• 검색 결과가 없습니다.

Analysis of Hydraulic Passage Efficiency of Ice-Harbor Type Fishway for Flowrate Change

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of Hydraulic Passage Efficiency of Ice-Harbor Type Fishway for Flowrate Change"

Copied!
10
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

* ᯙᱽݡ⦺Ʊ ⪹ĞŖ⦺ŝ ᕾᔍŝᱶ (jaean_k@daum.net) ** ᯙᱽݡ⦺Ʊ ⪹ĞŖ⦺ŝ ၶᔍŝᱶ (neo64@naver.com)

Received April 4, 2013/ revised April 9, 2013/ accepted May 23, 2013

Copyright ⵑ 2013 by the Korean Society of Civil Engineers

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

 ǣŠ––’ǣȀȀ†šǤ†‘‹Ǥ‘”‰ȀͳͲǤͳʹ͸ͷʹȀ•…‡ǤʹͲͳ͵Ǥ͵͵ǤͷǤͳͺͶͳ

™™™Ǥ•…‡Œ‘—”ƒŽǤ‘”Ǥ”

Ⳟᶇ≾㰒⮎#᫮ἶ#⬂ⴲ⡢㬖≂⢛#⭲ᦂⴖ#⟖Ὢ㬗⶿#ⴲᦗ㱦⳦#⍂⛛

୺୍ੲ ȵ෉ଠ஼ ȵ׌ઽܑ ȵࢽլૈ

Jo, Jae An*, Han, Eun Jin**, Kim, Young Do***, Baek, Kyong Oh****

Analysis of Hydraulic Passage Efficiency of Ice-Harbor Type Fishway for Flowrate Change

ABSTRACT

The various types of fishways are installed at the multi-functional weirs in the four major rivers to minimize the negative effect due to the construction of the transverse structures. The movable weir was installed at the upstream of the ice-harbor type artificial fishway of the Dalseong weir in the Nakdong river, which can control the fishway flowrate regardless of the river flowrate. The incoming flowrate to the artificial fishway is closely related with the hydraulic characteristics that dominate the fish passage efficiency. Thus, it is crucial to find out the weir operation rule for properly sustaining efficient fish-passage, such as the optimized flowrate. In this study, the FLOW-3D was used to analyze and compare the various hydraulic characteristics associated with the passage efficiency, based upon the given different flowrate, and subsequently provide the optimized flowrate for the fishway movable weir to maintain the best efficient flow condition for the fish-passage.

Key words : Artificial fishway, Ice-harbor type, FLOW-3D, Hydraulic characteristics, Passage efficiency

Ⅹಾ

4ݡvᨱᖅ⊹ࡽ16}᮹݅ʑ܆ᅕᨱ۵⬂݉Ǎ᳑ྜྷ᮹Õᖅಽᯙ⦽ᔾ┽ĥ᮹ᦦᩢ⨆ᮥ↽ᗭ⪵⦹ʑ᭥⧕݅᧲⦽⩶┽᮹ᨕࠥaᖅ⊹ࡹᨕᯩ݅. ݍ ᖒᅕᨱᖅ⊹ࡽᦥᯕᜅ⦹ქ᜾ᯙŖ⩶ᨕࠥ۵ᔢඹ⊂ᨱa࠺ᅕෝᖅ⊹⦹ᩍ⦹⃽ᮁపᨱᔢšᨧᯕᨕࠥԕಽᯝᱶ⦽᧲ᮥ☖ᙹ᜽┍ᙹᯩ݅. ᨕࠥ᮹

ᮁ᯦ᮁపᮡԕᇡ᮹ᙹญᱢ✚ᖒŝၡᱲ⦽šĥaᯩᮝ໑, ᯕ۵ᨕඹ᮹ᯕ࠺⬉ᮉᨱᩢ⨆ᮥᵡ݅. ə్အಽᨕࠥ᮹ᯕ࠺⬉ᮉᮥ⬉ᮉᱢᮝಽšญ⦹

ʑ᭥⦹ᩍ↽ᱢᮁ᯦ᮁప॒᮹݅ʑ܆ᅕᬕᩢ᳑Õᮥᔑᱶ⦹۵äᯕๅᬑᵲ᫵⦹݅. ᅙᩑǍᨱᕽ۵Ӻ࠺vݍᖒᅕ᮹ᦥᯕᜅ⦹ქ᜾ᯙŖ⩶ᨕࠥෝ

ݡᔢᮝಽFLOW-3D ༉⩶ᮥᯕᬊ⦹ᩍᮁపᨱ঑ෙᙹญ✚ᖒŝᯕ࠺⬉ᮉᮥᇥᕾ⦹ᩡŁ, ᯕ࠺⬉ᮉᮥŁಅ⦽↽ᱢ᮹ᨕࠥa࠺ᅕᮁప᳑Õᮥᱽ

᜽⦹ᩡ݅.

áᔪᨕ ᯙŖ⩶ᨕࠥ, ᦥᯕᜅ⦹ქ᜾, FLOW-3D, ᙹญ✚ᖒ, ᯕ࠺⬉ᮉ

1. ᕽು

↽ɝÕᖅࡽ16}᮹݅ʑ܆ᅕ۵ݱᯕӹ≉ᙹᅕ, Ӻ₉Ŗŝzᮡ⦹⃽᮹⬂݉Ǎ᳑ྜྷಽᕽ⦹⃽ᨱᕽ᜾⦹۵ᨕඹ᮹ᯕ࠺☖ಽෝ₉݉᜽┕ᮝಽ

៉Ǎ᳑ྜྷᔢඹ᮹ᨕඹ}ℕᙹaqᗭ⦹۵॒᮹ᦦᩢ⨆ᮥⅩ௹⧁ᙹᯩ݅(Baek, 2012). ᯕ᪡zᮡ⦹⃽⬂݉Ǎ᳑ྜྷॅᮡ⊹ᙹ᪡ᯕᙹ᮹

ƒ–‡”‰‹‡‡”‹‰ սėॡ

(2)

(a) Streaming Flow (b) Plunging Flow (C) Inclined flow Fig. 1. Flow Patterns in Fishway (Hayashida et al., 2000)

༊ᱢᮝಽᖅ⊹ࡹʑভྙᨱᩍ్aḡᯕᱱᯕᯩᮝӹǍ᳑ྜྷᔢ⦹ඹ e᮹⦹⃽ᔾ┽ĥෝ݉ᱩ᜽┍ᙹᯩᮝအಽ, ᯕᨱݡ⦽ݡ₦ᮝಽᕽ

݅᧲⦽ ⩶┽᮹ ᨕࠥෝ ᖅ⊹⦽݅(Lim, 2009).

⦹⡎ᯕմᮡ⦹⃽ᨱÕᖅࡹ۵⬂݉Ǎ᳑ྜྷ᮹Ğᬑᗭᔢ⦹ಅ۵

ᨕඹaᨕࠥ᮹᯦Ǎಽ᯹ᮁᯙࡹ۵äᯕᵲ᫵⦹݅(Baek, 2012).

