary conditions for the FEA simulation were established as follows.Tosimplifytheanalysis,symmetricconditionsweresettoconsiderhalfof the pipe specimen model.In addition,the temperature (25℃)forthe entire space werekeptconstant,excluding thoseforthepipespecimen modeland heating and coolingdevicemodel.

2.Heat i ng Met hod

Inthisstudy,ahalogenlampwasusedastheheatingdevice.Thecharacteristics ofthehalogen lampwereused tomakeaFEA simulation toexaminetheheating effects of the heating device and the optimal experiment conditions. ANSYS FLUENT was used to perform theexperimentaccording to distance between the 1kW halogen lamp modeland the pipe specimen modeland with power ofthe

(31)

halogen lamp adjusted [10]-[11].As for the simulation conditions,the distance betweenthepipespecimenmodelandhalogenlampmodelwasadjustedto1m,2m and3m,whereaspowerofthehalogenlampmodelwassetto50%,60% and80%

accordingly.Inaddition,asurfacetemperature,asurfaceemissivity,ashape,anda surface area ofthe halogen lamp modelwere taken into consideration.The pipe specimen modelandthehalogen lampmodelin rectangularcoordinateweresetas the basic modeling to make a FEA simulation forthe heating device.Fig.5 (a) showsdiagram ofpipespecimen modeland halogen lamp modelwhileFig.5 (b) showsthatmeshwascreatedtoimproveprecisionofaFEA simulation.

(32)

(a)diagram ofthepipespecimenmodelandhalogenlampmodel

(b)creationofmeshes

Fig.5.Configurationofmodelledhalogenlampandpipespecimenmodel

(33)

3.Cool i ng Met hod

This study used the cooling device was based on the principles ofthe fan.

Therefore,toconductFEA simulation ofthecooling device,theprinciplesofafan wereappliedtocoolthepipespecimenmodelthrough forcedconvection causedby thepressuredifferencebetween surfacesofthefan modeland the pipe specimen model.Inaddition,waterwasdesignedtoflow insidethepipemodeltodescribea hotpipeintheNPPsinnormaloperation.Themassflow rateofwaterwassetto 1kg/sec.Fig.6(a)showsdiagramsofthepipespecimenmodelandfanmodel.Fig.

6 (b) shows the meshes that were created to improve the analysis accuracy.

ANSYS FLUENT wasused toperform asimulation oftheFEA simulation fora cooling device [10]-[11].The distance between the fan modeland pipe specimen modeland thepressuredifferencein thefan modelwereadjusted.Forsimulation conditions,thedistancebetween thepipespecimen modeland thefan modelwas adjustedto1m,2m and3m,whereasthepressuredifferencein thefanmodelwas setto100Paand150Pa.Thetemperatureofwaterflowinginsidethepipespecimen modelwasadjustedto100℃ and200℃.Here,thepressuredifferenceof100Pacan berepresentedby 12.4m/sandthepressuredifferenceof150Pacan berepresented by15.2m/s.

(34)

(a)diagram ofthepipespecimenmodelandfanmodel

(b)creationofmeshes

Fig.6.Configurationofmodelledfanandpipespecimenmodel

(35)

C.Si mul at i on Resul t s

1.Heat i ng Si mul at i on Resul t s

A FEA simulationfortheheatingdevicewasconductedasmodelingoftwo1kW halogenlampswithopticalpowerwasperformedwithpoweranddistanceadjusted.

Table4showstheconditionsoftheFEA simulation.Fig.7showsthesimulation resultsfor60 seconds respectively aspowerofhalogen lamp modelwas keptat 50% and distancebetween thepipespecimen modeland halogen lamp modelwas adjustedto1m,2m and3m.Regardlessofthedistancebetween thepipespecimen modeland halogen lamp model,the temperature difference in defect site was observed with thenaked eyeunderalloftheexperimentconditions.However,the sharpnessofthetemperaturevariation in defectsitewaslowerwhen depth ofthe defectswas50% ofthepipespecimenmodelthicknessthan whendepth was75%.

Moreover,sharpnesswasthehighestwhenthedistancewas1m.Itwasconfirmed thatshapeofthedefectslookedbrokenwhenthedistancewas3m.

