• 검색 결과가 없습니다.

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength

N/A
N/A
Protected

Academic year: 2021

Share "A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength"

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

䢍㢌G ⽸ⵤ㍌㤸␜ᵉ⓸ᴴG W㢨G ╌⏈G 䚜㍌⽸㢬G 䢄⪸䚐᷸㢌G 㥐㙼 :6 ISSN 1229-2427 (Print) ISSN 2288-646X (Online) http://dx.doi.org/10.7843/kgs.2013.29.11.73 ळćܤЛèलॸǷϬܫ  ۔29ĕ 11ॣ 2013Ǭ 11٫ pp. 73 G 84

JOURNAL OF THE KOREAN GEOTECHNICAL SOCIETY Vol.29, No.11, November 2013 pp. 73 G 84

㪤⪣# ↏ύ╣⭏ᘳའᜏཋ# 3⪿# ᝣᗟ# 㢳╣↏⫃# 㪛᳏㢧ဏ⪣# ⭧⢓

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength

⚌ ⮨ ⵔ1 Park, Sung-Sik ᰄ 㓇 㓇2 Nong, Zhenzhen

Abstract

When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content.

The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.

⧟# # # ⴋ

ԐϸǴࢹԐÀңĨʼäǣࢹԵΪÀьԦॠəąڍࣷĨϸقۚڌॠəۻɳÌʪə0قÀŲóʼϸԴࢹԐÀ

Ҽ۾ՁؚߕٮÏۋڮʴॢɰ. ۾Ձࢹə॥սҼݒÀق˰͆ŔٍąʪÀɵ͆ݓ϶ؚߕԜࢗͿцljəؚՁॢćقԴ ʪأÂۆۻɳÌʪεÀݕɰ. ٍ҆ĵقԴə۾ՁࢹۆۻɳÌʪÀ0ۋʼر৔ζںڮьॠə॥սҼε޼Čۙॠٕ

ɰ. ࠢ٤νǣۋ࣡, Ѱࢹǣۋ࣡, ŔνČࠢ٤νǣۋ࣡(50%)+Ѱࢹǣۋ࣡(50%)ٮÏڹՃܛΪۆ۾ࢹقঔ०սͿݒΪ ս, ३ս, ̚əйԦНڌؚںঔ०ॠيؚՁॢćԜࢗͿχ˜ɰڼ॥սҼεɳćۺڷͿݒÀ֨ࢅϸԴࢹѮۍ֨ॹş εۋڌॠيҼѕսۻɳÌʪεࠑ܁ॠٕɰ. ؚՁॢćٮՙՁॢćقԴҼѕսۻɳÌʪۆѩڦəÁÁ3.6-9.2kPaٮ

24-45kPa ܁ʪۋؽɰ. ॢठࠑ܁ĀęͿҙࢢҼѕսۻɳÌʪÀśüॠóѺজॠəÉق३ɾॠə॥սҼε৔ζ॥ս Ҽ(Flow Water content)Ϳ܁ۆॠٕڷ϶, ҼѕսۻɳÌʪÀ0ۋʾ˺ۆ॥սҼε৔ζॢć(Flow Limit)Ϳ܁ۆॠٕɰ.

ŔνČ৔ζॢćٮؚՁॢćۆԜěěćεԕट҃şڦॠي৔ζॢćٮؚՁॢćۆ޲ۋε۾Ձݓս(Cohesive Index) Ϳ܁ۆॠٕɰ. ̚ॢ৔ζॢćٮՙՁॢćۆ޲ۋεԞͿڏՙՁݓս(New Plasticity Index)Ϳ܁ۆॠٕڷ϶, ৔ζॢć

1ⲯ㬦⭪, ᅗ∛រ㧳ᇪ#ᆏᆖរ㧳#ᄎ㈯㘺ὃᆏ㧳√#㘺ὃᆏ㧳Ⲟᆏ#ⴊᇪ⚲#(Member, Assistant Prof., Dept. of Civil Engrg., Kyungpook National Univ., Tel: +82-53-950-7544, Fax: +82-53-950-6564, sungpark@knu.ac.kr, Corresponding author, ᇪ❺ⲚⰪ)

2⋞㬦⭪, ᅗ∛រ㧳ᇪ# ᆏᆖរ㧳# ᄎ㈯㘺ὃᆏ㧳√# 㘺ὃᆏ㧳Ⲟᆏ# ▷╆ᆖⲯ# (Graduate Student, Dept. of Civil Engrg., Kyungpook National Univ.)

*→# ᘖῒ⩪# រ㧶# 㘺⯲Ḗ# ⭪㧲ᜮ# 㬦⭪⯚# 2014ᗞ# 5⭮# 31Ⱆዦ⹚# ኒ# ᕎ⭃⯞# 㧳㬦ᳶ# ↎ᕎⶖ❶ዊ# ₮ᰧᝢ᝾. ⲚⰪ⯲# ᄚ㘺# ᕎ⭃ᆖ# 㨂፲# ᘖῒ⹫⩪# ᄦⱆ㧲⪆# ᥶ṗᝢ᝾.

(2)

:7 䚐ạ㫴ⵌḩ䚍䟀⊰ⱬ㬅G G 㥐Y`ỀG 㥐XX䝬

εۋڌॠيԞͿڏؚՁݓս(New Liquidity Index)ʪ܁ۆॠٕɰ. ৔ζॢć(Flow Limit)əؚՁॢć҃ɰ1.5-2ѕ܁ʪ

ȭڹÉںٕ҃ڷ϶, ԞͿڏՙՁݓսəşܕՙՁݓս҃ɰ2-5.5ѕ܁ʪȭؕɰ.

Keywords : Liquid limit, Flow limit, Cohesive index, Plasticity index, Undrained shear strength

1. ⑧# ᮫

۾Ձࢹۆ ࠸֨֟ࢤ֨(consistency)ə ॥սҼ ݒÀق

˰͆ս߹ॢć, ՙՁॢć, ؚՁॢćͿĵқʼ϶, ؚՁॢ

ćقԴʪأÂۆۻɳÌʪεÀݕɰ. ؚՁॢćقԴ۾

ՁࢹۆҼѕսۻɳÌʪəҼѕսۻɳÌʪεĵॠəѓ Ѫ Ŕ ۙߕӼ ؉ɦ͆ ؚՁॢćε ĵॠə ѓѪ(British Standard ̚əASTM Standard)ۋǣ۾ࢹܛΪق˰͆

ŔÉۋɰβɰ. ٚε˞ϸ, Casagrande(Sharma and Bora, 2003)قۆॠϸؚՁॢćقԴҼѕսۻɳÌʪə2.65kPa, Norman(1958)قۆॠϸ0.8-1.6kPa(British Standard) ̚ ə1.1-2.3kPa(ASTM Standard), Skempton and Northey (1953)قۆॠϸ0.7-1.75kPa, Youssef et al.(1965)قۆ ॠϸ1.3-2.4kPa, Federico(1983)قۆॠϸ1.7-2.8kPa, Wood(1985)قۆॠϸथŒÉۋ1.7kPa ˣęÏۋɰت ॠɰ. ۋٮÏۋؚՁॢćقەə۾ՁࢹۆҼѕսۻɳ ÌʪقԴ޲ۋÀьԦॠəìڹܳͿCasagrandeѓѪق

ۆॢؚՁॢć֨ॹѪۋ৚ۆܼۙقۆ३ψۋۆܕʼ ş˺ЛۍìڷͿ؎Ͳ܋ەڷ϶, ъϸFall coneںۋڌ

ॣąڍقəۋٮÏڹ޲ۋəьԦॠݓ؍əìڷͿ

؎Ͳ܋ەɰ(Sharma and Bora, 2003).