ੱ⦽ᨕඹ᮹ᗭᔢᮥᬊᯕ⦹í⦹ʑ᭥⧕ᕽ۵ᱢᱶᮁᗮ, ⮱෥Ǎ᳑,

ࠥ᧞ᙹᝍ॒᮹ᨕࠥԕᙹญ✚ᖒᮥw⇵ᨕ᧝⦹໑, ᱢᱩ⦽ᨕࠥ᮹

⩶᜾ᮝಽᯙ⧕᪡ඹ॒ᮥၽᔾ᜽┅ḡัᦥ᧝⦽݅. ə్ӹǎԕᨱ

ʑ ᖅ⊹ࡽᨕࠥ᮹ Ğᬑ ݅᧲⦽ᨕඹa ᗭᔢ⦹ʑ ᨕಖíᖅĥࡽ

Ğᬑa ݅ᙹ ӹ┡ӹŁ ᯩ݅. ᨕࠥෝ ᯕᬊ⦹۵ ༊⢽ᨕ᳦ᨱ ݡ⦽

ᩑǍaᇡ᳒⦹ᩍᨕࠥෝ ᯕᬊ⦹۵ᨕ᳦ॅ᮹ࠥ᧞ಆŝᮁᩢಆᨱ

ݡ⦽ᱶᅕaᇡ᳒⦹ᩍ ༊⢽ᨕ᳦᮹ᗭᔢ܆ಆᮥŁಅ⦹ḡ༜⦹Ł

ᖅĥaࡹᨩŁᨕࠥᖅĥᨱšಉ⦽ᙹญ⦺ᱢᯙᩑǍaၙ⯂⦹ᩍ

ᨕࠥԕᙹญ✚ᖒᇥᕾᯱഭၰᖅĥʑᵡᯕ໦⪶⯩ᱽ᜽ࡹᨕᯩḡ

ᦫ݅(Lim, 2009). ੱ⦽ᨕࠥ᮹ᮁᗮ, ᮁపŝ᮹ၡᱲ⦽šĥಽᯙ⦽

ᨕಅᬡŝԕᇡᨱᮁపᯕ⮱෕ḡ༜⦹۵⩥ᔢᯕ⦹⃽ԕᨱႊ⊹ࡹᨕ

ᯩᨕ ᨕࠥ ᅙ௹᮹ ʑ܆ᮥ ݅⦹ḡ ༜⦹۵ ᝅᱶᯕ݅.

ᨕࠥ᮹ʑ܆ᮥᬱ⪽⯩ᮁḡၰᙹ⧪⦹ʑ᭥⧕ᕽ۵ᨕࠥԕ᮹

ᙹญ⦺ᱢ✚ᖒᮥݡᔢᨕඹ᳦᮹ݡ⦹ᩍᱢ⧊⦹ࠥಾᖅĥ⦹۵äᯕ

aᰆᵲ᫵⦹݅. ੱ⦽ᨕඹaᨕࠥෝ☖⦹ᩍᔢඹಽᗭᔢ⧉ᨱᯩᨕ

ᱢᱩ⦽ ⮱෥Ǎ᳑a ⩶ᖒࡹᨕ᧝ ⦽݅. ݅ʑ܆ᅕᨱ۵ ᯙŖ⩶ᨕࠥ

ၰᯙŖ⦹ࠥ᜾ᨕࠥaᖅ⊹ࡹᨕᔾ┽ĥa݉ᱩࡹḡᦫࠥಾᬕᩢ⦹

Łᯩ݅. ੱ⦽ᨕࠥᔢඹ⊂ᨱ۵a࠺ᅕෝᖅ⊹⦹ᩍ⦹⃽ᮁపᨱ

ᔢšᨧᯕ⧎ᔢᨕࠥԕಽᯝᱶ⦹íྜྷᯕ⮹్aí⦹Łᯩ݅. ᨕࠥ

ԕ᮹ ᮁ᯦ᮁపᮡ ᙹญ⦺ᱢ ✚ᖒŝ ၡᱲ⦽ šĥa ᯩᨕ ᱢᱩ⦽

ᨕࠥ ԕ ᮁ᯦ᮁపᮥ ₟۵ äᯕ ᵲ᫵⦹݅.

ᨕࠥԕ᮹ᯕ࠺⬉ᮉŝšಉ⦽ᩑǍ۵ᙹญᝅ⨹, ⩥ᰆ᳑ᔍ, ᙹ⊹

༉᮹ʑჶᮝಽǍᇥ⧁ᙹᯩ݅. ᨕࠥ᪡zᯕၙᖙ⦽ᬵඹᙹᝍᮝಽ

əᖒ܆ᯕ᳭ᬑࡹ۵ᙹญǍ᳑ྜྷᮡᖙᇡᖅĥෝᙹ⧪⧉ᨱᯩᨕ1₉ᬱ

ᙹญĥᔑᮝಽ۵ᇥᕾᯕᇩa܆⦹݅. ᯕ᪡zᮡྙᱽෝ⧕đ⦹ʑ

᭥⦹ᩍᨕඹ༉ܩ░ย, ᙹญ༉⩶ᝅ⨹ᯕᵝಽᯕᬊࡹᨕ᪵ḡอ᜽e ᱢ, Ŗeᱢ, Ğᱽᱢᯙᱽ᧞ᯕ঑ෝᐱอᦥܩ௝ᱶ⪶ᖒၰᱢᬊᖒᨱ

⦽ĥaᯩ݅. ↽ɝᨱ۵݅᧲⦽ᱥᔑᮁℕᩎ⦺⥥ಽəఉॅᯕ}ၽࡹ

ᨕᙹ⊹༉᮹ᨱ᮹⦽ᨕࠥԕ⮱෥ᨱݡ⦽ᩑǍaᯕ൉ᨕḡŁᯩ݅.

ǎԕᩑǍᔍಡෝᔕ⠕ᅕ໕Kim et al.(1994)۵ĥ݉᜾ᨕࠥ᮹⮱෥

ᮥᙹญ༉⩶ᝅ⨹ᮥ☖⦹ᩍĥ݉᜾ᨕࠥᨱᰁŖᮥᖅ⊹⦹۵Ğᬑ

ᝁᵲᮥʑ⦹ᩍ᧝⦽݅Łၾ⩵݅. Kim et al.(2006)ᮡᙹᱶ௝ญܩᨱ

᜾ᨕࠥᨱᕽĞᔍ᪡᳑ඹᱽ⩶┽ᄥᮁᗮᮥ᳑ᔍ⦹Łᨕඹ᮹ᗭᔢ܆

ಆᮥ⠪a⦹ᩡ݅. Baek et al.(2008)ᮡ᪶ᙺ⃽᮹ᨕࠥෝݡᔢᮝಽ

HEC-RASෝ ᯕᬊ⦹ᩍ 1₉ᬱ ⮱෥⧕ᕾŝ RMA-2ෝ ᯕᬊ⦹ᩍ

2₉ᬱ⮱෥⧕ᕾᮥ⦹ᩡŁ, SED-2Dෝᯕᬊ⦹ᩍᨕ᯦ࠥ⇽Ǎᇡ᮹

ᖙǕ♕ᱢ᧲ᔢᮥᇥᕾ⦹ᩡ݅. Kim et al.(2012)ᮡᦥᯕᜅ⦹ქ᜾

ᨕࠥ᮹ĊᄞeĊᨱ঑ෙᙹญ✚ᖒᮥᇥᕾ⦹ᩡ݅. Ahn et al.(2012)