Fig. 8 shows the simulation results that was performed for 60 seconds respectively as powerofthe halogen lamp modelwas keptat60% and distance betweenthepipespecimenmodelandthehalogenlampmodelwasadjustedto1m, 2m and 3m.Regardless of distance between the pipe specimen modeland the halogen lamp model,thetemperaturedifferencein defectsitewasobserved to be conspicuous underallofthe experimentconditions while a shape ofthe defects wasmoredistinctthanthecasewherepowerofthehalogenlampmodelwas50%.

However,asharpnessofthedefectswaslowerwhen adepth ofthedefectswas 50% ofthepipespecimen modelthicknessthan when depth was75%,which was the same as the case where power of the halogen lamp modelwas 50%.In addition,whenthedistancebetweenthepipespecimenmodelandthehalogenlamp modelwas1m,thedefectswereclearwhileashapeofthedefectswasthemost similartoactualshapeofthedefects.

(36)

Fig.9showsthesimulationresultsthatwasperformedaspowerofthehalogen lamp modelwaskeptat80% and distancebetween thepipespecimen modeland thehalogen lamp modelwasadjusted to1m,2m and 3m.A shapeofthedefects wassimilartotheactualshapeofthedefects.

According totheFEA simulation results,thetemperatureon surfaceofthepipe specimen modelwasthehighestwhenpowerofthehalogen lampmodelwas80%

and distance between the pipe specimen modeland the halogen lamp modelwas 1m.Moreover,the defects were clearwhile shape ofthe defects was the most similartoactualshapeofthedefects.However,asharpnessofthedefectsvaried according to depth ofthe defects.As distance between the pipe specimen model and the halogen lamp model increased, heat transfer to surface of the pipe specimen modelwasdecreased dramatically.Therefore,theFEA simulation results confirmed the heating effects of the heating device that used halogen lamp.

Consequently,itcould be predicted thatdefects could be welldetected underthe optimal experiment conditions that power of the halogen lamp was 80% and distancebetweenthepipespecimenandthehalogenlampwas2m orless.

Heatingsource

Powerof halogenlamp

model

Heatingtime

Distancebetweenpipe specimenandhalogen

lampmodel

1kW halogenlamp

50%

60sec

1m,2m,and3m respectively

60% 1m,2m,and3m

respectively

80% 1m,2m,and3m

respectively TABLE 4.Conditionsoftheheatingsimulation

(37)

(a)distanceofthehalogenlampmodelfrom pipespecimenmodel-1m

(b)distanceofthehalogenlampmodelfrom pipespecimenmodel-2m

(c)distanceofthehalogenlampmodelfrom pipespecimenmodel-3m Fig.7.50% powerof1kW halogenlampmodel

(38)

(a)distanceofthehalogenlampmodelfrom pipespecimenmodel-1m

(b)distanceofthehalogenlampmodelfrom pipespecimenmodel-2m

(c)distanceofthehalogenlampmodelfrom pipespecimenmodel-3m Fig.8.60% powerof1kW halogenlampmodel

(39)

(a)distanceofthehalogenlampmodelfrom pipespecimenmodel-1m

(b)distanceofthehalogenlampmodelfrom pipespecimenmodel-2m

(c)distanceofthehalogenlampmodelfrom pipespecimenmodel-3m Fig.9.80% powerof1kW halogenlampmodel

(40)

2.Cool i ng Si mul at i on Resul t s

A FEA simulation to confirm the cooling effects of the cooling device and investigatetheoptimalexperimentconditionswasperformed aspressuredifference ofthefan modelwasadjusted to 100Pa and 150Pa and distancewasadjusted to 1m,2m and 3m accordingly.In addition,astemperatureofthewaterthatflowed insidethepipespecimenmodelwassetat100℃ and200℃,ananalysiswasmade for60seconds.Table5showstheconditionsoftheFEA simulation.

The simulation resultwere obtained based on the image at30 seconds,which showedthedefectsthemostclearlycomparedtotheresultsofsimulationthatwas conductedfor60seconds.Fig.10showsthesimulationresultsthatwereperformed when thepressuredifferenceofthefan modelwas100Pa,thetemperatureofthe pipe specimen modelwas 100℃ and 200℃,and the distance between the pipe specimen modelandfan modelwasadjusted to1m,2m and3m.Thedeviation of thetemperaturein thedefectpartwasconspicuousunderallsimulation conditions regardlessofthedistancebetweenthepipespecimenmodelandfanmodel.