ॢठيٍ͠ĵĀęقۆॠϸՙՁॢćقԴҼѕսۻ ɳÌʪəێъۺڷͿ20-320kPa ԐۋͿؚՁॢćقԴۆ

ҼѕսۻɳÌʪ҃ɰ ঽ؃ Ѻজ ѩڦÀ ȉɰ(Skempton and Northey, 1953; Dennehy, 1978; Arrowsmith, 1978).

Kayabali and Tufenkci(2010)ə30يܛۆИşݗ৚ں

ۋڌॠيؚՙՁॢćقԴҼѕսۻɳ֨ॹں֬֨ॠٕڷ

϶, ؚՙՁॢćقԴथŒҼѕսۻɳÌʪəÁÁ2.3kPa ٮ180kPaۋ͆Čॠٕɰ. ʂҙқۆٍĵۙ˞ڹ৚ۆؚ

ՙՁॢćقԴҼѕսۻɳÌʪεÁÁ1.7kPaٮ170kPa Ϳ҃Čەɰ(Skempton and Northey, 1953; Wroth and Wood, 1978; Belviso et al., 1985; Sharma and Bora, 2003;

Lee and Freeman, 2007).

ࢹԐۆڮʴ࣢ՁۋǣࢹԵΪۆۋʴՁںĀ܁ॠə

ܼڅॢڮʴॡۺϔÒѺսə२҄ڿͳęՙՁ۾ʪۋɰ.

ࢹԐʂѺ঍ۋǣࢹԵΪۆڮʴՁڹؚՁԜࢗق˰͆

ɵ͆ݓдͿؚՁݓս(Liquidity Index)ۆ॥սͿǣࢍǷ

սەڷ϶, ؚՁݓսÀݒÀ॥ق˰͆२҄ڿͳęՙՁ

۾ʪəÇՙॠəąॳں҃ۍɰ(Jeong, 2011). ؚՁݓս À1҃ɰঽ؃ࢁąڍ৚ڹۋйؚՁॢćقʪɵॢ

ۋ঳Ϳ৚ۆÌʪə0ۋʼرؚߕٮÏۋ৔βóʼə

ìڷͿÂܳʼݓχ, ֬܃ؚՁॢć҃ɰرɗ܁ʪ॥ս ҼÀݒÀʼرآÌʪÀ0ۋʼəݓࣺɳॠşرͷɰ.

̚ॢşܕؚՙՁॢć֨ॹѓѪڹ֬ॹۙٮÏڹٽҙ څۍقۆ३ٖॳںψۋыںӼ؉ɦ͆ʴێॢ֬ॹۙ

Àսॱॠٕʌ͆ʪɰδĀęεصںսʪەɰ. ˰͆Դ

ٍ҆ĵقԴəێěՁەə֬ॹĀęεصşڦ३ࠑ܁

ʽÌʪÉقŖäॢԞͿڏؚՁॢćε܃֨ॠČۙॠ

ٕɰ. ݌, ؚՁॢćۋ঳ق॥սҼݒÀق˰δ৚ۆҼ ѕսۻɳÌʪۆ Ѻজε ࠑ܁ॢ ɰڼ, ۻɳÌʪÀ 0ۋ

ʼə॥սҼεԞ΄ó৔ζॢć(Flow Limit)Ϳ܁ۆॠ

ٕɰ. أÂۆۻɳÌʪεÀݓəؚՁॢćεʂ֪ॠي

ۻɳÌʪÀ0ۋʼə॥սҼεǣࢍǴə৔ζॢćεۋ ڌॠيԞͿڏՙՁݓսٮؚՁݓսε܃؋ॠٕɰ.

2.☯㤣⫷ᰗ#὚#⭛㓫⪣#⢬⑼㢧ဏ#὚#↏ύ╣⭏ᘳའ ᜏ# ㅬ⭠ὴῠ

2.1 ㆿ⥷᳷Ꮳ⪿㘃(kaolinite)၇# `㓫Ꮳ⪿㘃(bentonite)

ڍνǣ͆Դ३؋قəܳͿࠢ٤νǣۋ࣡Àप॥ʼر

ەČ, ǫ३؋قəێ͆ۋ࣡(illite)ÀŔνČʴ३؋قə

ێ͆ۋ࣡ٮЂϿπͿǣۋ࣡(montmorillonite)Àঔۦ३

ەɰ. ٍ҆ĵقԴəࣀێқΪѪԜCLͿқΪʼ϶À

ۤ؋܁ʽĵܓεÀݕࠢ٤νǣۋ࣡ٮ3ࠗĵܓͿÀ

ۤأॢĀ०ͳںÀݓ϶ࣀێқΪѪԜCHͿқΪʼ əѰࢹǣۋ࣡εԐڌॠٕɰ. ٍ҆ĵقԐڌॢࠢ٤ν ǣۋ࣡ٮѰࢹǣۋ࣡ۆҼܼڹÁÁ 2.47ę2.24ۋ϶, şܕ Лॶ(Ahn, 1997)قԴ ܓԐʽÉ҃ɰə ĵՁՁқ

޲ۋͿɰՙǰڹÉںٕ҃ɰ. ٍ҆ĵقԴԐڌॢ˃

ܛΪ۾ࢹۆНνۺজॡۺĵՁڹTable 1ęÏڷ϶, BET֨ॹقۆॠϸࠢ٤νǣۋ࣡ٮѰࢹǣۋ࣡ۆҼश

(3)

䢍㢌G ⽸ⵤ㍌㤸␜ᵉ⓸ᴴG W㢨G ╌⏈G 䚜㍌⽸㢬G 䢄⪸䚐᷸㢌G 㥐㙼 :8 Wdeoh# 41# Fkhplfdo# frpsrvlwlrq# ri# Ndrolqlwh# dqg# Ehqwrqlwh

Vrlo# w|sh Frpsrqhqwv# +(,

Qd5R PjR Do5R6 VlR5 N5R FdR WlR5 Ih5R6

Ndrolqlwh 3 3 661;93 791:<6 31965 71883 31677 61;63

Ehqwrqlwh 7134; 6169; 4:1;4< 8<1997 31;56 61866 3188; 716;:

# # # # #

Ilj1# 41# Dsshdudqfh# ri# Wruydqh# ghylfh

ϸۺڹ33 ф58m2/gڷͿѰࢹǣۋ࣡ۆҼशϸۺۋঽ

؃ࢀìں؎սەɰ. ࠢ٤νǣۋ࣡ٮѰࢹǣۋ࣡ε

ÁÁ50%؂Զڹ֨ΒʪԐڌॠٕɰ.

2.2 ⢬⑼㢧ဏ☧㤣ῠ

ٍ҆ĵقԴԐڌॢؚՁॢć֨ॹѪڹ1911țйĶ

CasagrandeÀÒьॢѓѪۋɰ. ॢĶۆKS F 2303şܵ

ںҼ΅ॠيйĶۆASTM D 4318 ˣقशܵ֨ॹѓѪ ڷͿ޽࢘ʼرԐڌʼČەəѓѪۋɰ. ؚՁॢćə৚

ۋڮʴԜࢗεǣࢍǴə߯ՙۆ॥սҼεϊॠ϶, KS F 2303قԴəডʴۿ֨قąԐ60°, ȭۋ1cmۆۍėԐ ϸںܓՁॢ঳ق֨Βεȏڹۿ֨ε1cm ȭۋقԴ1 ߣق2ধۆҼڱͿ25ধǤॠ֨ࡎں˺ˆͿǣɍҙқ ۆ৚ۋتࠑڷͿҙࢢڮʴॠيأ1.5cmۆţۋͿ० Ϊ॰ں˺ۆ॥սҼ͆Č܁ۆॠČەɰ. Ŕ͠ǣ܁ঝॠ ó25ধεϑ߸şÀرͷş˺ЛقؚՁॢćۻ঳ۆ

॥սҼͿي͠ѥ֨ॹںսॱॠي, ŔĀęͿҙࢢ25ধ ق३ɾॠə॥սҼεً߸ۺॠيؚՁॢćεĵॢɰ.

