• 검색 결과가 없습니다.

Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme

N/A
N/A
Protected

Academic year: 2022

Share "Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme"

Copied!
15
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme

Jaemin Shin

a

, Hyun Geun Lee

b

, June-Yub Lee

c

,∗

aInstituteofMathematicalSciences,EwhaWomansUniversity,Seoul 03760,RepublicofKorea bDepartmentofMathematics,KwangwoonUniversity,Seoul 01897,RepublicofKorea cDepartmentofMathematics,EwhaWomansUniversity,Seoul 03760,RepublicofKorea

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received3November2016

Receivedinrevisedform30June2017 Accepted3July2017

Availableonline10July2017

Keywords:

Gradientflow Convexsplitting Gradientstability Energystability Phase-fieldmodel Cahn–Hilliardequation

We propose a Convex Splitting Runge–Kutta (CSRK) scheme which provides a simple unifiedframeworktosolveagradientflowinanunconditionallygradientstablemanner.

The key feature of the scheme is a combination of a convex splitting method and a specially designedmulti-stagetwo-additiveRunge–Kuttamethod. Ourmethodsare high orderaccurateintimeand assurethegradient (energy)stability foranytimestepsize.

We providedetailed proof of the unconditional energy stability and present issues on thepracticalimplementations.Wedemonstratetheaccuracyandstabilityoftheproposed methodsusingnumericalexperimentsoftheCahn–Hilliardequation.

©2017ElsevierInc.Allrightsreserved.

1. Introduction

Gradientsystemshavebeenfundamentalinthedevelopmentofmanyimportantconceptsindynamicalsystems[1].In particular, gradientsystemsare importantin manyphenomenologicalmodels ofphasetransitionsuch asthe Allen–Cahn andCahn–Hilliardequations[2,3].Weconcentrateonanumericalmethodforsolvingtheinitialvalueproblem,whichcan berepresentedasthegradientflowforF

: R

N

→ R

,

∂φ

t

= −

grad F

(φ) ,

(1)

wheregrad F

(φ)

isagradient of F ,

φ (

t

) ∈ R

N,andN isthe dimensionofdataspace. It isworth notingthat theenergy function F

(φ)

isnon-increasingintimesince(1)isofgradienttype.

d dtF

(φ) =



grad F

(φ) , ∂φ

t



= − 

grad F

(φ)

2

0

,

(2)

where

·, ·

is an inner product on

R

N withthe corresponding norm

φ

2

= φ, φ

. Here, the gradient operator “grad”

dependson the giveninner product space. Forexample,Allen–Cahn and Cahn–Hilliard equationscan be represented by gradientflowswiththeGinzburg–LandaufreeenergyfunctionalundertheL2 andH1 innerproducts,respectively.

*

Correspondingauthor.

E-mailaddress:jyllee@ewha.ac.kr(J.-Y. Lee).

http://dx.doi.org/10.1016/j.jcp.2017.07.006 0021-9991/©2017ElsevierInc.Allrightsreserved.

(2)

Denoting

φ

n asa numericalapproximationof

φ 

tn



,weaimtodevelop anumericalmethodforonestepevolution to obtain

φ

n+1attn

+ Δ

t.Anumericalintegrationmethodfor(1)issaidtobegradientstable[1,4]ifacriticaltimestepsize

Δ

tc andafunction

F : R

N

→ R

existsuchthat:

F (φ)

0 for all

φ ∈ R

N

,

(3)

F (φ) → ∞

as

φ → ∞,

(4)

F  φ

n+1

 ≤ F  φ

n



for

φ

n

∈ R

N

,

(5)

forall0

< Δ

t

≤ Δ

tc.Weareparticularlyinterestedinunconditionalstabilitywhichmeansthatamethodisstablenomatter whatatimestepistaken.A methodissaidtobeenergystableifitsatisfiestheenergydissipationproperty(5)and

F

may ormaynotbeidenticaltotheoriginalenergyfunction F .