In addition,Fig.11showsthesimulation resultsthatwereperformed when the pressure difference of the fan modelwas 150Pa,the temperature of the pipe specimen modelwas100℃ and200℃,andthedistancebetween thepipespecimen modeland fan modelwasadjusted to 1m,2m and 3m.Theshapeofthedefects was observed with the naked eye.The defects appeared cleareras the pressure difference in the fan modelincreased regardless of the depth of the defects. Moreover,the defects became more distinctwhen the distance between the pipe specimenmodelandfanmodelwasshorter(1m and2m).

Consequently,the FEA simulation could confirm the cooling effects ofthe fan cooling device.Theoptimalexperimentconditionsincludea pressuredifferenceof 150Pa in the fan and a close distance,such as 1m and 2m between the pipe specimenandfancoolingdevice.

(41)

Coolingsource

Pressure differenceof

fanmodel

Temperatureof pipespecimen

model

Distancebetweenpipe specimenandfanmodel

Fan

100Pa

100℃ 1m,2m,3m respectively 200℃ 1m,2m,3m

respectively

150Pa

100℃ 1m,2m,3m respectively 200℃ 1m,2m,3m

respectively TABLE 5.Conditionsofthecoolingsimulation

(42)

(a)distanceofthefanmodelfrom pipespecimenmodel-1m (100℃)

(b)distanceofthefanmodelfrom pipespecimenmodel-2m (100℃)

(c)distanceofthefanmodelfrom pipespecimenmodel-3m (100℃) Fig.10.Differentialpressureof100Paonfanmodel

(43)

(d)distanceofthefanmodelfrom pipespecimenmodel-1m (200℃)

(e)distanceofthefanmodelfrom pipespecimenmodel-2m (200℃)

(f)distanceofthefanmodelfrom pipespecimenmodel-3m (200℃) Fig.10.Differentialpressureof100Paonfanmodel(continued)

(44)

(a)distanceofthefanmodelfrom pipespecimenmodel-1m (100℃)

(b)distanceofthefanmodelfrom pipespecimenmodel-2m (100℃)

(c)distanceofthefanmodelfrom pipespecimenmodel-3m (100℃) Fig.11.Differentialpressureof150Paonfanmodel

(45)

(d)distanceofthefanmodelfrom pipespecimenmodel-1m (200℃)

(e)distanceofthefanmodelfrom pipespecimenmodel-2m (200℃)

(f)distanceofthefanmodelfrom pipespecimenmodel-3m (200℃) Fig.11.Differentialpressureof150Paonthefanmodel(continued)

(46)

D.Exper i mentMet hod

FEA simulation thatwasconductedbasedon thenumericaltechniquebeforethe experimentcouldconfirm theheatingandcooling effectsoftheheatingandcooling device.In this study,an IR camera and the heating and cooling device were configured according to the experimentconditions established based on the FEA simulationofdetectwall-thinneddefectsinsideamanufacturedpipespecimen.

1.Heat i ng Met hod

During theoverhaulperiod oftheNPPs,thetemperatureofthepipesystem is keptatroom temperature.Therefore,theheating devicewasused to conductthe experimentto detectwall-thinned defects inside the pipe afteritwas confirmed thattemperatureofthepipespecimen wasroom temperature.Basedontheresults ofa FEA simulation,the experimentequipmentincluded an IR camera,halogen lamps,a pipe specimen,a lamp power supply,and a PC.The experimentwas conducted in an enclosed space.An air conditioner was used to ensure that temperatureinexperimentroom werekeptconstantlyat25℃.

Theexperimentwithuseoftheheating devicebasedonsimulationoftheNPP’s overhaulperiodwasconductedastemperatureofapipespecimenwassetatroom temperature and distance between a pipe specimen and halogen lamps and the intensity ofthehalogen lamp weresetasvariables.Thedistancebetween apipe specimen and an IR camera was setat1m while the distance between a pipe specimen and thehalogen lampwasadjusted to1m and 2m.In addition,intensity of1kW halogen lamp was adjusted to 60% and 80% whileeach experimentwas conducted for 120 seconds.Fig.12 shows the configuration of the experiment equipmenttodetectthewall-thinneddefects.