2.3 ↏ύ╣⭏ᘳའᜏ# ㅬ⭠ὴῠ#

֬ǴقԴ۾ࢹۆҼѕսۻɳÌʪεࠑ܁ॠəѓѪق əێ߹ؓ߹֨ॹ, Ԙ߹ؓ߹֨ॹ, ࡓ֨ॹ, Ѯۍ֨ॹˣۋ

ەɰ. ێ߹ؓ߹֨ॹڹ۾ࢹ֨ΒقʂॠيێъۺڷͿ

ԐڌʼəҼؓнҼѕս֨ॹۆॢ঍ࢗͿڙܳ঍ۆė

֨ߕε܃ۚॠيࠑؓںыݓ؍əԜࢗͿ߹ॠܼںÀ ॠيۻɳࣷĨ֨ࡈ֨ΒۆۻɳÌʪεĀ܁ॠəѓѪ ۋɰ. Ԙ߹ؓ߹֨ॹڹݔۿۻɳ֨ॹۋǣێ߹ؓ߹֨ॹ ęڮԐॠó৚ںۻɳࣷĨ֨ࡈۻɳÌʪ܁սεĵॠ əìۋЀۺۋ϶, ێъۺڷͿҼؓнҼѕս֨ॹںࣀ ॠيҼѕսۻɳÌʪεĵॠČەɰ. Park(1985)قۆॠ يٍأॢ۾Ձࢹقʂ३ԴࢹѮۍڷͿࠑ܁ॢҼѕս ۻɳÌʪٮێ߹ؓ߹֨ॹڷͿࠑ܁ॢҼѕսۻɳÌʪ ۆҼə0.92ͿڮԐॠݓχ, ʴێॢ֨ΒقʂॢԘ߹ؓ

߹֨ॹڷͿĵॢÌʪəێ߹ؓ߹֨ॹڷͿĵॢÉ҃

ɰأ1.3ѕ܁ʪȭóǣࢍǮɰ. ֟ڟʜǤॠࡓ֨ॹѪ (Swedish fall cone method)ڹێъۺڷͿࡓۆԸɳÁ ʪÀ60ʪۋČИóə60gۍࡓں۾ࢹقܼۙڷͿě ۓ֨ࡈěۓŪۋق˰͆ҼѕսۻɳÌʪӼ؉ɦؚ͆

ՁॢćεĵॠəѓѪۋɰ(Jeong, 2013).

ٍ҆ĵقԴəFig. 1ęÏۋࠑ܁ۋÂठॠČԐڌ ۋڌۋॢࢹѮۍ(Torvane)ڷͿҼѕսۻɳÌʪεࠑ

܁ॠٕɰ. ࢹѮۍڹѮۍ֨ॹşĵۆս܁঍ڷͿêݒ ʽ॒֟τ(calibrated spring)ںۋڌॠيҼѕսۻɳÌ ʪεцͿۏںսەʪ΀ʼرەɰ. ٍأॢ۾ࢹҙࢢ

˱˱ॢ۾ࢹūݓҼѕսۻɳÌʪεϿ˃ࠑ܁ॣսە ɰ. Fig. 1ق҃ۋəìߌͤɰتॢÌʪεÀݕ۾ࢹε

(4)

:9 䚐ạ㫴ⵌḩ䚍䟀⊰ⱬ㬅G G 㥐Y`ỀG 㥐XX䝬

Ilj1# 51# Ghilqlwlrq# ri# frqvlvwhqf|# olplwv

Wdeoh# 51# Frpsdulvrq# ri# xqgudlqhg# vkhdu# vwuhqjwk# +Fx,# ri# fod|v# dw# sodvwlf# dqg# oltxlg# olplwv

Vrlo Pl{lqj# zdwhu OO-

+(,

SO-- +(,

Fx# dw# OO +nSd,

Fx# dw# SO +nSd,

Fx# dw# SO2#

Fx# dw# OO

Ndrolqlwh

Glvwloohg# zdwhu 93 73 :13 6< 9

Vhd# zdwhu# 85 74 <15 73 7

Plfureldo# vroxwlrq# 87 6; <13 76 8

Ehqwrqlwh

Glvwloohg# zdwhu# 4<8 <3 9 66 9

Vhd# zdwhu# ;9 94 717 57 8

Plfureldo# vroxwlrq# 44< 9< 71; 59 8

Ndrolqlwh .Ehqwrqlwh

Glvwloohg# zdwhu# 44; 93 715 78 44

Vhd# zdwhu# 99 7; :19 75 9

Plfureldo# vroxwlrq# ;6 88 619 59 :

-# OO# +Oltxlg# olplw,# zdv# ghwhuplqhg# e|# Fdvdjudqgh# phwkrg1#

Ilj1#61#Vrlo#frqwdlqhu#iru#xqgudlqhg#vkhdu#vwuhqjwk#dw#oltxlg#dqg#

sodvwlf# olplw# vwdwhv

ڦ३ࢀǨÒ(0-0.2kg/cm2),ێъǨÒ(0-1kg/cm2),ۚڹ

ǨÒ(0-2.5kg/cm2)ٮÏڹՃܛΪۆѮۍࡾşÀەڷ

϶, ۾ࢹÀٍأॣս΀ԐڌॠəѮۍۆǨÒÀࡾɰ.

҆ ٍĵقԴə ܳͿ ࢀ ǨÒ(0-0.2kg/cm2)ε Ԑڌॠٕ

ɰ. ࢹѮۍںۋڌॢ۾ࢹۆҼѕսۻɳÌʪࠑ܁ѓѪ ڹश֨۾ęɂŚࣺں‘0’ڷͿϑߺɰڼقێ܁ॢսݔ

ؓͳڷͿࢹѮۍں৚՚قԙۓॢɰڼ৚ۋۻɳࣷĨ ʾ˺ūݓধۻ֨ࢅϸҼѕսۻɳÌʪÀɰۋضóۋݓ ۆɂŚڷͿश֨ʽɰ.

3. 㪤⪣# ⢬ⓗ⑼㢧ဏ# ␌㐧⤛⑧# ↏ύ╣⭏ᘳའᜏ

3.1 ☧ᰗⱋ↏# ὚# ‿။

۾ࢹݗ৚ڹ॥սҼݒÀق˰͆Fig. 2ٮÏۋъČ ߕقԴՙՁߕͿ, ՙՁߕقԴؚߕͿѺॠóʽɰ. ۋ

˺ۆ॥սҼۍՙՁॢćٮؚՁॢćε֨ॹॣąڍ֨

Âق˰͆۾ࢹۆؚՙՁॢćق޲ۋÀьԦॣսەڷ

϶, Park et al.(2012)قۆॠϸ֨ΒܵҼ঳ॠΘ܁ʪ

ݓǦ঳ۆؚՙՁॢćəҼİۺێ܁ॢÉںٕ҃ɰ. ˰

(5)

䢍㢌G ⽸ⵤ㍌㤸␜ᵉ⓸ᴴG W㢨G ╌⏈G 䚜㍌⽸㢬G 䢄⪸䚐᷸㢌G 㥐㙼 ::

Wdeoh# 61# Phdvxuhg# xqgudlqhg# vkhdu# vwuhqjwk# dw# OO Qr1 Xqgudlqhg# vkhdu#

vwuhqjwk# dw# OO# +nSd, Udqjh# ri# OO Xqgudlqhg# vkdu#

vwuhqjwk# whvwlqj# phwkrg Uhpdunv Uhihuhqfhv

4

31;0419 +E1V# Vwdqgdugv,

740:5 Plqldwxuh# ydqh# vkhdu#

dssdudwxv

Shufxvvlrq# fxs# phwkrg Hiihfw# ri# gliihuhqw# uxeehu#

edvhv# xvhg# rq# wkh#

xqgudlqhg# vwuhqjwk

Qrupdq# +4<8;, 4140516

+DVWP# Vwdqgdugv,

5 31:041:8 630<: Ydqh# vkhdu# whvw Shufxvvlrq# fxs# phwkrg Vnhpswrq# dqg# Qruwkh|# +4<86, 6 416051: 6504<3 Ydqh# vkhdu# whvw Shufxvvlrq# fxs# phwkrg \rxvhi# hw# do1# +4<98,

