• 검색 결과가 없습니다.

Chapter8. Optical spectraPart 1

N/A
N/A
Protected

Academic year: 2022

Share "Chapter8. Optical spectraPart 1"

Copied!
22
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

EE 430.423.001 2016. 2nd Semester

2016. 11. 24.

Changhee Lee

School of Electrical and Computer Engineering Seoul National Univ.

chlee7@snu.ac.kr

Chapter8. Optical spectra

Part 1

(2)

EE 430.423.001 2016. 2nd Semester

8.1 General Remarks

Ground state Excited state

A21: Spontaneous emission B21: Stimulated emission

B12

absorption

B21, A21

1 2

hn hn

Absorption and Emission of Light Scattering of Light

hn hn

(3)

EE 430.423.001 2016. 2nd Semester

A. Beiser, Concepts of Modern Physics, 6th ed., McGraw-Hill, New York, USA, 2003, Chapter 3

Atomic spectra

(4)

EE 430.423.001 2016. 2nd Semester

8.2 Elementary theory of atomic spectra

Assumptions of the Bohr model (1913)

1. The electrons of an atom can occupy only certain discrete quantized states or orbits.

2. The electrons can only gain and lose energy by jumping from one allowed orbit to another, absorbing or emitting electromagnetic radiation with a frequency ν determined by the energy difference of the levels according to the Planck relation:

http://en.wikipedia.org/wiki/Bohr_model

n h E

E

E   

2 1

3. The allowed orbits depend on quantized (discrete) values of orbital angular momentum, L.

...

, 3 2 1 number

quantum principal

2 )

(

, , n

n h mur

rp L

 

...) , 3 2 1 (

)

(

2 n n , ,

p n h

r    

(5)

EE 430.423.001 2016. 2nd Semester

The Bohr atom

r mu r

e

o

2 2

2

4

1 



The electron velocity is related with its orbit radius

+ r

Assume a circular electron orbit

-e

mr u e



o

 4

Total energy of the electron

r e r

mu e V

T E

o

o



 8 4

2

1

2 2 2

Condition for orbit stability o n

r

n

m r e

nh mu

n   nh  4   2 

Orbit radii in the Bohr atom 2 2

( 1 2 3 , ...)

2 2

, , n

n me a

h

r

n

n

o

H

A 529 . 0

radius Bohr

o 1

r a

H

Energy levels

constant) (Rydberg

J 10 18

. 2 eV 6 . 8 13

...

3, 2, 1, n

1 )

8 ( 8

18 2 2

4

2 2 2

2 4 2

h R me

n R h n

me r

E e

o

n o o n

 

(6)

EE 430.423.001 2016. 2nd Semester

The Bohr atom

731 , 973 , 10

Hz 10

29 . 3 /

1 ) ( 1

1 15

2 2 2

1 1

2

 

ch m R h R

n h n

R h

E

n

E

n1=1 n1=2, 3, 4, . . . Lyman series (far UV)

n1=2 n1=3, 4, 5, . . . Balmer series

(visible and near UV) n1=3 n1=4, 5, 6, . . . Paschen series

(near IR)

n1=4 n1=5, 6, 7, . . . Brackett series (IR) n1=5 n1=6, 7, 8, . . . Pfund series (IR)

(7)

EE 430.423.001 2016. 2nd Semester

The Bohr atom

Effect of a finite nuclear mass

, (reduced mass) 8

2 2

4

M m

mM h

R e

o

H

   

Spectra of the alkali metals

defects quantum

,

) (

1 )

(

1

2 1

2 2 2

2 1 1

n 

 

 

 

n n

h R

The principal series is the most intense in emission and is also the one giving the strongest absorption lines when white light is passed through the vapor of the metal.

In the fundamental series, the quantum defects are very small. As a consequence the frequencies of the lines of this series are very nearly the same as those of the corresponding series in hydrogen.

(8)

EE 430.423.001 2016. 2nd Semester

8.3 Quantum mechanics

The quantity whose variations make up matter waves is called the wave function, solutions of the Schrödinger’s wave equation.

) , ( t r

The probability of experimentally finding the body described by the wave function  at the point x, y, z at the time t is proportional to the value of ||

2

there at t.