(47)

Fig.12.Configurationofexperimentalequipmentusingheatingdevice

2.Cool i ng Met hod

The temperature ofthe pipe should be kepthigh because itis assumed that inspectionsareconductedforthewall-thinneddefectsinsidethepipesoftheNPPs thatisinnormaloperation.Therefore,theexperimentforthisstudywasconducted when thetemperatureofthepipespecimen waskepthigh.Tothisend,aheating device in the pipe was manufactured before itwould be inserted inside the pipe specimen.Theinnerheating device was manufactured to ensurethatthesupport wasclosetotheinnerwallofthepipespecimenandthesupportcouldbewrapped up with two heating tapes thatcould be heated up to 400℃.Fig.13 shows the innerheatingdeviceusedtoimplementahotpipe.

To verify the heating performance ofthe innerheating device,the device was

(48)

installedinsidethepipespecimenbeforebeing heatedup.An IR camerawasused tomeasurethetemperaturedistribution.Themeasurementresultsshowed thatthe surface temperature of the 4-inch pipe specimen was kept at 142∼150.35℃

depending on thelocation when thetemperatureofthetwoheating tapeswasset at320℃ each.Fig.14 shows the surface temperature ofthe pipe specimen that wasmeasuredusing an IR camerawhen themaximum surfacetemperatureofthe pipe specimen was 150℃.According to the measurement results,the highest temperature was observed in the center ofthe pipe specimen.The temperature tended todecreasewith increasing distancefrom thecenter.Thelow temperature ofbothedgeswasexpectedfrom theheatlosscausedbytheflangeparts.

(a)designoftheinnerheatingdevice

(b)innerheatingdevice

Fig.13.Innerheating deviceofpipespecimen

(49)

Fig.14.Temperaturedistributionofinnerheatingdevice

AsshowninFig.15,weconfiguredtheexperimentalequipmentforthedetection ofwall-thinned defects inside the pipe thatincluded an IR camera,fans,a pipe specimen,heating tape,a heating tapecontroller,and a PC.The experimentwas conducted in a closed space while the temperature in the laboratory was kept constantat25℃ usinganairconditioner.

To describe the pipe ofthe NPPs thatwas undernormaloperation,the inner heatingdevicewasusedtomaintainthetemperatureofthepipespecimenat150℃, whereasthedistancebetween thepipespecimen and fan and thenumberoffans changed.Thedistancebetween thepipespecimenandtheIR camerawasfixedat 1m,whilethedistancebetweenthepipespecimenandthefanwasadjustedto1m and 2m.In addition,the number of fans was adjusted to 1 and 2 and each experimentwasconductedfor120seconds.

(50)

Fig.15.Configurationofexperimentalequipmentusingcoolingdevice

E.Exper i mentResul t s

1.Heat i ng Exper i ment alResul t s

The experiment using the heating device based on simulation of the NPP’s overhaulperiod was conducted asdistancebetween a pipespecimen and halogen lamp wassetto 1m and 2m becausetheresultsofa FEA simulation thatwhen thedistancewasshorter,defectslookedmoredistinct.Table6showsthecondition oftheexperiment.Fig.16showstheexperimentresultswhen distancebetween a pipespecimen and halogen lamp wasadjusted to1m and 2m and intensity ofthe halogen lamp was setto 60%.According to the experimentresults,a sharpness waslowerinthesitewheredepthofthedefectswas50% ofthethicknessthanin

(51)

the site where depth ofthe defects was 75% ofthe thickness.However,itwas possibletoconfirm thedefectswiththenakedeyethatlookedconspicuously.

Fig.17showstheexperimentresultswhen distancebetween apipespecimen and halogen lamp wasadjusted to 1m and 2m and intensity ofthehalogen lamp was setto 80%.According to theexperimentresults,itwas possibleto confirm thedefectswiththenakedeyeunderalloftheexperimentconditions.Itwasalso possible to clearly distinguish the defects in the site where depth ofthe defects was 50% of the thickness and where sharpness was low as intensity of the halogenlampwasupto60%.Inaddition,ashapeofdefectswasthemostsimilar toactualshapeofthedefects.