ᮡᦥᯕᜅ⦹ქ᜾ᨕࠥᨱᕽእᬵඹᇡᨱᕽ᮹ᙽ⪹ඹ✚ᖒŝᬵඹᇡ ᨱᕽ᮹ ᙹญ✚ᖒᮥ ᇥᕾ⦹ᩡ݅. ǎ᫙ ᩑǍᔍಡෝ ᔕ⠕ᅕ໕ Liu et al.(2006)ᮡᩑḢᜍ೐(vertical slot)᜾ᨕࠥෝӽඹ⮱෥ᨱaʾ íᱢᬊ⦹ᩍəᨱݡ⦽⮱෥✚ᖒᮥᇥᕾ⦹ᩡ݅. Cea et al.(2007)ᮡ

ᩑḢᜍ೐᜾ᨕࠥෝݡᔢᮝಽӽඹ⮱෥༉᮹aa܆⦽༉⩶ᮥᯕᬊ⦹

ᩍᨕඹaᯕ࠺a܆⦽⠪Ɂᱢᯙᙹᝍᇥᕾᮥᝅ᜽⦹ᩡ݅. Stephan et al.(2008)ᮡ⣡(pool)᜾ᨕࠥᨱᕽFLOW-3D ༉⩶ᮥᯕᬊ⦹ᩍ

ᨕࠥԕ᮹⮱෥✚ᖒᮥᇥᕾ⦹ᩡ݅. ə్ӹᨕࠥ᮹⮱෥✚ᖒᨱš⦽

ᩑǍ۵ ᨕࠥ ᖅ⊹᪡ Ǎ᳑ྜྷ }ၽᨱ እ⦹ᩍ ᩑǍđŝa ኩ᧞⦽

ᝅᱶᯕ໑, ᨕࠥԕ⮱෥✚ᖒᇥᕾᮡǍ᳑ྜྷ᮹ʑ⦹⦺ᱢ⩶ᔢ᮹ᄡ⪵

ᨱ঑ෙ⮱෥✚ᖒᄡ⪵อᮥᇥᕾ⦹ᩡŁʑᖅ⊹ࡽᨕࠥ᮹ᱢᱩ⦽

ʑ܆ ᙹ⧪ᮥ ᭥⦽ ᩑǍ۵ ᯕ൉ᨕḡḡ ᦫᦹ݅.

ᅙᩑǍᨱᕽ۵Ӻ࠺vݍᖒᅕԕᦥᯕᜅ⦹ქ᜾ᯙŖ⩶ᨕࠥෝ

ݡᔢᮝಽ⦹ᩍ࠺ᯝ⦽ᱽᬱŝȽĊ᮹3₉ᬱĊᯱෝ᯲ᖒ⦹Ł, ᯕෝ

ᯕᬊ⦹ᩍ݅᧲⦽ᮁప᳑Õᨱ঑ෙᨕࠥԕ⮱෥✚ᖒᮥ༉᮹⦹ᩡ݅.

ੱ⦽ᮁపᄡ⪵ᨱ ঑ෙ ᨕࠥԕ ᙽ⪹ඹ ᖙʑෝᇥᕾ⦹ᩍ ᨕඹa

ᔢඹಽ ᯕ࠺⦹ʑᨱ ᱢ⧊⦽ ᮁ᯦ᮁపᮥ ᔑᱶ⦹Łᯱ ⦹ᩡ݅.

2. ᩑǍႊჶ

2.1 ઘܑٛ฻ࠝ൉ন

ᯙŖ⩶ᨕࠥᖅĥᨱᯩᨕࢱaḡᵲ᫵⦽ᯙᯱ۵ᮁᗮŝ⮱෥Ǎ

᳑ᯕ݅. ᨕࠥԕ᮹↽ݡᮁᗮᮡݡᔢᨕඹ᮹࠭ḥᗮࠥᅕ᯲݅ᦥ᧝

(3)

Fig. 2. Map of Study Area

⦹໑, ᨕࠥԕ᮹⮱෥Ǎ᳑۵ᨕඹaᛞŁᦩᱥ⦹íᗭᔢ⧉ᨱᯩᨕ

ᱢᱩ⧕᧝⦽݅. ᨕࠥԕ᮹⮱෥Ǎ᳑۵ᨕࠥǍᖒᯕ᳑ɩอᄡ⪵޵

௝ࠥ⮱෥ᮡᛞíᄡ⪵⦹အಽ❭ᦦ⦹ʑᨕಖ݅. Clay(1961)۵

ᨕࠥԕ⮱෥Ǎ᳑ෝ⢽໕ඹ(streaming flow)᪡ᰁ᯦ඹ(plunging flow) ࢱ aḡಽ Ǎᇥ⦹ᩡ݅(Fig. 1(a), 1(b)). Hayashida et al.(2000)ᮡClay(1961)aᱶ᮹⦽ࢱaḡ⮱෥✚ᖒ᮹⃽ᯕǍe ᯙĞᔍඹ(inclined flow)ෝ⇵a⦹ᩍǍᇥ⦹ᩡ݅(Fig 1(C)). ⢽ ໕ඹ᮹Ğᬑᨕඹ۵᳦᳦ᔢඹႊ⨆ᮥᯤᨕქญŁᗭᔢᮥᝅ➉⦹ḡ อ ᰁ᯦ඹ᮹ Ğᬑ ᱢᱩ⦽ ᨕࠥ ԕ ⮱෥✚ᖒᮝಽ ᨕඹ۵ ႑⥭

(baffle)ᮥ☖⧕ᛞíᗭᔢ⧁ᙹᯩᨕᨕࠥԕ᮹ᱢᱩ⦽⮱෥Ǎ᳑௝

Ł ⧁ ᙹ ᯩ݅.

2.2 FLOW-3D ࡦ෴ଭԹ૬

FLOW-3D ༉⩶ᨱᕽḡ႑ႊᱶ᜾ᮝಽᔍᬊ⦹۵እᦶ⇶ᖒᮁℕ ᨱ ݡ⦽ ᩑᗮႊᱶ᜾ŝ ᬕ࠺ప ႊᱶ᜾ᮡ Eqs. (1)ⴇ(4)᪡ z݅.

«

¢Ÿ

á ć ŞƖ Ş ÞƓ

Ň

š

Ɩ

ć ŞƖ ŞŇ ßâ ć ŞƗ Ş ÞƔ

Ň

š

Ɨ

ć ŞƗ ŞŇ ßâ ć ŞƖ Ş Þƕ

Ň

š

Ƙ

ć ŞƘ ŞŇ ß

(1)

ć ŞƓ â Şƒ ć ¯

Ÿ

Î å Ɠš

Ɩ

ć ŞƖ ŞƓ âƔš

Ɨ

ć ŞƓ âƕš ŞƗ

Ƙ

ć ŞƓ ŞƘ æ á

à ćŇ Î

ć ŞƖ ŞƎ â 

Ɩ

âƄ

Ɩ

à ƀ

Ɩ

à ć Ň¯

Ÿ

«

¬¨«

Ɠ

(2)

ć ŞƔ â ć Şƒ ¯

Ÿ

Î å Ɠš

Ɩ

ć ŞƖ ŞƓ âƔš

Ɨ

ć ŞƓ âƕš ŞƗ

Ƙ

ć ŞƓ ŞƘ æ á

à ćŇ Î

ć ŞƗ ŞƎ â 

Ɨ

âƄ

Ɨ

à ƀ

Ɨ

à ć Ň¯

Ÿ

«

¬¨«

Ɠ

(3)