7 41:051; 69048< Ydqh# vkhdu# whvw Frqh# phwkrg Ihghulfr# +4<;6,

8 Phdq# ydoxh# ri# 41: 5904<3 Ydqh# vkhdu# whvw Shufxvvlrq# fxs# phwkrg Zrrg# +4<;8, 9 41504513 59170;619 Ydqh# vkhdu# whvw Shufxvvlrq# fxs# phwkrg Nd|dedol# dqg# Wxihqnfl# +5343,

Wdeoh# 71# Phdvxuhg# xqgudlqhg# vkhdu# vwuhqjwk# dw# SO

Qr1 Xqgudlqhg# vkhdu# vwuhqjwk# dw# SO# +nSd, Uhihuhqfhv

4 ;80458 Vnhpswrq# dqg# Qruwkh|# +4<86,

5 630653 Ghqqhk|# +4<:;,

6 530553 Duurzvplwk# +4<:;,

7 9;0863 Nd|dedol# dqg# Wxihqnfl# +5343,

8 Phdq# ydoxh# ri# 4:3 Zurwk# dqg# Zrrg# +4<:;,># Ehoylvr# hw# do1# +4<;8,>#

Vkdupd# dqg# Erud# +5336,># Ohh# dqg# Iuhhpdq# +533:,

͆Դٍ҆ĵقԴə۾ࢹقݒΪս, ३ս, ̚əйԦН ڌؚںÁÁۆؚՙՁॢćԜࢗͿঔ०ॢɰڼ֨Βε

ॠΘʴ؋Fig. 3ęÏڹʚ֨ࡀۋࢢق҃ěॠيНۋ

৚ۓۙԐۋͿ߿қ০֟϶˞ʪ΀ॢɰڼ, ࢹѮۍڷͿ

ҼѕսۻɳÌʪεࠑ܁ॠٕɰ. ֨ΒڌşəFig. 3 ؋ق

҃ۋə֬ॹڌۿ֨εԐڌॠٕڷ϶, ۿ֨ۆ߯ʂǴą ڹ10.2cmۋ϶߯ʂȭۋə4.5cmۋɰ. ॢठࢹѮۍۆ

ԐڌѪقۆॠϸ֨Βशϸݔąں5.08cm(2 inches) ۋ ԜڅĵॠČەɰ. ٍ҆ĵقԴəۋۿ֨ق۾ࢹ֨Β ε2/3ۋԜ޽ڗԴ֬ॹॠٕڷдͿ۾ࢹशϸݔąۋڅ ĵॢÉ҃ɰঽ؃ࡾɰ. Table 2ə֨Βİъ঳1ێ঳

ق֬֨ॢࠢ٤νǣۋ࣡, Ѱࢹǣۋ࣡, ࠢ٤νǣۋ࣡

(50%)+Ѱࢹǣۋ࣡(50%)ۆ ؚՙՁॢćε ǣࢍǴČ ە ڷ϶, ÁÁۆ֨ΒقʂॢҼѕսۻɳÌʪÉںҼİॠ Čەɰ.

3.2 㪤⪣# ⢬⑼㢧ဏ# ␌㐧⤛⑧# ↏ύ╣⭏ᘳའᜏ

ؚՁॢćقԴ ҼѕսۻɳÌʪə ࠢ٤νǣۋ࣡À Ѱ ࢹǣۋ࣡ǣࠢ٤νǣۋ࣡(50%)+Ѱࢹǣۋ࣡(50%)قҼ ३ȭóǣࢍǮڷ϶, ՃܛΪۆ֨ΒقՃÀݓۆঔ०ս εঔ०ॠيؚՁॢćقԴҼѕսۻɳÌʪə3.6-9.2kPa ԐۋÉںǣࢍǴؽɰ. ঔ०սق˰δÌʪ޲ۋə̤͸

ॠݓ؍ؕɰ. Table 3ڹşܕٍĵقԴьशʽҼѕս

ۻɳÌʪÉںҼİॠČەɰ. ֬ǴVane֨ॹşεԐڌ

ॢKayabali and Tufenkci(2010)قۆॠϸؚՁॢćԜ

ࢗقԴҼѕսۻɳÌʪə1.2-12.0kPaͿٍ҆ĵĀęʪ

ۋѩڦ؋قەɰ. ॠݓχşܕٍĵقۆॠϸؚՁॢ

ćقԴҼѕսۻɳÌʪۆथŒÉڹ1.7kPaͿ؎Ͳ܋ە ڷ϶, ٍ҆ĵĀęəؚՁॢćε܁ۺۍFall coneѓѪ ۋ؉ɨʴۺۍCasagradeѓѪڷͿĵॠيؚՁॢćÀ

ԜʂۺڷͿ2-20% ܁ʪǰؕڷ϶(Park et al., 2012), ۋ

͢ǰڹ॥սҼͿۍॠيҼѕսۻɳÌʪÀɰՙȭó

ࠑ܁ʽìڷͿࣺɳʽɰ.

3.3 㪤⪣# ⓗ⑼㢧ဏ# ␌㐧⤛⑧# ↏ύ╣⭏ᘳའᜏ

ٍ҆ĵقԴəՙՁॢćقԴҼѕսۻɳÌʪə24-45kPa ԐۋÉںٕ҃ڷǣ, Table 4ٮÏڹşܕٍĵԐͻق

ۆॠϸՙՁॢćقԴҼѕսۻɳÌʪəʂ͜20-530kPa ԐۋÉںÀݓəìڷͿқԵʼؽɰ. ۋٮÏڹ޲ۋə

ۻɳÌʪǣՙՁॢćۆࠑ܁ѓѪ, ৚ۆܛΪ̚ə֨ॹۙ

ق˰δ޲ۋͿࣺɳʽɰ. ॠݓχيٍ͠ĵۙ(Skempton and Northey, 1953; Wroth and Wood, 1978; Sharma and Bora, 2003; Lee and Freeman, 2007)قۆॠϸՙՁॢć قԴҼѕսۻɳÌʪəؚՁॢćقԴۻɳÌʪۆ100

(6)

:; 䚐ạ㫴ⵌḩ䚍䟀⊰ⱬ㬅G G 㥐Y`ỀG 㥐XX䝬

Wdeoh#81#Frpsdulvrq#ri#xqgudlqhg#vkhdu#vwuhqjwk#+Fx,#ri#fod|v Vrlo Pl{lqj# zdwhu Zdwhu# frqwhqw# +(, Fx# +nSd,

Ndrolqlwh

Glvwloohg#

zdwhu#

93 :

:3 715

;3 515

<3 419

433 31;

Vhd# zdwhu#

85 <15

95 719

:5 51;

;5 415

<5 319

Plfureldo#

vroxwlrq#

87 <

97 61;

:7 5

;7 415

<7 31;

Ehqwrqlwh

Glvwloohg#

zdwhu#

4<8 913

548 713

568 515

588 417

5:8 31;

Vhd# zdwhu#

;9 717

<9 51;

439 419

449 413

459 317

Plfureldo#

vroxwlrq#

44< 71;

45< 51;

46< 41;

47< 415

48< 31;

Ndrolqlwh .Ehqwrqlwh

Glvwloohg#

zdwhu#

44; 715

45; 51;

46; 513

47; 417

48; 413

Vhd# zdwhu#

99 :19

:9 617

;9 419

<9 413

439 31;