According to the experiment results, the halogen lamp was able to detect wall-thinneddefectsinsidethepipe.Furthermore,itwasconsideredthatthepower ofthehalogen lamp should be60% orhigherand thedistance between thepipe and thehalogen lampshould beshortsuch as2m in ordertodetectwall-thinned defectsinsidethepipeduringtheoverhaulperiodoftheNPPs.

Heatingsource Powerofhalogen lamp

Heating time

Distancebetweenpipe specimenandhalogen

lamp 1kW

halogenlamp

60%

60sec

1m,2m respectively 80% 1m,2m respectively TABLE 6.Conditionsoftheexperimentusingaheatingdevice

(52)

(a)distanceofthehalogenlampfrom pipespecimen-1m

(b)distanceofthehalogenlampfrom pipespecimen-2m Fig.16.60% powerof1kW halogenlamp

(53)

(a)distanceofthehalogenlampfrom pipespecimen-1m

(b)distanceofthehalogenlampfrom pipespecimen-2m Fig.17.80% powerof1kW halogenlamp

(54)

2.Cool i ng Exper i ment alResul t s

Thecooling experimentsforthedetection ofwall-thinned defectsinsidethehot pipe of the NPPs that were in normaloperation was conducted at 150℃.An heating devicewasinsertedinsidethepipespecimen,whichaimedatimplementing ahightemperatureofthepipespecimen.

Fig.18 shows the experiment results when a single fan was used with a distancebetween thepipespecimen and fan adjusted to 1m and 2m.Thedefects createduptoa75% depthinsidethepipespecimenweredetectedatadistanceof 2m.The defects were detected more clearly as the distance between the pipe specimenandfanbecameshorter.

Fig.19showstheexperimentresultswhen twofanswereusedtocoolthepipe specimen atadistanceof1m and 2m.Thedefectsartificially created with a75% depthand50% depthinsidethepipespecimen couldbedetected.Thedefectswere detectedmoreconspicuouslyasthedistancebetweenthepipespecimenandcooling devicebecameshorter.

According to the experimentresults,the fan cooling device was able to detect defectsinsideapipespecimen partially.Furthermore,itwasconsidered thatwind speed and airvolumeofthefan should beincreased and distancebetween apipe specimen and thefan should beshortsuch as1m in ordertodetectwall-thinned defectsinsidethepipeoftheNPPsthatwasinnormaloperation.

Coolingsource Fan Temperatureof pipespecimen

Distancebetweenpipe specimenandfan

Fan

1

150℃

1m,2m respectively 2 1m,2m respectively TABLE 7.Conditionsoftheexperimentusingacoolingdevice

(55)

(a)distanceofthefanfrom pipespecimen-1m

(b)distanceofthefanfrom pipespecimen-2m Fig.18.Coolingexperimentusing1fan

(56)

(a)distanceofthefanfrom pipespecimen-1m

(b)distanceofthefanfrom pipespecimen-2m Fig.19.Coolingexperimentusing2fan

(57)

Ⅴ.Concl usi ons

In this study,IR thermography was used to detectwall-thinned defects inside thepipesofNPPsthatwereintheoverhaulperiodandnormaloperation.Thepipe modeland pipe specimen thathad the same physicalproperties as those forthe actualpipeoftheNPPswereused fortheFEA simulationsand theexperiments. Moreover,thesizeofthedefectsappliedtothepipespecimenwasequaltothatof thedefectsappliedtothepipemodelfortheFEA simulation.

Based on the FEA simulation results thataimed atinvestigating the heating effects of the heating device and the optimal experiment conditions, it was predicted thatcapability to detectdefects increased as distance between the pipe andthehalogenlampwasshorterandintensityofthehalogenlampwashigher.

FEA simulationwasconductedtoexaminethecooling effectsofacoolingdevice and the optimalexperiment conditions.The results predicted that the detection ability ofdefectsincreasedwith decreasing distancebetween thepipeand fan and increasing wind speed of the fan. The results were applied to subsequent experiments.

In theexperimentusing theheating devicebasedontheFEA simulation results, defectslookedmoreconspicuousasdistancebetween apipespecimen andhalogen lampwas2m andthepowerofhalogen lampwashigher.Theoptimalexperiment conditionsforinvestigationofthewall-thinneddefectsintheNPP’spipeusing the halogen lampincludedthedistancebetween thepipeandtheheating deviceof2m andthehalogenlamppowerof60% orhigher.