ć Şƕ â ć Şƒ ¯ Î

Ÿ

å Ɠš

Ɩ

ć Şƕ âƔš ŞƖ

Ɨ

ć Şƕ âƕš ŞƗ

Ƙ

ć Şƕ ŞƘ æ á

à ćŇ Î

ć ŞƘ ŞƎ â 

Ƙ

âƄ

Ƙ

à ƀ

Ƙ

à ć Ň¯

Ÿ

«

¬¨«

ƕ

(4)

ᩍʑᕽ,

¯

Ÿ۵ᮁℕᨱᱲ⦹Łᯩ۵ℕᱢ,

Ň

۵ᮁℕ᮹ၡࠥ,

«

¢Ÿ

۵ӽඹ⪶ᔑ⧎,

«

¬¨«۵ḩపᔾᖒ⧎,

Ɠì Ɣì ƕ

۵

Ɩì Ɨì Ƙ

ႊ⨆ᮝಽ᮹

ᮁᗮ,

š

Ɩ

ì š

Ɨ

ì š

Ƙ۵

Ɩì Ɨì Ƙ

ႊ⨆ᮁℕ᮹ᱲⅪ໕ᱢ,

 

Ɩ

ì 

Ɨ

ì  

Ƙ۵

Body Acceleration ᯕŁ,

Ƅ

Ɩ

ì Ƅ

Ɨ

ì Ƅ

Ƙ۵ Viscous Acceleration,

ƀ

Ɩ

ì ƀ

Ɨ

ì ƀ

Ƙ۵Ǎ᳑ྜྷᮥ☖ŝ⦹໕ᕽၽᔾࡹ۵ᗱᝅᮥ⢽᜽⦹໑, ษḡ ส ⧎ᮡ ĥᔑᩢᩎԕ᮹ ḩపᔾᖒᮥ ᮹ၙ⦽݅(Lim, 2009).

3. ༉⩶᮹ᱢᬊၰᇥᕾ

3.1 ઴֜۩ঃ஺લ

ᅙᩑǍᨱᕽ۵ݡǍŲᩎ᜽ݍᖒǑᨱ᭥⊹⦽Ӻ࠺vݍᖒᅕԕ

ᦥᯕᜅ⦹ქ᜾ᯙŖ⩶ᨕࠥෝݡᔢᮝಽ⦹ᩡ݅(Fig. 2). ݍᖒᅕ۵

ŁಚƱ⦹ඹಽ3.43 km, ၶᕾḥƱᔢඹಽ4 kmᨱ᭥⊹⦹໑ᅕ᮹

ⅾʙᯕ۵ⅾ580 mᯕ໑Łᱶᅕ(Ğeʙᯕ418 m, ׳ᯕ9.5 m)᪡

a࠺ᅕ(Ğeʙᯕ162 m, ׳ᯕ9.6 m, 3ಉ) ၰ᳭ᦩᨱ۵ᯙŖ⦹ࠥ᜾

ᨕࠥෝᬑᦩᇡɝᨱ۵ᯙŖ⩶ᨕࠥᯙᦥᯕᜅ⦹ქ᜾ᨕࠥෝᖅ⊹⦹

ᩡ݅. ᦥᯕᜅ⦹ქ᜾ᨕࠥ۵↽ɝᖅ⊹እᵲᯕᱱ₉᷾a⦹Łᯩᮝ໑,

⡍⍴ᮝಽᯙ⧕ᨕࠥԕᱢᱶᮁᗮᮥᮁḡ⦹ᩍᨕ᳦᮹ᮁᩢᱽ⦽ᯕ

ᨧᮥᐱ޵్ᨕඹaᗭᔢ᜽⡍⍴ԕᇡ᮹ᮁᗮᯕᱶℕaࡹᨕ↽ᱢ᮹

ᛝ░ෝᱽŖ⧕ᵝ۵ᩎ⧁ᮥ⦹໑እƱᱢ↽ɝʭḡǎԕ᮹⦹ࠥĥ⫮

ᨱᕽ۵Ċᄞ᜾ᨕࠥaฯᯕᖅ⊹ࡹᨩᮝӹ↽ɝᨱ۵ᦥᯕᜅ⦹ქ᜾

ᨕࠥaǎԕᨕࠥᝅᱶᨱᱢ⧊⦽äᮝಽӹ┡ӹŁᯩᨕฯᯕᖅ⊹ࡹ

Łᯩ۵ᝅᱶᯕ݅(Ahn et al. 2012). ݍᖒᅕᦥᯕᜅ⦹ქ᜾ᯙŖ⩶

(4)

Fig. 3. Ice-Harbor Type Fishway

Table1. Property of Fishway

Non-weir property (m) 2.0 × 1.0 × 0.8

Non-weir interval (m) 1.0

Rollway height (m) 0.6

Slope (%) 5.0

Orifice diameter (m) 0.14 G0.15

Table 2. Input Properties Viscosity

(Ń)

Density (Ň)

Gravity (ƅ)

Roughness coeff

Turbulence model 0.001 pa/s 1000 kg/m3 9.8 m/s2 0.014 RNG Ɖà Ļ

Fig. 4. Analysis Section ᨕࠥ᮹ᱽᬱᮡʙᯕ᧞83 m, ⡎8 m, Ğᔍ5%, Ǎ᳑ྜྷᮡእᬵඹᇡ

3ᩕ, ᬵඹᇡ 4ᩕಽ ⅾ 7ᩕ 35⧪ᮝಽ ᳑ᔍࡹᨩᮝ໑ ᔢඹ⊂ᨱᕽ

ᮁపᨱšĥᨧᯕ⮹్ԕಅᅕԕ۵ႊ᜾ᯙʑᖅ⊹ࡽ݅ෙᨕࠥ᪡

ݍญᔢඹ݉ᨱa࠺ᅕaᖅ⊹ࡹᨕiᙹ᜽ੱ۵እᔢ᜽ᨱᮁప᳑ᱩ ᯕa܆⦹ࠥಾ⦹ᩡᮝ໑Set-back᜾ᨕࠥಽᖅ⊹ࡹᨩ݅. Set-back

᜾ᨕࠥ۵ʑ᳕᮹࠭⇽᜾ᨕࠥ۵⬂݉Ǎ᳑ྜྷᯙᅕᅙℕᨱᕽ⦹ඹ⊂

ᮝಽ ࠭⇽ࡹᨕ ᨕඹa ⬂݉Ǎ᳑ྜྷ ၵಽ ⦹ඹᨱ ℕඹ⦹ʑ ᛞŁ

ᨕࠥ ⦹ඹ Ҿᨱ ࠥݍ⦹ʑ ᨕಖ݅۵ ݉ᱱᯕ ᯝᅙᨱᕽ ᱽ᜽ࡹᨕ

ᯕෝᅕ᪥⦹ᩍᱽ᜽ࡽᨕࠥ⩶┽aSet-back᜾ᨕࠥಽᅕ᮹ᔢඹ⊂

ᨱᕽҭᨕॅᯙ⩶┽ಽᨕࠥ᮹⦹ඹҾ݉ᮥᅕ᮹⇶ᨱ฿⇹äᮝಽ

ᨕඹa ᯕ࠺ᮥ ᛞí ⧁ ᙹ ᯩࠥಾ ࡹᨕᯩ݅(Choi. 2012).

