• 검색 결과가 없습니다.

유체역학 및 열전달 Summary & Problem Solving

N/A
N/A
Protected

Academic year: 2022

Share "유체역학 및 열전달 Summary & Problem Solving"

Copied!
13
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

유체역학 및 열전달

Summary & Problem Solving

(2)

Balance Equation – Mass and Momentum

0

=

× Ñ

¶ +

¶ r ( V r ) t

l Continuity equation: Microscopic Mass balance

0

=

× Ñ

+ r ( V ) r

Dt D

l Equation of motion: Microscopic Momentum balance

g τ

VV

V r r

r + Ñ × = -Ñ - Ñ × +

p

t ( ) ( )

g V τ

r r = -Ñ p - Ñ × +

Dt

D V V V V g

r m

r ÷ = -Ñ + Ñ +

ø ç ö

è

æ + × Ñ

2

t p

0

=

× Ñ + r ( V ) r

Dt D

( )

l Navier-Stokes Equation

Continuity equation

0

=

× Ñ V

Incompressible fluid

(3)

Step for finding velocity profile

Step 1. Draw a schematics of the system

Step 2. Make a list of assumptions (ex. z-direction only) Step 3. Mathematical formulation in a proper coordinate

Step 4. Get Boundary conditions and initial condition Step 5. Get Velocity profile (O.D.E. or sometimes P.D.E)

g

x

z u y

u x

u x

p z

w u y

v u x u u t

u m r

r ÷÷ +

ø ö çç è

æ

¶ + ¶

¶ + ¶

¶ + ¶

¶ - ¶

÷÷ = ø ö çç è

æ

¶ + ¶

¶ + ¶

¶ + ¶

2 2 2

2 2

2

(4)

Boundary Conditions (BCs)

• BCs are commonly encountered in momentum transfer

1. Fixed Boundary: constant value of velocity at the surface (No-slip)

2. Free Boundary: no stress at the surface

3. Max velocity : velocity gradient should be zero

4. Two fluid : same stress at the interface between two liquids H

z at V

u = = u = 0 at z = 0

( ) t

xy Fluid I

= ( ) t

xy Fluid II

0

÷÷ = ø ö çç è

æ

¶ + ¶

¶ - ¶

=

= x

v y

u

yx

xy

t m

t

0

¶ =

y

u

(5)

Balance Equation – Internal Energy

l Internal energy balance equation

0

=

× Ñ V

T -

= q

Continuity equation – incompressible fluid

Fourier’s law

V V

q

V - Ñ × - Ñ × - Ñ

× -Ñ

¶ =

¶ ( ˆ ) ( ˆ ) [ ] ( ) :

t r r

p t U

U

r ˆ /

ˆ ˆ

ˆ H P V H P

U = - = -

Thermodynamic formula

Dt Dp T

Dt

Cp DT ÷

ø ç ö

è æ

¶ - ¶ Ñ -

× -Ñ

= ln

: ln

ˆ r

t

r q V

Dt Dp T T

Dt k

C

p

DT ÷

ø ç ö

è æ

¶ - ¶ Ñ

- Ñ

= ln

: ln

ˆ r

t

r

2

V

(6)

Balance Equation

0

=

× Ñ

+ r ( V ) r

Dt D

g V

V V V

r m

r ÷ = -Ñ + Ñ +

ø ç ö

è

æ + × Ñ

2

t p

Dt Dp T T

Dt k

C

p

DT ÷

ø ç ö

è æ

¶ - ¶

Ñ -

Ñ

= ln

: ln

ˆ r

t

r

2

V

l Microscopic Mass balance

l Navier-Stokes Equation – solving velocity profile

l Thermal Energy Equation – solving Temperature profile

(7)

Step for Modeling heat transfer process involving convection

Step 1

• Draw a picture of the physical system

• Label important features, including convective heat transfer

Step 2

• Make a “list of assumptions” based on the physical system

Step 3

• Heat balance equation undergoing heat transfer

• Substitute the convective heat-transfer relationship, q=hΔT

• Specify the appropriate correlation for h, keeping in mind restrictions on Re, Nu, geometry.

Step 4

• Recognize and specify the process boundary and initial conditions

.