The defects could be detected partially in the experimentthatwas conducted using the cooling device of fans based on FEA simulations.Unlike the FEA simulation results,thedefectswith the75% depth ofthepipethicknesscould be detectedclearlywhenthedistancebetweenthepipespecimenandfanwas1m.To detectthewall-thinned defectsin theNPPsthatisin normaloperation based on

(58)

such results,the distance between the pipe and fan should be short(e.g.1m), whereasthewindspeedandairflow ofthefanshouldbehigh.

In conclusion,IR thermography enabled thedetection ofthewall-thinned defects insidethepipeanditwasexpectedtobequiteusefulon theNPPssitecompared totheexistingNDI.Moreover,becauseIR thermographyfacilitatesthemaintenance offacilitiesoftheNPPsthatareinnormaloperationorNPPsthatareinoverhaul period,itis expected to maximize the operation efficiency ofthe NPPs facilities andminimizetheenergy lossandeconomiclosscan beattributedtotheoperation stop.

(59)

Ref er ences

[1]M.Frank,R.Hans,and S.Helmut,“Experiencewith piping in German NPPs with Respectto Ageing-Related Aspects”,NuclearEngineering and Design,Vol. 207,No.3,pp.307-316(2001).

[2]K.S.Kim,H.S.Chang,D.P.Hong,C.J.Park,S.W.Na,K.S.Kim,andH.

C.Jung,“DefectDetection oftheWallThinning PipeoftheNuclearPowerPlant Using Infrared Thermography”,Journalofthe Korean Society forNondestructive Testing,Vol.30,No.2,pp.85-90(2010).

[3]G.ShenandT.Li,“Infraredthermographyforhigh-temperaturepressurepipe”, Insight,Vol.49,No.3,pp.151-153(2007).

[4] P. K. Rastogi,D.Inaudi,“Trends in Optical Nondestructive Testing and Inspection”,ElsevierScience(2000).

[5]C.J.Hellier,“Handbook ofnondestructive evaluation”,McGraw-Hill,2nd Ed.

(2001).

[6]A.Vageswar,K.Balasubramanian,C.V.Krishnamurthy,T.Jayakumar,B.Raj,

“Periscope infrared thermography for local wall thinning in tubes”, NDT&E International,Vol.42,pp.275-282(2009).

[7]S.V.Patankar,“NumericalHeatTransferand Fluid Flow”,Hemisphere Pub.

Co.(1980).

[8]H.D.Lee,“Thermalmeasurementtheory using infrared camera”,Journalof KSNVE,Vol.17,No.3,pp.31-34(2007).

[9]X.P.V.Maldague,P.O.Moore,“Nondestructive Testing Handbook:Infrared andThermalTesting”,AmerSocietyforNondestructive,3rdEd.(2001).

[10]ANSYS,ANSYS 13.0(Release13.0),ANSYS Inc.(2010). [11]Fluent,GAMBIT 2.1,FluentInc.(2003).

[12] X. P. V. Maldague, “Nondestructive evaluation of materials by infrared thermography”,Springer-Verlag(1993).

[13]Y.Y.Hung,R.E.Rowlands,andI.M.Daniel,“Speckle-shearinginterfermetric technique:A full-fieldstraingauge”,AppliedOptics,Vol.14,pp.618-622(1975).

(60)

[14]Y.Y.Hung,“Digitalshearography versusTV-holography fornon-destructive evaluation”,Journalof Optics and Lasers in Engineering,Vol.26,pp.421-436 (1997).

[15]X.P.V.Maldague,“Infraredmethodologyandtechnology”,GordonandBreach SciencePublishers,Vol.7(1994).

[16] J. G. Kim, “Integrity Evaluation of Railway Bogie Using Infrared Thermography Technique”, Journal of the Korean Society for Nondestructive Testing,Vol.31,No.2,pp.144-149(2011).

[17] G.Busse,D,Wu,and W.Karpen,“Thermal wave imaging with phase sensitivemodulated thermography”,JournalofApplied Physics,Vol.71,No.8,pp.

3962-3965(1992).

[18]O.Wuand,G.Busse,“Lock-in thermography fornondestructiveevaluation of materials”,RevueGeneraledeThermique,Vol.37,pp.693-703(1998).