3.2 3ఙ଀ࡦ෴֜ౠ

ᅙᩑǍᨱᕽ۵Autocad ⥥ಽəఉᮥᯕᬊ⦹ᩍᝅᱽᨕࠥ᪡࠺ᯝ

⦽ ᱽᬱ᮹ ᨕࠥෝ 3D solidಽ Ǎ⇶⦹ᩡ݅. ᨕࠥ 3D Ǎ᳑ྜྷᮡ

ᨕࠥ᮹ᔢ · ⦹ᇡaZmin · Zmax,᳭· ᬑ⊂ᯕYmax· Ymin,⇽·᯦Ǎ۵

Xmin · Xmaxᯕ໑ĊᯱǍᖒᮡXႊ⨆ᮝಽ581}, Yႊ⨆ᮝಽ49}, Zႊ⨆ᮝಽ49}ಽⅾ1,394,981}᮹ĊᯱಽǍᖒ⦹ᩡ݅. ঑௝ᕽ

Ğĥ໕᮹Ğĥ᳑Õᮡᄞ໕ᯙYmax, Yminᮡᄞ(wall)ᮝಽᨕࠥ᮹

ᔢᇡᯙZmax۵⮱෥ᩢᩎŝݡ⋎ᯙaᔢᄞ(symmetry)ಽḡᱶ⦹ᩡ

ᮝ໑ᮁ᯦ᇡᯙXmin۵ᮁప·ᙹ᭥᳑Õᮥ, ⦹ඹᇡᯙXmax۵ᩑᗮᱢᯙ

⮱෥ᯕ ḥ⧪ࡹ۵ continuativeಽ ḡᱶ⦹ᩡ݅.

Table 2۵༉ߙ᯦ಆ᳑Õᮥӹ┡ԙäᯕ݅. ӽඹ༉ߙᮡᨕࠥ

ԕ⮱෥✚ᖒŝእᬵඹᇡ᮹⮱෥ᮥᇥᕾ⦹ʑ᭥⧕⮱෥᳑Õᨱอ᳒

⦹۵ⓍŁ᯲ᮡ౩ᯕסᷩᙹෝᱽŖ⦹໑k-e ༉⩶ᨱእ⦹ᩍĥᔑ

᜽eᮡ ʙḡอ ᅖᰂ⦽ ӽඹ ⮱෥ᮥ ޵ᬒ ᱶ⪶⦹í ༉᮹ ⧁ ᙹ

ᯩ۵RNG(Re-Normalized Group) ༉ߙᮥᱢᬊ⦹ᩡŁ, ᙹ⊹༉᮹ ᨱᯕᬊࡹ۵ᮁℕ۵እᦶ⇶ᖒᮁℕಽၡࠥ۵1,000 kg/m3,ᱱᖒĥ ᙹ(viscosity)۵0.001 m2/s, ᵲಆaᗮࠥ۵Zႊ⨆ᮝಽ9.806 m/s2

ෝᱢᬊ⦹ᩡᮝ໑, ᳑ࠥĥᙹ۵⎹Ⓧญ✙᳑ࠥĥᙹಽ☖ᔢᖅĥᨱᕽ

ᥑᯕ۵sᯙ0.014ෝᱢᬊ⦹ᩡ݅. 3₉ᬱ༉⩶᮹ᱢᬊᨱᦿᕽᨕࠥ

ԕ᮹⮱෥ᮥᦩᱶ⪵᜽┅ʑ᭥⦹ᩍđŝࠥ⇽᜽eᮥ1,200 secಽ

ḡᱶ⦹ᩡᮝ໑ᮁప᳑Õᮥᱽ᫙⦽Ċᯱ฾ၰ ӹນḡĞĥ᳑Õᮡ

࠺ᯝ⦹í ḡᱶ⦹ᩡ݅.

3.3 ৤౿ࡦଭࠜധ෉ઘܑٛ฻ࠝ൉নंজ

ᅙ ᩑǍ۵ ݍᖒᅕ᮹ ᦥᯕᜅ⦹ქ᜾ ᯙŖ⩶ᨕࠥ᮹ ᮁపᄡ⪵ᨱ

঑ෙᨕࠥԕ⮱෥✚ᖒᮥᇥᕾ⦹ᩡ݅. ᬵඹᇡ᪡ᰁŖᇡᨱᕽ᮹⠪Ɂ

ၰ↽ݡᮁᗮŝእᬵඹᇡᨱᕽ᮹ᙽ⪹ඹ᮹ᖙʑ, ᨕࠥԕ⮱෥ႊ⨆ᮥ

እƱ·ᇥᕾ⦹ᩍ ᨕඹa ᔢඹಽ ᗭᔢ⧉ᨱ ᯩᨕ ᱢ⧊⦽ ḡ ᇥᕾᮥ

ᝅ᜽⦹ᩡ݅. ᙽ⪹ඹ௝⧉ᮡ⮱෥ᯕ⮹్᪅޹ႊ⨆ᮝಽ݅᜽ႊ⨆ᮥ

ၵеᩎᮝಽ⮱෕۵⮱෥ᮝಽᙽ⪹ඹ᮹Ⓧʑaᖙʑ॒ᮡĊᄞ᮹

eĊŝ׳ᯕ॒᮹ᄡ⪵ᨱၝq⦹ᩍ⮱෥ႊ⨆ᨱÑᜍ్ᗭᔢ⦹۵

ᨕඹᨱí۵Ḣᱲᱢᯙᩢ⨆ᮥᵝ໑, ᙽ⪹ඹᮁᗮ᮹ᱶࠥa⍅ḡ໕

ᨕඹ۵ᗭᔢ⦹ḡ༜⦹Ł⡍⍴ԕᇡᨱᕽᙽ⪹ᮥ⦹íࡽ݅(Ahn et al. 2012). ᇥᕾḡᱱᮡᯙŖ⩶ᨕࠥ᮹ᵲeḡᱱᯙ15ჩṙ, 16ჩṙ, 17ჩṙ ᨕࠥǍ᳑ྜྷᮥ እƱ·ᇥᕾḡᱱᮝಽ ⦹ᩡᮝ໑, ᯱᮁᙹ໕ᨱ

aʭᬕᬵඹᇡಽᇡ░0.1 m ׳ᯕෝA-A’ ݉໕, ᰁŖḡᱱᯙB-B’

݉໕, ᰁŖᯕ᭥⊹⦽Ŕ᮹ᬵඹᇡḡᱱᮥC-C’ ݉໕, ᰁŖᯕᨧ۵

ᬵඹᇡ ḡᱱ D-D’ ݉໕ᮥ ᇥᕾḡᱱᮝಽ ᖁᱶ⦹ᩡ݅(Fig. 4).

