• 검색 결과가 없습니다.

18. Fresnel Diffraction

N/A
N/A
Protected

Academic year: 2022

Share "18. Fresnel Diffraction"

Copied!
29
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

18. Fresnel Diffraction

• This is most general form of diffraction

– No restrictions on optical layout

• near-field diffraction

• curved wavefront

– Analysis difficult

Fresnel Diffraction Fresnel Diffraction

Screen

Obstruction

(2)

Holmholtz Equation

( ) P t A ( ) P [ t ( ) P ]

u , = cos 2 πν + φ

( ) P t { U ( ) P ( j t ) }

u , = Re exp − 2 πν

( ) P A ( ) P [ j ( ) P ]

U = exp − φ

2

0

2 2

2

2

=

− ∂

t

u c

u n

( 2 + k 2 ) U = 0 Holmholtz Equation

λ π π ν 2

2 =

= n c

k

(3)

Green’s Theorem

Let U(P) and G(P) be any two complex-valued functions of

position, and let S be a closed surface surrounding a volume V. If U, G, and their first and second partial derivatives are single-valued and continuous within and on S, then we have

( ) ds

n G U n

U G d

U G

G U

s

∫∫

∫∫∫ υ =

ν

2 2

Where signifies a partial derivative in the outward normal direction at each point on S.

n

(4)

Integral Theorem of Holmholtz and Kirchhoff

( ) ( )

01 01 1

exp r P jkr

G =

Kirchhoff’s G

( ) ( ) ( )

r ds jkr U n

r jkr n

P U U

S

∫∫   

 

 

 

− ∂

 

 

= ∂

01 01 01

01 0

exp exp

4 1

π

Free-space Green’s function

(5)

Kirchhoff’s Formulation of Diffraction

( ) ds

n U G

n G P U

U ∫∫

 

 

− ∂

= ∂ π 4

1

0

Kirchhoff boundary conditions

are and

On

- ∑ , UU/n

screen.

no were

there if

as

0.

and 0

, On

- S

1

U = ∂ U/n =

(6)

Fresnel-Kirchhoff’s Diffraction Formula (I)

( ) ( ) ( )

01 01 01

01

1

1 exp

,

cos r

jkr jk r

r n n

P

G 

 

 −

∂ =

∂ G G

( ) ( ) ( >> λ )

01

01 01

01

exp for

,

cos r

r r jkr

n jk G G

( ) ( )

21 21 1

exp r

jkr P A

U =

( ) [ ( ) ] ( ) ( )

r ds n r

n r

r

r r

jk j

P A

U  

  −

= ∫∫ +

2

, cos ,

cos

exp

01 21

01 21

01 21

0

G G G

G λ

* Reciprocity Theorem of Helmholtz

(7)

Fresnel-Kirchhoff’s Diffraction Formula

( ) ( ) ( (II) )

r ds P jkr

U P

U

01 01 1

0

∫∫ exp

= ′

( ) ( )

 

 

= 

21

21 1

exp 1

r

jkr A

P j

U λ

( ) ( )

 

  −

2

, cos ,

cos n G r G

01

n G r G

21

• restricted to the case of an aperture illumination consisting of a single expanding spherical wave.

• Kirhhoff’s boundary conditions are inconsistent! : Potential theory says that

“If 2-D potential function and it normal derivative vanish together along any

finite curve segment, then the potential function must vanish over the entire plane”.

Rayleigh-Sommerfeld theory

• the scalar theory holds.

• Both U and G satisfy the homogeneous scalar wave equation.

•The Sommerfeld radiation condition is satisfied.

(8)

First Rayleigh-Sommerfeld Solution

( ) ds

n U G n G

P U U

S

∫∫

= 4

1

1

0

π

( ) ( ) ( )

01 01 01

01

1

~

exp ~ exp

r r jk r

P jkr

G

= −

( ) ds

n U G P

U

I

∫∫

= − π 4

1

0

( ) ( )

n P G n

P G

= ∂

1 1

2

( ) ds

n U G P

U

I

∫∫

= − π 2

1

0

(9)

Second Rayleigh-Sommerfeld Solution

( ) ( ) ( )