Plfureldo#

vroxwlrq#

;6 619

<6 41;

436 413

446 319

ѕۍ170kPaͿ؎Ͳ܋ەɰ. ॢठKarlsson(1977)ڹۋ

Ҽ(ratio)À50-100ԐۋÉۋ͆Čܳۤॠٕڷ϶, Wasti and Bezirci(1986), Kayabali and Tufenkci(2010)ۆٍĵĀę قۆॠϸؚՁॢćεCasagrandeѓѪڷͿĵॠɗǽǤ ॠࡓѓѪڷͿĵॠɗǽق˰͆ۋҼ(ratio)À15-295Ϳ

ࢀ ޲ۋε ٕ҃ɰ. ؚՙՁॢćقԴ ҼѕսۻɳÌʪə

࣢܁ॢÉڷͿǣࢍǣş҃ɰə֨ॹۤ࠘ǣѓѪق˰

͆ŔÉۋѺॣӼχ؉ɦ͆৚ۆĵՁġНݗۋǣ۾

ࢹ؋قܕۦॠČەəتۋ٣قۆ३Դʪٖॳںыə

ìڷͿǣࢍǮɰ(Nagaraj et al., 2012). ٍ҆ĵقԴə

Table 2ٮÏۋۻъۺڷͿՙՁॢćقԴҼѕսۻɳÌ ʪÀ ǰ؉ ՙՁॢćٮ ؚՁॢćقԴۆ Ìʪ Ҽ ̚ॢ

4-11 ܁ʪͿԜɾ০ǰڹÉںٕ҃ɰ. ۋìڹؘԴԺ ϼॢцٮÏۋؚՙՁॢćǣҼѕսۻɳÌʪۆ֨ॹ ѓѪںҼ΅ॢي͠څۍق˰δ޲ۋͿࣺɳʽɰ. ॢठ

ঔ०սق˰δؚՙՁॢćԜࢗقԴۆҼѕսۻɳÌʪ

޲ۋəࡾݓ؍ؕɰ.

4. 㪤⪣# 㢳╣↏# ​㦟⤛# ᡻᳃# ↏ύ╣⭏ᘳའᜏ

ؚՁॢćԜࢗۆ۾ࢹق॥սҼεঔ०սٮěćػ ۋ 10%؂ɳćۺڷͿ ݒÀ֨ࢅϸԴ ҼѕսۻɳÌʪ εࠑ܁ॠٕɰ. ॠݓχѰࢹǣۋ࣡əটՁ۾ࢹͿНں

۞ড়սॠəĵܓͿʼرەş˺ЛقѰࢹǣۋ࣡ق

ݒΪսε 20%؂ݒÀ֨ࢅϸԴ ۻɳÌʪε ࠑ܁ॠٕ

ɰ. Table 5ٮFig. 4-6ڹࠢ٤νǣۋ࣡, Ѱࢹǣۋ࣡, Ŕ νČࠢ٤νǣۋ࣡(50%)+Ѱࢹǣۋ࣡(50%)ٮÏڹՃ

ܛΪۆ֨ΒقÁÁݒΪս, ३ս̚əйԦНڌؚں

Զڹɰڼࠑ܁ॢҼѕսۻɳÌʪۆѺজεǣࢍǴČ

ەɰ.

ؚՁॢćۋ঳॥սҼݒÀق˰δ৚ۆҼѕսۻɳ ÌʪۆѺজąॳڹঔ०սф৚ۆܛΪٮěćػۋ

ڮԐॠóǣࢍǮɰ. ݌, ҼѕսۻɳÌʪəؚՁॢćق Դ॥սҼÀݒÀ॥ق˰͆ۻɳÌʪÀśü০Çՙॠ ɰÀێ܁ॢÉڷͿսͶॠəąॳں҃ۋČەɰ. ۋٮ

ÏڹąॳڷͿҙࢢ৔ζ॥սҼ(Flow Water content)ε

Ҽ΅ॠيԞͿڏÒȝęڌرε܃؋ॠٕڷ϶, şܕڌ رٮۆٍěՁقʂ३ԴʪқԵॠٕɰ.

4.1 㪛᳏㢳╣↏(Flow Water content)

৚ۆ॥սҼÀݒÀ॥ق˰͆ۻɳÌʪÀśü০Ç

ՙॠɰÀ࣢܁॥սҼقԴŔÉۋԴԴ০Çՙॠəì ں҇սەɰ. ʂҙқۆąڍقə॥սҼݒÀق˰͆

ҼѕսۻɳÌʪÀݔԸۺڷͿÇՙॠəąॳں҃ۋݓ

(7)

䢍㢌G ⽸ⵤ㍌㤸␜ᵉ⓸ᴴG W㢨G ╌⏈G 䚜㍌⽸㢬G 䢄⪸䚐᷸㢌G 㥐㙼 :<

Ilj1#71#Yduldwlrq#ri#xqgudlqhg#vkhdu#vwuhqjwk#zlwk#zdwhu#frqwhqw#

iru# Ndrolqlwh

Ilj1#81#Yduldwlrq#ri#xqgudlqhg#vkhdu#vwuhqjwk#zlwk#zdwhu#frqwhqw#

iru# Ehqwrqlwh

χ, Sharam and Bora(2003)ۆѰࢹǣۋ࣡قʂॢ֬ॹ ĀęقԴۋٮڮԐॢąॳں҇սەؽɰ. ٍ҆ĵق ԴəۋٮÏۋ৚ۆҼѕսۻɳÌʪÀÀۤśüॠó

ѺজॠəÉقʂڿॠə॥սҼε৔ζ॥սҼ(Flow Water content, FW)Ϳ܁ۆॠٕɰ. ৔ζ॥սҼεĵॠəѓѪ ڹ৚ۆؚՁॢćقԴ॥սҼε۾޲ۺ(ٚ: 5 ɳć)ڷͿ

ݒÀ֨࢈ąڍҼѕսۻɳÌʪÀśü০Çՙॠəĵ Âۍ1޲२҄ĵÂۆٍۤԸ(Fig. 4-6قԴ֬ԸڷͿश

֨)ںŔڹɰڼҼѕսۻɳÌʪÀԴԴ০Çՙॠə2

޲२҄ĵÂۆٍۤԸ(Fig. 4-6قԴ۾ԸڷͿश֨)ę

χǣə۾قʂڿॠə॥սҼε৔ζ॥սҼ͆ॠٕɰ.

ٍ҆ĵقԴə৔ζ॥սҼٮۋق३ɾॠəۻɳÌʪ

(8)

;3 䚐ạ㫴ⵌḩ䚍䟀⊰ⱬ㬅G G 㥐Y`ỀG 㥐XX䝬

Ilj1#91#Yduldwlrq#ri#xqgudlqhg#vkhdu#vwuhqjwk#zlwk#zdwhu#frqwhqw#

iru# Ndrolqlwh.Ehqwrqlwh

εFig. 4-6قÁÁъڷͿ޽ڗݕ۾ڷͿǣࢍǻɰ. ৔ ζ॥սҼԜࢗقԴ৚ۆҼѕսۻɳÌʪə৚ۆܛΪ ٮঔ०սقěćػۋێъۺڷͿ1-2kPa ܁ʪۆ؉ܳ

ǰڹÉںٕ҃ڷ϶, ۋÉڹşܕؚՁॢćقԴҼѕս ۻɳÌʪͿ؎Ͳݕ1.7kPaٮ؉ܳڮԐॠٕɰ.