(5)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 5. Velocity Distribution at Selected Horizontal Planes (A-A’ Section) Table 3. Compared to the this Study of the Experimental Result

Flow rate (m3/s)

Overfall Mean velocity (m/s)

Overfall Maximum velocity (m/s)

Orifice Mean velocity (m/s)

Orifice Maximum velocity (m/s)

Circulation velocity range (m/s)

0.6 0.70 1.19 0.55 1.59 0.031 ~ 0.347

0.8 1.10 1.24 0.59 1.74 0.031 ~ 0.372

1.0 1.23 1.31 0.60 1.75 0.023 ~ 0.345

1.2 1.31 1.42 0.68 1.79 0.016 ~ 0.476

1.4 1.43 1.51 0.70 1.80 0.029 ~ 0.528

3.3.1 ৤ඌ฻ࠝ൉ন

ᮁప᳑Õᄡ⪵ᨱ঑ෙǍ᳑ྜྷᔢᇡ᮹ᮁᗮᇥ⡍۵݅ᮭŝz݅

(Fig. 5). ᮁపᯕ 0.6 m3/sᯝ ভ ᬵඹᇡ ⠪Ɂᮁᗮᮡ 0.70 m/s,

↽ݡᮁᗮᮡ 1.19 m/s, 0.8 m3/sᯝ ভ ᬵඹᇡ ⠪Ɂᮁᗮᮡ 1.10 m/s, ↽ݡᮁᗮᮡ1.24 m/s, 1.0 m3/sᯝভ⠪Ɂᮁᗮ1.23 m/s,

↽ݡᮁᗮ1.31 m/s, 1.2 m3/sᯝভ⠪Ɂᮁᗮ1.31 m/s, ↽ݡᮁᗮ

1.42 m/s, 1.4 m3/sᯝভ⠪Ɂᮁᗮ1.43 m/s, ↽ݡᮁᗮ1.51 m/sಽ

⠪Ɂᮁᗮŝ↽ݡᮁᗮ༉ࢱ᳑ɩᦊ᷾a⦹۵Ğ⨆ᮥӹ┡ԩ݅. ⵏ, ⵐ, ⵑ݉໕እƱ᜽ᬵඹḢ⬥ᯙⵏ݉໕᮹ᮁᗮᯕ༉ुᮁప᳑Õᨱᕽ

aᰆ׳íӹ┡ԍᮝ໑, ⵐ݉໕᪡ⵑ݉໕᮹ᮁᗮᮡእ᜘⦹ᩡ݅(Fig.

6). እᬵඹᇡᨱᕽ۵ᙽ⪹ඹaၽᔾ⦹ᩡŁ, ᮁపᯕ1.2 m3/sᯕᔢᯝ

ভᵲᦺእᬵඹᇡᨱᕽ۵ ᩎඹ⦹۵⮱෥ŝᵝᄡ⮱෥ᯕ⪝⧊ࡹᨕ

ᙽ⪹ඹ۵ ၽᔾ⦹ḡ ᦫᦹᮝ໑(Fig. 6(C)) ᮁపᯕ 1.4 m3/sᯝ ভ

እᬵඹᇡ༉ࢱᨱᕽᙽ⪹ඹaၽᔾ⦹ḡᦫᦹ݅(Fig. 6(D)). ᯕ۵

ᮁప᷾a᜽ᨕࠥෝᯕᬊ⦹۵ᨕඹ᮹⮕᜾Ŗeᯕqᗭࡹ۵äᮥ

᦭ ᙹᯩ݅.

ᨕࠥ⦹ᇡᨱᕽ᮹ᮁᗮᮡᔢᇡᨱእ⦹ᩍᱥℕᱢᮝಽԏᮡᮁᗮᇥ

⡍ෝӹ┡ԕᨩ݅(Fig. 7). ᮁపᯕ0.6 m3/sᯝভᰁŖᇡɝᨱᕽ᮹

⠪Ɂᮁᗮᮡ0.55 m/s, ↽ݡᮁᗮᮡ1.59 m/s, 0.8 m3/sᯝভᰁŖ⠪Ɂ

ᮁᗮᮡ0.59 m/s, ↽ݡᮁᗮᮡ1.74 m/s, 1.0 m3/sᯝভ⠪Ɂᮁᗮ

0.60 m/s, ↽ݡᮁᗮ1.75 m/s, 1.2 m3/sᯝভ⠪Ɂᮁᗮ0.68 m/s,

↽ݡᮁᗮ1.79 m/s, 1.4 m3/sᯝভ⠪Ɂᮁᗮ0.70 m/s, ↽ݡᮁᗮ

1.80 m/sಽ⠪Ɂᮁᗮŝ↽ݡᮁᗮ༉ࢱ᳑ɩᦊ᷾a⦹۵Ğ⨆ᮥ

ӹ┡ԩ݅. ᨕࠥ⦹ᇡᨱᕽ۵ᔢᇡ᪡ݍญᮁపᯕ᷾a⧁ᙹಾᙽ⪹ඹ ᮹ၽᔾᯕ᷾a⦹ᩡ݅(Fig. 8). ᯕ۵0.8 m3/sᯕ⦹ᯝভ۵ᰁ᯦ඹ, 1.2 m3/sᯕᔢᯝ ভ۵ ⢽໕ඹ᮹ ᩢ⨆ᮝಽ ❱݉ࡽ݅.

(6)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 6. Velocity Variation at Selected Horizontal Planes (A-A’ Section)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 7. Velocity Distribution at Selected Horizontal Planes (B-B’ Section)

(7)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 8. Velocity Variation at Selected Horizontal Planes (B-B’ Section)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 9. Velocity Distribution at Selected Vertical Planes (C-C’ Section)

3.3.2 ઴஻฻ࠝ൉ন

ᮁప᳑Õᨱ঑ෙᰁŖᯕ᭥⊹⦽ᬵඹᇡᩑḢ⮱෥ᇥ⡍۵݅ᮭŝ

z݅(Fig. 9). ᰁŖᮝಽᯙ⧕Łෙ⮱෥ᯕӹ┡ԍᮝ໑ᮁపᯕ᷾a⧉

ᨱ঑ෙᬵඹᇡ᮹ᮁᗮ᮹Ⓧʑ۵᷾a⦹ᩡᮝ໑ᰁŖ᮹Ğᬑᮁᗮᯕ

እ᜘⦹ᩡ݅. ᰁŖᯕᯩ۵ᬵඹᇡᨱᕽ۵ᙽ⪹ඹaၽᔾ⦹ḡᦫᦹᮝ ໑ ⵏ, ⵐ, ⵑ ݉໕ ༉ࢱ ࠺ᯝ⦽ ⮱෥᧲ᔢᮥ ӹ┡ԍ݅. ᨕࠥ᮹

ᔢᇡ᪡⦹ᇡᨱᕽ۵ᬵඹḢ⬥ᯙⵏ ݉໕᮹ᮁᗮᯕaᰆ׳ᦹŁ

ᵲeᇡᇥᨱᕽ۵ⵏ݉໕᮹ᮁᗮᯕaᰆ۱ฑäᮝಽӹ┡ԍ݅(Fig.

10).

ᮁప᳑Õᨱ঑ෙᬵඹᇡᩑḢ⮱෥ᇥ⡍۵݅ᮭŝz݅(Fig. 11).