01 01 01

01

1

~

exp ~ exp

r r jk r

P jkr

G

+

= +

( ) G ds

n P U

U

II +

∫∫

= 4 π 1

0

G G

+

= 2

( ) Gds

n P U

U

II

∫∫

= ∂

π 2

1

0

(10)

Rayleigh-Sommerfeld Diffraction Formula

( ) ( ) ( ) ( ) n r ds

r P jkr

j U P

U

I 01

01 01 1

0

1 exp cos G , G

∫∫

= λ

( ) ( ) ( )

r ds jkr n

P P U

U

II

01 01 1

0

exp 2

1 ∫∫

= ∂ π

( ) ( )

21 21 1

exp r A jkr

P

U =

( ) [ ( ) ] ( )

s d r r n

r

r r

jk j

P A

U

I

∫∫

= +

01

01 21

01 21

0

exp cos G , G

λ

( ) [ ( ) ] ( )

s d r r n

r

r r

jk j

P A

U

II

∫∫

− +

=

21

01 21

01 21

0

exp cos G , G

λ

For the case of a spherical wave illumination,

(11)

Comparison (I)

( ) ds

n U G

n G P U

U ∫∫

K K

 

 

− ∂

= ∂ π 4

1

0

( ) ∫∫

− ∂

= ds

n U G

P

U

K

π 2

1

0 1

( ) G ds

n P U

U

II

∫∫

K

= ∂ π 2

1

0

(12)

Comparison (II)

( ) [ ( ) ]

r ds r

r r

jk j

P A

U ψ

λ

exp

01 21

01 21

0

∫∫

= +

( ) ( )

[ ]

( )

( )





=

21 01

21 01

, cos

, cos

, cos

, 2 cos

1

r n

r n

r n r

n

G G

G G

G G G

G

ψ

Fresnel-Kirchhoff theory

First Rayleigh-Sommerfeld solution Second Rayleigh-Sommerfeld solution

* For a normal plane wave incidence,

[ ]





 +

= 1

cos

cos 2 1

1 θ

θ ψ

Fresnel-Kirchhoff theory

First Rayleigh-Sommerfeld solution

Second Rayleigh-Sommerfeld solution

(13)

Huygens-Fresnel Principle

( ) ( ) ( )

r ds P jkr

j U P

U θ

λ cos

exp 1

01 01 1

0

∫∫

=

( ) P h ( P P ) ( ) U P ds

U

0

∫∫

0

,

1 1

=

( ) ( ) θ

λ cos

exp , 1

01 01 1

0

r

jkr P j

P

h =

(14)

( ) ( ) ( )

r ds P jkr

j U P

U 1 exp cos

01 01 1

0

θ

λ ∫∫

=

01

cos r

= z θ

( ) ( ξ η ) ( ) ξ η

λ r d d

U jkr j

y z x

U exp

,

,

2

01

∫∫

01

=

( ) (

2

)

2

2

01

= z + x − ξ + y − η

r

Only two assumptions : scalar theory + r

01

>> λ

Huygens-Fresnel Principle

(15)

Fresnel Approximation

 

 

 

 

 +  −

 

 

 +  −

2 2

01

2

1 2

1 1

z y z

z x

r ξ η

( ) λ ( ) ξ η [ ( x ξ ) ( y η ) ] d ξ d η

z j k z U

j y e

x U

jkz

exp 2 ,

,

2 2

 

 

 − + −

= ∫ ∫

( ) ( ) ( ) ξ η ( ) ( ) ξ η

λ

η λ ξ

η π

ξ

e d d

e U

z e j y e

x

U

z j z x y

j k y

z x j k

jkz

∫ ∫

+ +

+

 

 

=

2 2 2

 ,

2 2 2 2

,

( )

( ) ( )

z y f z x f z

j k y

z x j k jkz

Y X

e U

z e j y e

x U

λ λ

η

η

ξ

λ ξ

/ ,

/ 2

2

2 2 2

2

, )

, (

=

= +

+

 

 

= F

(16)

Positive vs. Negative Phases

y

Wavefront emitted

earlier

z Wavefront emitted

later

θ

z y

k G

Wavefront emitted

later

Wavefront emitted

earlier

(

01

)

exp jkr

( ) 

 

2

+

2

exp 2 x y

z j k

(

01

)

exp − jkr

( ) 