Step 5

• Solve the algebraic or differential equations (most of case)

(8)

Example 1

• 오토바이의 엔진에는 열을 빨리 제거하기 위해서 방열핀을 설치하는데, 방열핀의 경우 아래 그림처럼 z 방향으로 전도로 열전달이

일어나고(벽면에서의 온도는 T

w

로 일정하다) 공기와 접한 표면쪽으로는

대류로 열전달이 일어난다 (열전달 계수는 h이고 공기의 온도는 T

a

일정하다). 이러한 열전달은 다음과 같이 구할 수 있다.

(9)

Example 1 (1)

• 오토바이의 엔진에는 열을 빨리 제거하기 위해서 방열핀을 설치하는데, 방열핀의 경우 아래 그림처럼 z 방향으로 전도로 열전달이

일어나고(벽면에서의 온도는 T

w

로 일정하다) 공기와 접한 표면쪽으로는 대류로 열전달이 일어난다 (열전달 계수는 h이고 공기의 온도는 T

a

로 일정하다). 이러한 열전달은 다음과 같이 구할 수 있다.

• Solution

Step 1 : Draw picture and label important feature

(10)

Example 1 (2)

Step 1 : Draw picture and label important feature

Step 2 : physical assumption

-Assumptions:

(1) 방열핀의 두께가 아주 얇아서 (B<<L이고 B<<W) 두께쪽으로는 열전달이 일어나지 않는다고 가정

(2) 온도가 z-방향으로만 전달 된다. ∴ T=T(z) (3) 방열핀의 끝부분이나 y부분의 열전달은 없다.

)

(z

T

(11)

Example 1 (3)

Step 3 : Heat balance

Accumulation= Input – output + Generation - Consumption

Convection heat transfer q=hΔT (heat flux)

) )(

(

a

z z

z

BWq h W z T T

BWq - - D -

= 2 2

+D

2

0

T

a

) (z T

) ( T T

a

B

h dz

dq = - -

\

dz k dT q =-

) ( T T

a

kB

h dz

T

d

2

= -

2

Step 3 : appropriate correlation for h

L x

av

Nu

Nu 0 664

1 3 1 2

2

1

=

=

\ . (Pr)

/

(Re )

/

(12)

Mass transfer by in Turbulent Flow on a Flat Plate

Transition point

10

5

2 ´

x

>

5

Re 10 2 ´

x

<

Re

L L

av

Nu

Nu = 0 . 0365 (Pr)

1/3

(Re )

4/5

= 1 . 25

\

3 1 5

0292

4

0 . Re

x/

Pr

/

x

x

Nu

k x

h = =

3 1 2

332

1

0 . Re

x/

Pr

/

x

x

Nu

k x

h = =

L x

av

Nu

Nu 0 664

1 3 1 2

2

1

=

=

\ . (Pr)

/

(Re )

/

(13)

Example 1 (4)

kB hL

L z kB

hL T

T

T T

a w

a

2 2

1 cosh

cosh ÷

ø ç ö

è æ - - =

\ -

Step 4 : Boundary condition

Step 5

• Solve the algebraic or differential equations (most of case)

T

a

) (z T

0 0

=

=

=

=

dz L dT

z

T T

z

w

에서 에서

-단열조건

참조

관련 문서

MILU preconditioner is well known [16, 3] to be the optimal choice among all the ILU-type preconditioners in solving the Poisson equation with Dirichlet boundary

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

In the dense medium, a standing wave E s1 is formed by the incident and reflected waves. n 1

This problem is to solve Poisson's equation in the region z &gt; 0, with a single point charge q at (0, 0, d), subject to the

The purpose of this paper is to investigate the time-delay effects on the average output current and the critical inductor value at the boundary between the continuous

Key words and phrases: Perturbed parabolic boundary value problem, periodic solution, inverse compact operator, real Hilbert space, Leray-Schauder degree theory, the

At day 0, the highest free water (lowest WHC) was obtained in post-rigor samples injected with sodium lactate however on the other storage days no differences were obtained in

It was shown that pinned and fixed boundary support conditions are more likely to cause kinks or DS at the first level junctions of multilevel frames than similar GBS