ᮁపᯕ 0.8 m3/sᯝ ভᬵඹ⦹۵ ⮱෥ᮡ ၵ݆ᮝಽ ⨆⦽ ⬥ ݅ᮭ

Ċᄞᨱᕽᔢ᜚⦽⬥ᬵඹ⦹۵⮱෥ŝᔢඹ⊂ᮝಽᩎඹ⦹۵⮱෥ᯕ

(8)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 10. Velocity Variation at Selected Vertical Planes (C-C’ Section)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 11. Velocity Distribution at Selected Horizontal Planes (D-D’ Section)

ၽᔾ⦽݅. ᮁపᯕ1.2 m3/sᯝভ۵ᬵඹ⦹۵⮱෥ᮡ⢽໕ᮥ঑௝

⮱ෙअ݅ᮭĊᄞᨱᕽᬵඹ⦹۵⮱෥ŝ⦹ᇡಽ⨆⦹۵⮱෥ၽᔾ

⬥Ǎ᳑ྜྷ⦹ᇡᨱᕽᩎඹ⦹۵⮱෥ᯕၽᔾ⦽݅. ᮁపᯕ᷾a⧉ᨱ

঑௝ ᬵඹᇡᨱᕽ᮹ ᬵඹᮁᗮᮡ ᷾a⦹۵ Ğ⨆ᮥ ӹ┡ԍ݅. ⵏ, ⵐ, ⵑ݉໕ᮥእƱ᜽ᮁపᯕ0.6 m3/sŝ0.8 m3/sᯝভⵑ݉໕

ᔢᇡᨱᕽᩎඹ⦹۵⮱෥ᯕၽᔾ⦹ᩡᮝ໑ᮁపᯕ0.6 m3/sᯝভอ

ⵐ݉໕ᔢᇡᨱᕽᩎඹ⦹۵⮱෥ᯕၽᔾ⦹ᩡ݅. ᮁప1.2 m3/sŝ

1.4 m3/sᯝভ۵ⵏ, ⵐ, ⵑ݉໕ᮡᔢᇡᨱᕽ۵⦹ඹಽ⮱෕۵⮱෥ᯕ

ၽᔾ⦹ᩡŁ⦹ᇡᨱᕽ۵ᔢඹಽᩎඹ⦹۵⮱෥ᯕၽᔾ⦹ᩡ݅. ᯕä ᮝಽ ᅕᦥ ᮁపᯕ 0.8 m3/sᯕ⦹ᯙ Ğᬑ ᨕඹa ᗭᔢ⦹ʑ ᛍᬕ

⮱෥ᯙᰁ᯦ඹaӹ┡ԍᮝ໑ᮁపᯕ1.0 m3/s ᯝĞᬑInclined flowaᮁపᯕ1.2 m3/sᯕᔢᯙĞᬑᨕඹaᗭᔢ⧉ᨱᯩᨕ᳦᳦

ႊ⨆ᮥ ᯤᨕ ᗭᔢᮥ ᝅ➉ ⧁ ᙹ ᯩ۵ ⢽໕ඹa ၽᔾ⦹ᩡ݅.

(9)

(A) 0.6 m3/s (B) 0.8 m3/s (C) 1.0 m3/s

(D) 1.2 m3/s (E) 1.4 m3/s

Fig. 12. Velocity Variation at Selected Vertical Planes (D-D’ Section)

4. đು

ᅙ ᩑǍᨱᕽ۵ ᝅᱽ ᖅ⊹ࡽ ݍᖒᅕ ᯙŖ⩶ ᨕࠥෝ ݡᔢᮝಽ

3₉ᬱ༉⩶ᯙFLOW-3D༉⩶ᮥᯕᬊ⦹ᩍᨕ᯦ࠥǍ᮹a࠺ᅕᬕᩢ

ᨱ ᮹⦽ᮁ᯦ᮁప᮹ ₉ᯕᨱ ঑ෙᨕࠥ ԕ ⮱෥✚ᖒᮥእƱ⦹ʑ

᭥⦹ᩍ ᮁప᳑Õᨱ ঑ෙ ᨕࠥ ԕ ᙹญ⦺ᱢ ✚ᖒᮥ ᇥᕾ⦹ᩡ݅.

ᩑǍෝ ᭥⦹ᩍ ᝅᱽ ᖅ⊹ࡽ ᨕࠥ᪡ zᮡ ᱽᬱᮝಽ 3D Solidෝ

Ǎ⇶⬥ᙹ⊹༉᮹ෝ☖⦹ᩍᙹญ✚ᖒᮥ᳑ᔍ⦹ᩡ݅. ᮁ᯦ᮁప᳑Õ ᮝಽbb0.6 m3/s, 0.8 m3/s, 1.0 m3/s, 1.2 m3/s, 1.4 m3/sᮥ

ᱢᬊ⦹ᩍᙽ⪹ඹᖙʑ᪡ᬵඹᇡၰᰁŖᨱᕽ᮹ᮁᗮŝᩑḢ⮱෥᧲

ᔢᮥ እƱ·á☁⦹ᩡᮝ໑, ݅ᮭŝ zᮡ đುᮥ ᨜ᮥ ᙹ ᯩᨩ݅.

(1) Ӻ࠺vݍᖒᅕᦥᯕᜅ⦹ქ᜾ᯙŖ⩶ᨕࠥᨱݡ⦽ᙹ⊹༉᮹đŝ

ᮁ᯦ᮁపᨱ঑ෙᩑḢ⮱෥ᇥ⡍᮹Ğᬑ0.8 m3/sᯕ⦹ᯙĞᬑ

ᨕࠥෝ☖⦹ᩍᨕඹaᗭᔢ⦹ʑᱢ⧊⦽⮱෥ᯙᰁ᯦ඹaၽᔾ⦹

ᩡŁ, 1.0 m3/sᯝĞᬑ⃽ᯕᔢ┽ᯙInclined flowaၽᔾ⦹ᩡᮝ ໑1.2 m3/sᯕᔢᯝĞᬑᨕඹaᗭᔢ⧁᜽᳦᳦ᔢඹႊ⨆ᮥ

ᯤᮥᙹᯩ۵⢽໕ඹaၽᔾࡹ۵äᮥ⪶ᯙ⦹ᩡ݅. əđŝ

ᨕඹ᮹ᗭᔢᮥᬊᯕ⦹í⦹ʑ᭥⧕ᕽ۵a࠺ᅕ᮹ᱢᱩ⦽ᬕᩢᮥ

☖⦹ᩍᨕࠥԕ᮹ᮁ᯦ᮁపᮥ0.8 m3/s ᯕ⦹ಽᮁḡ⧕᧝⧁

äᮝಽ ❱݉ࡽ݅.

(2) ᮁ᯦ᮁపᨱ঑ෙᙹ⠪⮱෥ᇥ⡍đŝෝᇥᕾ⧕ᆅᮥভᮁ᯦ᮁప ᯕ0.8 m3/sᯝĞᬒඹᇡ↽ݡᮁᗮᮡ1.24 m/s, ᮁపᯕ1.2

m3/s ᯝĞᬑ1.42 m/sಽ᷾a⦹۵äᮝಽӹ┡ԍᮝ໑ᮁపᯕ

᷾a⧉ᨱ঑௝ᔢ·⦹ᇡ༉ࢱᙽ⪹ඹaၽᔾ⦹۵äᮥ⪶ᯙ⦹ᩡŁ

ᮁప᷾aᨱ঑ෙᙽ⪹ᮁᗮᮡ᷾a⦹ḡอᵲᦺእᬵඹᇡᨱᕽ۵

ᵝᄡ⮱෥᮹ᩢ⨆ᮝಽᙽ⪹ඹaၽᔾ⦹ḡᦫ۵äᮥ⪶ᯙ⦹ᩡ݅.

(3) ᮁప᳑Õᨱ঑ෙᰁŖ᮹↽ݡᮁᗮᮡ༉ࢱ᧞1.7 m/sಽእ᜘⦹

í ӹ┡ԍᮝ໑ Ċᄞ ԕ᮹ ♕ᔍ ॒ᮥ ⬉ŝᱢᮝಽ ႑⇽⧁ ᙹ

ᯩᮥäᯕ௝❱݉ࡹ໑ᰁŖᨱᯩ۵ᬵඹᇡᨱᕽ۵Łෙ⮱෥ᯕ

ӹ┡ӹ໑ ᙽ⪹ඹ۵ ၽᔾ⦹ḡ ᦫ۵ äᮥ ⪶ᯙ⦹ᩡ݅.