4.2 㪛᳏㢧ဏ(Flow Limit, FL) ὚# ⭛⑼ⴋ╣(Cohesive Index, CI)

৚ۋؚߕԜࢗͿѺॣąڍقߣşقəأॢ۾Ձڷ ͿۍॢÌʪεÀݓə۾Ձؚߕۆäʴں҃ۋݓχ, ॥ սҼÀ߸ÀͿݒÀʼϸѺ঍قʂॢ۹२ػۋۙڮ΄

ó৔βəҼ۾Ձؚߕäʴں҃ۍɰ. ˰͆Դٍ҆ĵق Դə৚ۆۻɳÌʪÀ0ۋʼϸԴٰۻॢ(Ҽ۾Ձ) ؚߕ ԜࢗͿʼر৔ζں֨ۚॠə॥սҼεFig. 2ٮÏۋ

৔ζॢć(Flow Limit, FL)Ϳ܁ۆॠٕɰ. ॢठ֬ॹں

ࣀॠيۻɳÌʪÀ0ۋʼə॥սҼεݔۿĵॠəì ڹرͷş˺Лق॥սҼݒÀق˰δۻɳÌʪѺজ

čԸقԴ2޲२҄ĵÂںٍۤ֨ࡈҼѕսۻɳÌʪÀ

0ۋʼəݓ۾(X߹ۼठ)ۆ॥սҼεĵॠٕɰ. ٚε˞

ϸ, Fig. 4-6ęÏۋ2޲२҄ĵÂںٍۤ֨ࡈX߹ęχ ǣəݓ۾ۍ՚ۋ޽ڗݕ۾ۆ॥սҼÀ৔ζॢćۋɰ.

Fig. 2قԴ৔ζॢćٮؚՁॢćۆ޲ۋε֩(1)ę

Ïۋ ۾Ձݓս(Cohesive Index, CI)Ϳ ܁ۆॠٕɰ. ݌,

۾Ձݓսə৚ۋؚՁॢćقԴ৔ζॢćūݓʪɵॠş

ڦ३ज़څॢ॥սҼۋɰ.

CI(%) = FL - LL (1)

۾Ձݓսəࠢ٤νǣۋ࣡ۆąڍ 50-60%Ϳঔ०ս قěćػۋێ܁ॢÉںǣࢍǴݓχ, Ѱࢹǣۋ࣡ۆą ڍ47-103%Ϳঔ०սق˰͆2ѕۋԜۆ޲ۋÀьԦॠ

ٕɰ. ࣢০Ѱࢹǣۋ࣡قݒΪսεঔ०ॢąڍ۾Ձݓ սÀ103%ͿÀۤȭؕڷ϶, ۋəѰࢹǣۋ࣡ÀটՁ

۾ࢹͿНں۞ড়սॠəĵܓͿʼرەرԴؚՁॢć قԴ৔ζॢćūݓʪɵॠşڦ३ɰδҼটՁ۾ࢹ҃

ɰНںʌψۋড়սॠş˺Лۋɰ. Ѱࢹǣۋ࣡ق३ս ǣйԦНڌؚںԐڌॢąڍقə۾ՁݓսÀ47%ǣ

60%ͿǣࢍǦìڹ৚՚قەəّқۋǣйԦНۋѰ ࢹǣۋ࣡ۆĵܓǣڮʴইԜقٖॳںй࠘ş˺Лڷ Ϳࣺɳʽɰ(Park et al., 2012). ۋٮÏۋѰࢹǣۋ࣡ə

ঔ०սق˰͆3ࠗڷͿʽĵܓԐۋقەəتۋ٣ۋ

֖óİঞʼرĀ०ͳۋأ३ݓϸԴڮʴ࣢Ձۋࡾó

޲ۋÀǦɰ.

4.3 㪛᳏㢧ဏ⦋# ཌ⯐# ⴋ╣⦋⪣# ␌။။ဏ#

Table 6قə৚ۆܛΪٮঔ०սق˰δؚՁॢć(LL),

(9)

䢍㢌G ⽸ⵤ㍌㤸␜ᵉ⓸ᴴG W㢨G ╌⏈G 䚜㍌⽸㢬G 䢄⪸䚐᷸㢌G 㥐㙼 ;4 Wdeoh# 91# Uhvxowv# ri# Iorz# Olplw# dqg# ydulrxv# lqgh{hv# ri# fod|v

Vrlo Pl{lqj# zdwhu SO

+(,

OO +(,

IZ +(,

IO +(,

FL +(,

SL +(,

Qhz# SL

+(, OO2SO IO2OO

Ndrolqlwh

Glvwloohg# zdwhu# 73 93 :9 444 84 53 :4# 4183 41;8

Vhd# zdwhu# 74 85 9: 435 83 44 94# 415: 41<9

Plfureldo# vroxwlrq# 6; 87 9; 447 93 49 :9# 4175 5144

Ehqwrqlwh

Glvwloohg# zdwhu# <3 4<8 565 5<; 436 438 53;# 514: 4186

Vhd# zdwhu# 94 ;9 435 466 7: 58 :5# 4174 4188

Plfureldo# vroxwlrq# 9< 44< 467 4:< 93 83 443# 41:5 4183

Ndrolqlwh .Ehqwrqlwh

Glvwloohg# zdwhu# 93 44; 467 4;6 98 8; 456# 41<: 4188

Vhd# zdwhu# 7; 99 ;4 479 ;3 4; <;# 416; 5154

Plfureldo# vroxwlrq# 88 ;6 <9 45; 78 5; :6# 4184 4187

Qrwh=# SO# lv# Sodvwlf# Olplw/# OO# lv# Oltxlg# Olplw/# IZ# lv# Iorz# Zdwhu# frqwhqw/# IO# lv# Iorz# Olplw/# FL# lv# Frkhvlyh# Lqgh{/# SL# lv# Sodvwlflw|# Lqgh{/#

Qhz#SL#lv#wkh#gliihuhqfh#ehwzhhq#IO#dqg#SO/#OO2SO#lv#udwlr#ri#Oltxlg#olplw#dqg#Sodvwlf#olplw/#IO2OO#lv#udwlr#ri#Iorz#olplw#dqg#Oltxlg#olplw

Ilj1# :1# Uhodwlrqvkls# ehwzhhq# Oltxlg# Olplw# dqg# Iorz# Olplw

Ilj1# ;1# Uhodwlrqvkls# ehwzhhq# Sodvwlf# Olplw# dqg# Iorz# Olplw

ՙՁॢć(PL), ŔνČՙՁݓս(PI)εǣࢍǴČەڷ϶,

̚ॢٍ҆ĵقԴ܃؋ॢ৔ζ॥սҼ(FW), ৔ζॢć (FL), ۾Ձݓս(CI)εҼ΅ॠيؚՁॢćٮՙՁॢćۆ

Ҽ(LL/PL), ৔ζॢćٮؚՁॢćۆҼ(FL/LL)εҼİॠ Čەɰ.

Fig. 7ęFig. 8ڹÁÁؚՁॢćٮ৔ζॢć, ՙՁॢ

ćٮ৔ζॢćۆԜěěćεҼİқԵॢĀęۋɰ. ؚ Ձॢćٮ৔ζॢćۆĀ܁ćս(R2)ə0.95 ܁ʪͿȭڹ

Ԝěěćεǣࢍǻڷǣ, ՙՁॢćٮ৔ζॢćۆĀ܁ć սə0.86 ܁ʪͿԜʂۺڷͿǰڹÉںٕ҃ɰ. Fig. 9ə

৔ζॢćٮՙՁݓսۆԜěěćεǣࢍǴČەɰ. ş ܕٍĵĀęقۆॠϸؚՁॢćٮՙՁݓսۆĀ܁ć սÀ0.94-0.98 ܁ʪͿǣࢍǮɰ(Park et al., 2012; Yeliz et al., 2008). ٍ҆ĵقԴə৔ζॢćٮՙՁݓսۆĀ

܁ćսÀ0.96ڷͿǣࢍǮڷ϶, ؚՁॢćٮՙՁݓսۆ

Ā܁ćսٮڮԐॠóȭڹԜěěćεٕ҃ɰ. ॠݓχ,

৔ζॢćٮ۾ՁݓսۆԜěěćεǣࢍǴəFig. 10ۆ

Ā܁ćսə0.72 ܁ʪͿ৔ζॢćٮՙՁݓսۆĀ܁ć ս҃ɰԜʂۺǰڹԜěěćεٕ҃ɰ. ۋə۾ࢹۆট Ձʪق˰͆৔ζॢćۆѺজѩڦÀؚՁॢćۆѺজ

ѩڦ҃ɰʌȉş˺ЛڷͿࣺɳʽɰ.