[19]G.Gaussorgurs,“Infraredthermography”,Champman& Hall(1993).

(61)

감사의 글

지난 시간동안 집에 있는 시간보다 더 많은 시간을 보내며 나의 대학원 생활의 모든 추억이 담겨있는 CUNICL...덩그런 연구실에서 홀로 석사 학위 논문의 감사의 글을 작성하고 있으니,지금까지의 여러 추억들이 바로 어제처럼 눈앞에 아른거리고 만감이 교차합니다.

2년여 시간의 대학원 생활을 돌이켜 보니 후회와 연민의 나날이 먼저 떠오르는 것은 아마도 아쉬움이라는 감정이 많기 때문인가 봅니다.비온 후의 땅이 더욱 단단한 것처 럼 저에게도 거름과 같은 시간이었다는 것은 틀림없는 사실입니다.교수님들과 선배님 들의 지나온 길을 따라 걷기에도 부족함이 많은 저를 졸업 논문의 마지막을 작성하고 있는 지금 이 순간까지 올 수 있도록 이끌어 준 것은 바로 ‘인연’이었습니다.지난 2년 여 시간동안 닿았던 ‘인연’으로 지금 이 시간을 만들어준 모든 분들에게 감사의 마음을 전합니다.

먼저 이 논문을 완성하기까지 모르는 것도 많고 한없이 부족한 저에게 따뜻한 관심 과 엄한 꾸지람으로 여느 대학의 대학원생들과 비교하여도 손색이 없도록 수많은 경험 과 사회생활을 경험할 수 있도록 가르침을 주신 저의 영원한 스승님,나만균 교수님께 머리 숙여 깊은 감사를 드립니다.항상 모든 제자들이 잘 되도록 챙겨주시며 변함없는 모습으로 학문연구에 매진하시는 그 사랑과 열정을 존경하고 영원히 마음속에 간직하 면서 자랑스러운 제자가 될 수 있도록 노력하겠습니다.그리고 바쁘신 와중에도 귀중 한 시간을 내시어 상담을 하며 많은 조언을 해주시고 김숭평 교수님,정운관 교수님, 이경진 교수님,송종순 교수님,김진원 교수님,모든 교수님들께 진심으로 머리 숙여 감사드립니다.원자력분야의 현장에 대한 실무적인 강의와 삶의 이야기를 들려주시며 격려 해주신 이기복 교수님,박부성 교수님,노재만 교수님,박병주 교수님,이두정 교 수님께도 진심으로 감사의 말씀을 드립니다.

같이 오래 생활하지는 않았지만 CUNICL에 들어올 수 있게끔 조언과 격려를 해준 성한이형,give& take를 좋아하고 하나라도 더 알려주려고 노력하던 동수형,모르는 것이 많아 같이 프로젝트를 수행하면서 답답함을 느꼈을 영규형,친 동생처럼 생각하

(62)

면서 챙겨주고 에너지가 넘치는 심원이형 모두 졸업하셨지만 형들의 관심과 배려로 지 금의 제가 있다고 생각합니다.감사합니다.그리고 명절이나 스승의 날에만 볼 수 있는 영록이형,선호형,동원이형,인준이형,인호형,헌영이형,동혁이형 항상 짧은 시간의 만남이지만 많은 조언과 격려 감사합니다.

현재 연구실에서 같이 생활하고 있는 식구들.대학원 동기라고 같이 장난도 치고 세 심하게 하나하나 챙겨주는 실장 재환이형.신혼여행 잘 갔다 오고 행복하게 사세요.나 의 고민을 상담해주고 실험조교 업무에 바쁜 순데렐라 순호형.항상 옆에서 도와줘서 고맙고 열심히 하는 것보단 잘 하는 것이 중요하다는 것 알고 있으리라 믿어요.나이 로는 나보다 많지만 연구실 막내인 막내 같지 않는 쾌환이형.같이 일하면서 나 때문 에 기분 상한일도 많았을 텐데 열심히 해 줘서 미안하고 고마워요.그리고 같이 대학 원에 입학해서 동기이자 형으로써 항상 힘이 되어주는 대섭이형,마무리 잘 해서 좋은 결과 있길 바랍니다.모두 정말 고마워요.