(4) ༉᮹đŝෝ ᇥᕾ⧕ᆅᮥ ভ ᨕࠥ ԕ ⮱෥✚ᖒᮡ ᮁ᯦ᮁపᨱ

঑௝ ݅ෙ sŝ ᧲ᔢᮥ ӹ┡ԕᨩŁ, ᯕ۵ a࠺ᅕ᮹ ᬕᩢᨱ

঑௝ᨕࠥ᮹⮱෥ᮡ݅෕íӹ┡ԁäᮝಽ❱݉ࡹᨩᮝ໑, ⨆⬥

⬉ŝᱢᯙᨕࠥšญෝ᭥⦽ʑⅩᯱഭಽ⪽ᬊ⧁ᙹᯩᮥäᯕ௝

ᔍഭࡽ݅.

qᔍ᮹ɡ

ᅙᩑǍ۵ǎ☁⧕᧲ᇡÕᖅʑᚁ⩢ᝁᔍᨦ᮹ᩑǍእḡᬱ(11-ʑᚁ

⩢ᝁ-C06)ᨱ᮹⧕ᙹ⧪ࡹᨩᮝ໑, ᯕ᪡zᮡḡᬱᨱqᔍऽพܩ݅.

References

Ahn, M. W. (2008). Development of an environment friendly fish

raceway for eco-restoration of streams, Doctoral Dissertations,

Konkuk University (in Korean).

(10)

Ahn, S. S., Lee, S. I. and Lee, Z. S. (2012). “Analysis of hydraulic characteristics in ice-harbor fishway.” J. of the Environmental Sciences, KENSS, Vol. 21, No. 11, pp. 1395-1406 (in Korean).

Baek, K. O. (2012). “Best position of fishway based on hydraulic analysis.” J. of Korea Water Resources Association, KWRA, Vol.

45, No. 2, pp. 42-47 (in Korean).

Baek, K. O. and Ahn, S. S. (2008). “Flow analysis for effective design of fishway at wangsuk stream.” Proc. of Korea Water Resources Association, KWRA, pp. 2100-2104 (in Korean).

Cea, L., Pena, L., Puertas, J., Vazquez-Cendon, M. E. and Pens, E.

(2007). “Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways.” J. of Hydraulic, ASCE, pp. 160-172.

Choi, S. H., Kim, S. J., Lim, Y. S. and Yoon, B. M. (2009). “Flow analysis in the baffled fishway using FLOW-3D.” Proc. of Korea Water Resources Association, KWRA, pp. 1837-1840 (in Korean).

Choi. Y. H. (2011). Optimal fishway design for seungchon small dam, Master Thesis, Konkuk university (in Korean).

Hayashida, K., Honda, T., Kataba, Y. and Shimatani, Y. (2000).

“The characteristic of the plunging flow and the streaming flow in the pool-weir-fishway and the swimming behavior of leuciscus hako-nensis.” Proc. of Environmental System Research, Vol. 28, pp. 333-338 (in Japanese).

Heimerl, S., Hangmeyer, M. and Echteler, C. (2008). “Numerical flow simulation of pool-type fishways: New Ways with Well- Known Tools.” J. of Hydrobiologia, Vol. 609, pp. 189-196.

Jo, E. H., Yeo, D. Y., Kim, G. H. and Kim, H. J. (2011). “Prediction of water quality variation according to weir construction using EFDC Model ; Focused on Dalsung Weir.” Proc. of Korea Water Resources Association, KWRA, pp. 186-190 (in Korean).

Kim, J. H. (2001). “Hydraulic characteristics by weir type in a pool-weir fishway.” J. of Ecological Eng, Vol. 16, No. 3. pp.

425-433 (in Korean).

Kim, J. H. and Kim. C. (1994). “Study on hydraulic characteristics for upstream migration of fish in a pool-and-weir fishway.” J. of Korea Water Resources Association, KWRA, Vol. 27, No. 2, pp.

63-72 (in Korean).

Kim, S. J., An, M. W., Choi, Y. K. and Kyoung, M. S. (2006).

“Examination of modified larinier pass fishway in korea.” Proc.

of Korea Water Resources Association, KWRA, pp. 452-456 (in Korean).

Kim, S. J., Yu, K. K., Yoon, B. M. and Lim, Y. S. (2012). “A numerical study on hydraulic characteristics in the ice harbor- type fishway.” J. of Civil Engineering, KSCE, Vol. 16, No. 2, pp.

265-272 (in Korean).

K-water (1995). Development and application of maintenance flow discharge determination method, K-water Investigation Plan Place IDP-95-2 Research Report, pp. 127-434 (in Korean).

Lee, J. S. (2011). “An analysis on hydraulic properties by fishway type for the development of eco-friendly urban streams.” J. of Korean Society of Environmental Technology, Vol. 12, No. 3, pp.

214-222 (in Korean).

Lim, Y. S. (2009). An analysis of hydraulic characteric characteristics and fish swimming performance associated with distance between baffles in the ice-harbor fishway, Master Thesis, Myungji University (in Korean).

Liu, M. and Rajaratnam, N. (2006). “Mean flow and turbulence structure in vertical slot fishways.” J. of Hydraulic Engineering, Vol. 132, No. 8, pp. 765-777.

MLTM (Ministry of Land, Transport and Maritime Affairs) (2009).

Four river restoration master plan, MLTM, p. 284; p. 308; p.

328; p. 348 (in Korean).

MLTM (Ministry of Land, Transport and Maritime Affairs) (2009).

Nakdong river basin master plan (change), Technical Report, pp.

497-498 (in Korean).

수치

Fig. 2. Map of Study Area
Table 2. Input Properties Viscosity  ( Ń ) Density(Ň) Gravity (ƅ) Roughness coeff Turbulence model 0.001 pa/s 1000 kg/m 3 9.8 m/s 2 0.014 RNG  Ɖà Ļ
Fig. 5. Velocity Distribution at Selected Horizontal Planes (A-A’ Section) Table 3. Compared to the this Study of the Experimental Result
Fig. 6. Velocity Variation at Selected Horizontal Planes (A-A’ Section)
+4

참조

관련 문서

The Mann-whitney U test was used to compare and analyze the salivary cortisol concentration according to the duration of symptoms in the temporomandibular disorder patient group

The characteristic change according to the main design parameters of the magnetic gear can be confirmed, and the difference in loss and efficiency according

Therefore, the aim of this study was to investigate the morphologic characteristics of the interalveolar foramen and to analyze according to sex and age using cone

The purpose of this study was to analyze the impaction pattern of the impacted mandibular third molar and the relationship with the inferior alveolar nerve

Therefore this study is to examine various characteristics of Doseon, extract the truth of tale inherent in the tale and show the aspects of Doseon tale

In addition, it is the purpose of this study to analyze social and historical background and the characteristics on the establishment of the varied

To estimate the change of riverbed geography by the operation of movable weir, two-dimensional RMA-2 and SED-2D were used in this study. Hydraulic elements

Therefore, this experiment apply the NH 3 and HFC-134a to the study of performance characteristic though the superheat control and compare the energy