۾ՁݓսٮՙՁݓսεҼİ३҇˺Ѱࢹǣۋ࣡ق

ݒΪսεঔ०ॢąڍقəÁÁ103%ę105%ͿڮԐ ॠóǣࢍǮڷǣ, ʂҙқۆąڍ۾ՁݓսÀՙՁݓս

҃ɰȭؕɰ. ݌, ৚ۋؚՁॢćقԴ৔ζॢćقʪɵॠ şڦ३ԴəՙՁॢćقԴؚՁॢćقʪɵॠşڦ३

ज़څॢঔ०ս҃ɰ1.12ѕقԴ߯ʂ4.55ѕ܁ʪۆঔ० սÀʌज़څॠɰ. Table 6ęÏۋ৔ζॢćٮؚՁॢć ۆҼ(FL/LL)ə1.50-2.21 ܁ʪۋ϶, ؚՁॢćٮՙՁॢ

(10)

;5 䚐ạ㫴ⵌḩ䚍䟀⊰ⱬ㬅G G 㥐Y`ỀG 㥐XX䝬

Ilj1# <1# Uhodwlrqvkls# ehwzhhq# Iorz# Olplw# dqg# Sodvwlflw|# Lqgh{

Ilj1# 431# Uhodwlrqvkls# ehwzhhq# Iorz# Olplw# dqg# Frkhvlyh# Lqgh{

Ilj1#441#Uhodwlrqvkls#ehwzhhq#Sodvwlflw|#Lqgh{#dqg#Qhz#Sodvwlflw|#

Lqgh{

ćۆҼ(LL/PL)ə1.27-2.17 ܁ʪͿԴͿҼ֦ॢąॳں

ٕ҃ɰ. ࠢ٤νǣۋ࣡ۆąڍəFL/LLۋLL/PL҃ɰȭ

ؕڷǣ, Ѱࢹǣۋ࣡ۆąڍəʂҙқLL/PLۋFL/LL҃

ɰ ȭؕɰ. ؚՁॢćقԴ ҼѕսۻɳÌʪε Ҽİॠϸ

Ѱࢹǣۋ࣡Àࠢ٤νǣۋ࣡҃ɰ14-52% ܁ʪǰ؉أ Âۆ॥սҼݒÀقʪѰࢹǣۋ࣡əԜʂۺڷͿ֖ó

৔ζॢćͿʼş˺ЛڷͿࣺɳʽɰ.

4.4 ␓ᮧ⧿#ⓗ⑼ⴋ╣(New Plasticity Index) ὚#⢬⑼ⴋ╣

(New Liquidity Index )⪣# ⭧⢓

ٍ҆ĵقԴԞ΄ó܃؋ॢ৔ζॢćεۋڌॠيԞ

ͿڏՙՁݓսε܃؋ॠٕɰ. ݌ՙՁݓսεćԓॣ˺

ؚՁॢćʂ֪৔ζॢćεԐڌॠي֩(2)ٮÏۋԞ ͿڏՙՁݓս(New Plasticity Index, New PI)εćԓॠ

ٕɰ.

New PI(%) = FL - PL (2)

Table 6قՃܛΪۆ֨ΒقՃÀݓۆঔ०սεۋ ڌॠيĵॢşܕՙՁݓսٮԞͿڏՙՁݓսεҼİ ॠČ ەɰ. ԞͿڏ ՙՁݓսə ࠢ٤νǣۋ࣡ۆ ąڍ

61-76%Ϳঔ०սٮěćػۋڮԐॢÉںǣࢍǴݓχ, Ѱࢹǣۋ࣡ۆąڍ72-208%Ϳঔ०սق˰͆äۆ3ѕ

޲ۋÀьԦॠٕɰ. ࣢০Ѱࢹǣۋ࣡قݒΪսεԐڌ

ॢąڍقəԞͿڏՙՁݓսÀ208%ͿÀۤȭؕڷ϶, şܕՙՁݓսۍ105%قҼ३2ѕÀūۋݒÀॠٕɰ.

ۋəѰࢹǣۋ࣡ÀটՁ۾ࢹͿНں۞ড়սॠəĵܓ ͿʼرەرԴՙՁॢćقԴ৔ζॢćūݓʪɵॠş

ڦ३ɰδҼটՁ۾ࢹ҃ɰНںʌψۋড়սॠş˺Л ۋɰ. Fig. 11ڹşܕՙՁݓսٮԞͿڏՙՁݓսۆԜ ěěćεǣࢍǴČەڷ϶, Ā܁ćսÀ0.93ڷͿȭó

ǣࢍǮɰ. ԞͿڏՙՁݓսۆѺজѩڦÀşܕՙՁݓ ս҃ɰ࠶Դɰتॢ۾ࢹۆԜࢗǣܛΪεܘʌϼঝॠ óĵқॠəʚʪړۋʾìڷͿࣺɳʽɰ.

ٍ҆ĵقԴԞ΄ó܃؋ॢՙՁݓսεۋڌॠيۋ εц࢖ڷͿԞͿڏؚՁݓս(New Liquidity Index, New LI)εɰڼ֩(3)ęÏۋ܃؋ॠٕɰ.

(11)

䢍㢌G ⽸ⵤ㍌㤸␜ᵉ⓸ᴴG W㢨G ╌⏈G 䚜㍌⽸㢬G 䢄⪸䚐᷸㢌G 㥐㙼 ;6

§ƃƕ ¥¢á ć

Ÿ¥à©¥

ƕ à©¥

á ć§ƃƕ ©¢

ƕ à©¥

(3)

يşԴ, wə৚ۆইۤ॥սҼۋɰ. ԞͿڏؚՁݓսÀ

1ۋϸ৚ۆۻɳÌʪÀ0ۋʼϸԴڮʴں֨ۚॠóʽ ɰ. ۋεۋڌॠϸşܕؚՁݓսٮҼѕսۻɳÌʪۆ

Ԝěěćػۋ॥սҼݒÀق˰δۻɳÌʪÇՙͿۍ

ॢࢹԐۆڮʴՁںܘʌÂठॠóࣺɳॣսەɰ.

5. ࿻# ᮫

ٍ҆ĵقԴəؚՁॢćԜࢗۍՃܛΪۆ۾ࢹ(ࠢ٤ νǣۋ࣡, Ѱࢹǣۋ࣡, ࠢ٤νǣۋ࣡(50%)+Ѱࢹǣۋ࣡

(50%))ق॥սҼεɳćۺڷͿݒÀ֨ࢅϸԴࢹѮۍں

ۋڌॠي ৚ۆ ҼѕսۻɳÌʪε ࠑ܁ॠٕɰ. صرݕ

॥սҼфҼѕսۻɳÌʪěćͿҙࢢɰڼęÏڹԞ Ϳڏڌر܃؋ęĀ΁ںصؽɰ.

(1) ৚ۆҼѕսۻɳÌʪÀśüॠóѺজॠəÉقʂ ڿॠə॥սҼε৔ζ॥սҼ(Flow Water content)Ϳ

܁ۆॠٕڷ϶, ۋԜࢗقԴ৚ڹʂߕۺڷͿ1-2kPa

܁ʪۆ؉ܳǰڹҼѕսۻɳÌʪεÀݓəìڷͿ

ǣࢍǮɰ.