(Max Born, 1926)

density y

probabilit )

,

( 2

rt

functions normalized

, integrable lly

quadratica

*

1

  

  dxdydz

All state functions satisfy the time-dependent Schrödinger equation:

) , ( )

,

( r t H r t

i t  

   

(9)

EE 430.423.001 2016. 2nd Semester

Stationary states

) ( )

( )]

2 (

[

2

2

r E

r r

m V

n n n

     

2

2

( )

) ,

( r t

n

r

n

  

Probability distribution for an eigenstate is independent of time

t i E n

n

e

n

z y x t

r

 ( , ) ( , , )

coherent states

t i E t

i E

e c

e

c

1 1 1

2 2 2

  

h E E

E E

e c

c e

c c c

c c

c

i t i t

1 2

1 2

1

* 2 1

* 2 2

* 1 2

* 1 2

* 2 2

* 2 1

* 1 1

* 1

*

or

 

n

8.3 Quantum mechanics

(10)

EE 430.423.001 2016. 2nd Semester

8.4 The Schrödinger wave equation

0 )

8 (

) ( )

( )]

2 ( [

2 2 2

2 2

 

V m E

r E

r r

m V

relation) Broglie

(de h k

p   

equation) (Planck

 n  

h E

particle) free

a of equation n

(dispersio 2

)

(

2

m

k

  

rt A ke

i(kx t)

d k  )

2 ( ) 1

,

(

 

 

 

 

 

 

2 2 )

( 2 2

) ( 2 2 2

2

2 , 0 2 )

)(

2 ( 1

2 ) )(

2 ( ) 1

, ( 2 )

(

m i t

k d m e

k k A

k d m e

i t k A t

m r i t

t kx i

t kx i

 

 

 

 

 

 

 

(11)

EE 430.423.001 2016. 2nd Semester

8.5 Quantum mechanics of the hydrogen atom

r r e

V

V h E

r r r r

r E r

r m V

r H



o

 

 

 

) 4 (

0 )

8 ( sin

) 1 sin (sin

) 1 1 (

) , , ( )

, , ( ) 2 (

) , , (

2

2 2 2

2 2

2 2

2 2

 

 

 

 

 

 

   

 

1 sin

) , ,

(

2 2

 

E

r r dr d d

(12)

EE 430.423.001 2016. 2nd Semester

8.5 Ground state of the H atom

r H

H r

o

H o

o

r

o r

r

e a

a C

dr r e

C

h E e

a h

e

h e h

E

r e h

e e h

E

Ce

 

 

 



 

 



 

 

 

 

 

 

 

100 3

3 2 0

2 2

2 4 2

2

2 2 2

2 2

2 2 2

2 2

1 1

1 4

8

1 2 2 8 ,

0 2 2

8

(13)

EE 430.423.001 2016. 2nd Semester

Excited state of the H atom

0 )

8 ( sin

) sin (

) sin (sin

1

) ( ) ( ) ( )

, , (

2 2 2 2

2 2

2

2

    

 

 

 

 

V h E

r dr

r dR dr

d R

d d d

d d

d

r R r

number quantum

magnetic .

. . 3, 2,

1, 0,

) 1 ( )

8 ( ) 1 (

) 1 ( )

sin (sin 1 sin

1

2 2 2 2

2 2

2 2

2

 

 

 

m e

l l V

h E r dr

r dR dr

d R

l d l

d d

d m

d m d

im

 

 

r r e

V



o

) 4 (

2

(14)

EE 430.423.001 2016. 2nd Semester

Eigenfunction of angular momentum

) 2 (

) 1 ,

( 

 

im lm

m

l

e

Y  

0 ) ( sin ]

) 1 ( [ ) sin (sin

1

2

2

 

 

 

 

l m d l

d d

d

The regularity in the solution Θ at the poles of the sphere, where θ=0, π, forces the eigenvalue to be of the form ℓ(ℓ+1) for some non-negative integer with ℓ ≥ |m| .

The associated Legendre polynomials are the canonical solutions of the general Legendre equation.

) 1 1

(

cos  

- x

x] 0

) 1 1 ( [ ] )

1

[(

2

2

2

 

 

 

x

l m dx l

x d dx

d

formula) '

(Rodrigues s

polynomial Legendre

: ) 1

! ( 2 ) 1 (

) ) (

1 ( ) 1 ( ) (

2

2 / 2

l l

l l l

m l m m

m m

l

dx x d x l

P

dx x P x d

x P

The ( − 1)

m

factor is known as the Condon–Shortley phase and some authors omit it.