대학원 생활을 하면서 조언도 많이 해 주고 힘들 때 술한잔으로 위로해 주던 동위원 소실험실의 유선이형,정민이형,선동이형,열수력실험실의 용진이형,한이형,현석이형, 하임이,정하,핵주기실험실의 강일이형,상헌이형,민영이형,태빈이,영국이,현민이, 기계재료실험실의 민수형,사용이,성재,미연이,회열이,기현이,학과실 지현이,현윤 이 모두들 고맙고 감사합니다.또한,같이 학부 생활을 같이 하며 졸업할 때까지 동고 동락한 내 동기들 동수,민호,철주,재철,주현,인철,해성,진옥,승기,홍수,기효 그 리고 선·후배들 병진이형,기현이형,재수형,수열이형,경주형,경준이,세훈이,성희, 슬이 등등 한 번도 말하지 못했지만 나의 힘이 되어주어서 고마웠습니다.그리고 형의 부탁은 모두 들어준 후배들 건필,익현,경훈,백주현,명락,학주,위,창수,도준 모두 들 항상 잘 따라줘서 고맙다.이 외에도 미처 이름을 언급하지 않은 선·후배,동기들에 게도 고마운 마음을 전합니다.

항상 친구라는 행복감을 안겨주고 함께 울고 웃으며 10년이 넘는 시간을 함께해준 친구들 낙훈,지훈,태현,경수,용진,진희,유영,낙현,현우,승연,준민,영훈,설아 등 등 정말 고맙고 앞으로 남은 평생 동안 서로 의지하고 잘 지내보자.

바로 이 분들과의 ‘인연의 실’이 저를 이끌었고,그리스로마 신화의 테세우스처럼 어 둔 미래라는 미궁으로 나아갈 수 있는 힘이었습니다.때로는 마음처럼 되지 않는 일들

(63)

과 보이지 않는 앞날에 지칠 때도 있었습니다.그때마다 이 ‘인연의 실’이 앞으로도 저 를 이끌어 주리란 것을 저는 믿어 의심치 않습니다.언제나 감사합니다.

또한,지금의 저를 있게 해 주신 저의 영원한 버팀목이자 저의 모든 것인 아버지,어 머니,누나에게 머리 숙여 감사의 말씀을 전합니다.물질적인 후원이 아닌 정신적이 후 원이야 말로 근간의 저를 지탱할 수 있었던 힘의 원천이라 확신할 수 있습니다.쑥스 러움에 직접 말하지 못했지만 사랑합니다.누구에게나 자랑스러운 아들이자 제자,동 생,후배,동기,선배가 될 수 있도록 앞으로도 항상 과거를 잊지 않고 앞으로 나아가 기 위해 노력하는 사람이 되겠습니다.

2013년 6월 CUNICL에서...

김 주 현

참조

관련 문서

퍼스널 모빌리티 장치에 적용 가능한 기술을 적용하여 나만의 퍼스널 모빌리티 장치를 구상 ,

따라서 본 연구에서는 비흡수성 차단막으로써 사용되고 있는 고가의 고어텍스 소재 의 치과의료용 차단막을 대체하기 위하여

또한 정신지체를 가진 학생의 경우 많은 정보를 동시에 수용할 때 정보를 조직 화하는 능력에 제한이 있어 단기 기억의 결함을 나타낸다.그러므로 새로운 기술을

첫째,본 연구에서는 스포츠 경험에 있어 세대별 소비유형의 차이를 살 펴보기 위하여 세대수준을 응답자들의 연령을 고려하여 젊은세대와

따라서,본 논문에서는 엘보우 내부에 감육 결함을 가공한 실 배관 시편을 이용한 파열시험을 수행하여,감육 결함의 기하학적 형상과 하중 형태에

본 연구에서는 초등학교 보건교사 선생님들을 대상으로 설문작성을 실시할 것이고, 이 설문지는 효과적인 설문을 하기 위하여 조사내용을 구조화 한

본 연구에서는 지역의 인적자원개발을 강화하고 활성화하기 위하여 첫 째 지역인적자원개발이 시행 초기인 점을 감안하여 지방자치단체가 주도 , 하는

따라서,자동차 부품 생산방식의 대표적인 방법중 열간단조를 이용하여 냉간 및 온간 단조방식을 보완하기 위하여 실 생산라인에 적용을 목적으로 연구하고자 한