(2) ۻɳÌʪÀ 0ۋ ʾ ˺ۆ ॥սҼε ৔ζॢć(Flow Limit)Ϳ܁ۆॠٕڷ϶, ৚ۆܛΪق˰ؚ͆Ձॢć

҃ɰأ1.5-2ѕ܁ʪȭڹ॥սҼεǣࢍǴؽɰ.

(3) ৔ζॢćٮؚՁॢćۆ޲ۋε۾Ձݓս(Cohesive Index)Ϳ܁ۆॠٕڷ϶, ۋÉڹ۾ࢹۆটՁʪق

˰͆45-103% ܁ʪͿǣࢍǮɰ. ʴێॢ৚ۆąڍ

۾ՁݓսəʂҙқۆąڍՙՁݓս҃ɰȭóǣࢍ

Ǯɰ.

(4) ؚՁфՙՁॢćٮ৔ζॢćۆĀ܁ćս(R2)ÀÁ Á0.95ٮ0.86ڷͿԜɾ০ȭڹԜěěćεǣࢍǻ ڷǣ, ৔ζॢćٮ۾ՁݓսۆĀ܁ćսə0.72ͿԜ ʂۺڷͿǰڹԜěěćεǣࢍǴؽɰ.

(5) ԞͿڏՙՁݓսٮşܕՙՁݓսۆĀ܁ćս(R2) ə0.93ڷͿԜɾ০ȭڹԜěՁںٕ҃ɰ. ̚ॢԞ Ϳڏ ՙՁݓսə şܕ ՙՁݓս҃ɰ Ѻজ ѩڦÀ

ȉرɰتॢ৚ۆԜࢗǣܛΪεܘʌ܁ঝॠóĵ қॣìڷͿࣺɳʽɰ.

(6) ԞͿڏՙՁݓսεۋڌॠيĵॢԞͿڏؚՁݓս εۋڌॠϸ॥սҼݒÀق˰δۻɳÌʪՙ֬Ϳ

ۍॢࢹԐۆڮʴيҙεܘʌÂठॠóࣺɳॣս

ەɰ.

ཛ⏷⪣# ᅋ

ۋȦЛڹ2012țʪ܁ҙ(й͒޻ܓęॡҙ)ۆۦڙڷ ͿॢĶٍĵۦɳ-ėė҄ݓ؋ۻٍĵԐغۆݓڙںы؉

սॱʼؽڷ϶(No. 2012M3A2A1050982) ۋقÇԐ˚ς ɦɰ.

⾃ါẃ㤗# (References)

1. Ahn, T. B. (1997), “Effect of Sodium Chloride on Stress - Deformation of Sand Bentonite Mixture”, Journal of the Korean Geotechnical Society, Vol.13, No.2, pp.17-27.

2. Arrowsmith, E. J. (1978), “Roadwork fills - a material engineer’s viewpoint”, In Proceedings of the Clay Fills Conference, Institution of Civil Engineering, London, pp.25-36.

3. Belviso, R., Ciampoil, S., Cotecchia, V., and Federico, A. (1985),

“Use of the cone penetrometer to determine consistency limits”, Ground Engineering, Vol.18, No.5, pp.21-22.

4. Dennehy, J. P. (1978), “The remoulded undrainded shear strength of cohesive soils and its influence on the suitability of embankment fill”, In Proceedings of the Clay Fills Conference, Institution of Civil Engineers, London, pp.87-94.

5. Federico, A. (1983), ‘‘Relationships (Cu-w) and (Cu-s) for remolded clayey soils at high water content”, Riv. Ital. Geological, Vol.14, No.1, pp.38-41.

6. Jeong, S. W. (2011), Influence of physico-chemical characteristics of fine-grainded sediments on their rheological behavior, PhD Thesis, Laval University, Quebec, Canada

7. Jeong, S. W. (2013), “Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils”, Journal of the Korean Geotechnical Society, Vol.29, No.1, pp.23-37.

8. Karlsson, R. (1977), “Consistency limits. In A manual for the performance and interpretation of laboratory investigations, Part 6”, Swedish Council for Building Research, Stockholm, pp.131-136.

9. Kayabali, K. and Tufenkci, O. O. (2010), “Shear strength of remolded soils at consistency limits”, Canadian Geotechnical Journal, Vol.

47, pp.259-266.

10. Lee, L. T. and Freeman, R. B. (2007), “An alternative test omethod for assessing consistency limits”, Geotechnical Testing Journal, Vol.30, No.4, pp.1-8.

11. Nagaraj, H. B., Sridharan, A., and Mallikarjuna, H. M. (2012),

“Re-examination of Undrained Strength at Atterberg Limits Water Contents”, Geotechnical and Geological Engineering, Vol.30, pp.

727-736.

12. Norman, L. E. J. (1958), ‘‘A comparison of values of liquid limit determined with apparatus having bases of different hardness’’

Geotechnique, Vol.8, pp.79-83.

13. Park, N. Y. (1985), “Comparative study of undrained shear strength measurements of a soft clayey soils”, Myongji University, Master’s thesis.

(12)

;7 䚐ạ㫴ⵌḩ䚍䟀⊰ⱬ㬅G G 㥐Y`ỀG 㥐XX䝬

14. Park, S. S., Nong, Z. Z., and Jeong, S. W. (2012), “Effect of Sea water and Microorganism on Liquid and plastic limits of soils”, Journal of the Korean Geotechnical Society, Vol.28, No.10, pp.

79-88.

15. Sharma, B. and Bora, P. K. (2003), “Plastic limit, liquid limit and undrainded shear strength of soil - reappraisal”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.8, pp.774-777.

16. Skempton, A. W. and Northey, R. D. (1953), “Comparison of liquid limit values determined according to Casagrande and Vasilev”, Geotechnique, Vol.3, pp.30-53.

17. Wasti, Y. and Bezirci, M. H. (1986), “Determination of the consistency limits of soils by the fall cone test”, Canadian Geo- technical Journal, Vol.23, No.2, pp.241-246

18. Wood, D. M. (1985), “Index properties and consolidation history’’, Proc., 11th Int. Conf. on Soil Mechanics and Foundation Engineering,

San Francisco, pp.703-706.

19. Wroth, C. P. and Wood, D. M. (1978), “The correlation of index properties with some basic engineering properties of soils”, Canadian Geotechnical Journal, Vol.15, No.2, pp.137-145.

20. Yeliz, Y. A., Abidin, K., and Ali, H. O. (2008), “Seawater effect on consistency limits and compressibility characteristics of clays”, Engineering Geology, Vol.102, pp.54-61.

21. Youssef, M. S., E. L. Ramli, A. H., and E. I. Demery, M. (1965),

‘‘Relationship between shear strength, consolidation, liquid limit and plastic limit for remolded clays’’ Proc., 6th Int. Conf. on Soil Mechanics, Montreal, pp.126-129.

Received : June 18th, 2013 Revised : September 10th, 2013 Accepted : September 12th, 2013

참조

관련 문서

• Bending moments in the thin-walled beams are accompanied by transverse shear force → give rise to shear flow distribution.. - evaluated by introducing the axial flow,

The eigenvalue problem can be used to identify the limit state of the process, in which the state vector x is reproduced under the multiplication by the.. stochastic matrix

 limit the crack growth by increasing # of site of crazing or

The influence of surface conditioning on the shear bond strength of self-adhesive resin cement to zirconia ceramics.. Zirconia as a

Based on Merchant's metal cutting theory, the resistance generated by the material cutting is secured with shear strength and shear strain, and the adhesive force between

The objective of this study is to analyze the shear bond strength of orthodontic buttons according to light tip distance and optic fiber diameter when an extended optic

Most of the plastic strain is localized in narrow shear bands, which form approximately on the planes of maximum resolved shear stress. The inhomogeneous flow in

Also, the quasi-infraversion is larger for the inferior safe insertion limit direction (Fig. In practical design of a screw guiding device, targeted safe angles can