  −

2

+

2

exp 2 x y

z j k

( j 2 πα y )

exp

( j 2 y )

exp − πα

z=0

z=0 diverging

converging

(17)

Accuracy of the Fresnel Approximation

max

2 2

21 21 21

2 2

21 21 2 21 21

21 21

2 2

01 01 01

2 2

01 01 2 01 01

01 01 2

21 01

21 01

D= x-

(1 ) , since 2 2

(1 ) , since 2 2

1 1 1

2 Let

z r D

D D

z r z r

r r

z r D

D D

z r z r

r r r r D ξ

λ

∆ = − −

≈ − − ≈ ≅

∆ = − −

≈ − − ≈ ≅

 

∆ + ∆ =  +  >

 

( ) ( )

[ ]

2max

2 3 2

4 ξ η

λ

π +

〉〉 x y

z

• Accuracy can be expected for much shorter distances

Fresnel (near-field) Regime

(18)

Fresnel Diffraction between Confocal Spherical Surfaces

( ) ( ) ξ η ( ) ξ η

λ

η λ ξ

π

d d e

z U j

y e x

U

j z x y

jkz ∞ − +

∫ ∫

=

2

, ,

( )

{ }

f x z f y z

jkz

Y X

z U j

e

λ

η

λ

λ ξ ,

= / , = /

= F

(19)
(20)

R

N

r

N

r

o

N o

r = + r N   λ

    2

 ,  , ,

N o o o

o o

o

N o o N

o

R r N r r N N

r r

R R r

Since R Nr f r f

r N N

λ λ λ

λ λ

λ λ

   

   

=   +   − =   +      

= = = =

2 2 2

2 2 2

2 2

1 1

1

2 4

1

(21)
(22)
(23)

Fresnel Diffraction by Square Aperture

(b) Diffraction pattern at four axial positions marked by the arrows in (a) and

corresponding to the Fresnel numbers NF=10, 1, 0.5, and 0.1. The shaded area represents the geometrical shadow of the slit. The dashed lines at represent the width of the Fraunhofer pattern in the far field. Where the dashed lines coincide with the edges of the geometrical shadow, the Fresnel number NF=0.5.

( D)d

x = λ/

Fresnel Diffraction from a slit of width D = 2a. (a) Shaded area is the geometrical shadow of the aperture. The dashed line is the width of the Fraunhofer diffracted beam.

(24)

Rectangular symmetric aperture

(25)

{ } {

2

} {

2

} {

2

}

2

*

2 1 2 1 2 1 2 1

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

I = φφ = 4 C ξ − C ξ + S ξ − S ξ     C η − C η + S η − S η

Fresnel integrals

2 2

0 0

( ) cos , ( ) sin

2 2

t t

C α =

α

 π dt S α =

α

 π dt

   

∫ ∫

(26)

Cornu spiral

2 2

0 0

( ) cos , ( ) sin

2 2

t t

C α =

α

 π dt S α =

α

 π dt

   

∫ ∫

(27)

Straight edge

(28)
(29)

Homework:

Plot the Fresnel diffraction patterns of “your full name” object

at several distances from the object.

참조

관련 문서

 The Dutch physicist Pieter Zeeman showed the spectral lines emitted by atoms in a magnetic field split into multiple energy levels...  With no magnetic field to align them,

Modern Physics for Scientists and Engineers International Edition,

Where the dashed lines coincide with the edges of the geometrical shadow, the Fresnel number N F =0.5. (a) Shaded area is the geometrical shadow

If both these adjustments are considered, the resulting approach is called a bootstrap-BC a -method (bias- corrected-accelerated). A description of this approach

Five days later, on 15 January 1975, the Portuguese government signed an agreement with the MPLA, FNLA and UNITA providing for Angola to receive its independence on 11

Usefulness of co-treatment with immunomodulators in patients with inflammatory bowel disease treated with scheduled infliximab maintenance therapy.. Oussalah A, Chevaux JB, Fay

Since every classical or virtual knot is equivalent to the unknot via a sequence of the extended Reidmeister moves together with the forbidden moves, illustrated in Section 2,

Inclusion and Inclusiveness: Shared Vision of Youth for Local, National, and Global Village Inclusion at large stands for embracing populations with disabilities and