(15)

EE 430.423.001 2016. 2nd Semester

Properties of the Legendre polynomials

Liboff, Chapter 9

(16)

EE 430.423.001 2016. 2nd Semester

L

z

L ˆ and ˆ of

ions eigenfunct

common

2

, 2 , 1 , 0

, ) 1

ˆ

2

Y

2

l ( lY l     L

lm

lm

, , 1 , 0 , , ) 1 ( ,

ˆ Y mY , m l - l- l

L

z lm

 

lm

       

Eigenfunction of angular momentum

).

( )

( )

,

(  

lm

m

m

Y

l

  

 

lm im

m

l

P e

m l

m l

Y l (cos )

)!

(

)!

( 4

1 ) 2

, (

2 / 1

 

 

 

' ' 1

1

2 0

* ' 4 '

* '

'

) cos ( )

(

lm lm lm mm ll

m

l

Y d d d Y Y

Y

  

    

)

*

( ) 1 ( ) ,

(

m lm

m

l

Y

Y

   

spherical harmonics

 

 4

1 ) 2

,

(

2

 

Y l

l

l m

m l

(17)

EE 430.423.001 2016. 2nd Semester

Eigenfunction of radial equation

The radial differential equation can be solved by the standard method of power series expansion. Its solutions are well known ‘‘associated Laguerre functions,’.

2 ) (

2

4 )

(

4 2

) (

1 ) (

1 )

(

1

) (

) (

) (

constant.

ion normalizat a

is

and 2

where ),

( )

(

2 2

2 0

2 1

2 0 1 1 1 0 0

1 1

2 1

2

1 2 2

/

 

 

 

 

 

 

 

 

 

L L L L L L

d e e d d

L d

A na r

L e

A r

R

l n n

l l

l n

nl H

l l n l nl

nl

(18)

EE 430.423.001 2016. 2nd Semester

) , ( ) ( )

, ,

( r    R

nl

r Y

lm

 

Schrödinger equation for the H atom

1 ) 8 (

8

2 2 2

4 2

h n e r

E e

n o o

n



Each of the bound states is specified by three quantum numbers:

, l l

, . . . , , . . . ,

l l, m

n , . . . , ,

, , l

, . . . , ,

, n

l

( 1 ) 0 ( 1 )

number quantum

nagnetic

) 1 (

3 2 1 0

number quantum

orbital

3 2 1 number

quantum principal

1

0

)

2

1 2 (

n

l

n l

Each energy level corresponding to the principal quantum number n has a total of n2 fold orbital degeneracy.

(19)

EE 430.423.001 2016. 2nd Semester

Excited state of the hydrogen atom

R. A. Serway, C. J. Moses, C. A. Moyer, Modern Physics, 3rd ed., Thomson Learning, Inc., USA, 2005

 

a i

r

o o

e a e

r a

Y r

R

o

  ) sin

( 8 ) 1

, ( )

(

2

3 1

1 21

1 , 21

 

 ) cos

( 4 2

) 1 , ( )

(

2

3 0

1 21

210

ao

r

o o

a e r a

Y r R

(20)

EE 430.423.001 2016. 2nd Semester

Hydrogen atom wavefunctions

(21)

EE 430.423.001 2016. 2nd Semester

Radiative transitions and selection rules

(22)

EE 430.423.001 2016. 2nd Semester

Radiative transitions and selection rules

rule) selection

- ( 1 , 0

rule) selection

- ( 1

*

m m

l l

dxdydz e

B

A AB

  r

M

참조

관련 문서

 We developed expressions for the momentum and energy operators using the wave function of the free particle, however the results are valid for any wave function..  In

In the dense medium, a standing wave E s1 is formed by the incident and reflected waves. n 1

Modern Physics for Scientists and Engineers International Edition,

 To further localize the wave within x by producing a wave packet, we need to combine more than two waves over a range of wave vectors ∆k.  Define ∆x to be ∆λ/2

A source of light waves moving to the right with velocity 0.7c. The frequency is higher on the right, and lower

In this paper, we investigate a long-time behavior of global solutions to the initial boundary problem of nonlinear dispersive-dissipative wave equation with time-dependent

If the source of If the source of wave moves, the wave moves, the wave length of the wave length of the moving source will moving source will appear shorter or

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the