Itisnumericallyveryimportanttousean unconditionallygradient(energy)stablemethodandthishasbeenaserious research objectiveinthefields.Fora convexF , findingan unconditionallygradientstablemethodisrelatively easysince (1) isacontractive problemandthe setofequilibriadefinesaconvexset.However, manyproblemswithanonconvex F canhavemultipleisolatedequilibria[4],anddevelopinganunconditionallygradient(energy)stablemethodisachallenging task.

TosolvethegradientflowwiththenonconvexF ,aconvexsplitting(CS)methodwasdevelopedbyElliottandStuart[5]

and revitalized by the work of Eyre [6]. An energy function F

(φ)

is split into contractive and expansiveparts, F

(φ) =

Fc

(φ)

Fe

(φ)

,whereboth Fc

(φ)

and Fe

(φ)

are convex.Bytreating Fc

(φ)

implicitlyand Fe

(φ)

explicitly,thefirstorder CSmethodisobtainedby

φ

n+1

− φ

n

Δ

t

= −

grad Fc

 φ

n+1

 +

grad Fe

 φ

n



.

(6)

It iswellknownthattheenergyofthenumericalsolutionof(6)monotonicallydecreasesregardlessofthetime stepsize

Δ

t

>

0.Thus,(6)issaidtobeunconditionallygradient(energy)stable.

Ingeneral,manyphasefieldequationscanbemodeledbygradientflowswithaparticularenergyfunctional.Duetothe nonlinearityoftheenergyfunctionalaswellasthehighorderdifferentialterms,aseverestability restrictionexistsonthe timestepwhenapplyingtypicalnumericalmethodstothephasefieldequations.Thefirstorderandunconditionallygradi- entstableCSmethod,proposedforsolvingtheCahn–Hilliardequation [6],hasaffectedmanytypesofnumericalmethods for phase field equations.Semi-implicit methodssuch as theCS methodimprovethe stability,however all semi-implicit methodsdonotguaranteetheunconditionalgradientstabilityasreferredin[7].

While manyresearchers[8–11]haveproposed higherorderaccuratemethods,their methodsdonot guaranteeuncon- ditionalenergystability.Thisisnot areview paperbutwe wouldliketomentionsome ofnoteworthyresearchesrelated tosecondorderenergystablemethods.Recently,anumberofsignificantsecondorderconvexsplittingmethodshavebeen proposed consideringtheenergystability forawideclassofphase fieldmodel,suchasCahn–Hilliard[12,13],phase-field crystal[14–16],modifiedphase-fieldcrystal[17],andepitaxialthinfilmgrowth[18,19]equations.Furthermore,theexten- siveworksshowthatCSisavailabletothephasefieldmodelsforthetumorgrowth[12]andpolymerblend[20].Weshould note thattherehavebeenanotherdirectionofthesecondorderenergystablemethods forvariousphase fieldmodel[21, 22],whichisnotextensionoftheCSidea.

Recently, we proposed a Convex Splitting Runge–Kutta (CSRK) scheme in [23], which combines the convex splitting strategy with theimplicit–explicit (IMEX) Runge–Kutta(RK) method[24,25]. Since IMEX-RK methodshave manychoices for thecoefficientsof theRK tables, we were motivatedto develop ahighorder accurate methodwithsufficient energy stability.Wenumericallydemonstratedtheimprovementoftheenergystabilityforsolvingthephasefieldequationsusing various typesofCSRKmethods.Whilenumericalresultsindicatethenotable improvementoftheenergystability,we did notdisclosethefundamentalreasonswhythestability wasimproved.Nonetheless,thepreviousstudyempiricallysuggests thelikelyexistenceofhighordermethodswiththeunconditionalenergystability.

The objectofthiscurrentpaperistoshow theexistenceofhigherorderunconditionallyenergystableCSRKmethods.

In Section2,we propose atwo-additiveRKmethodcombined witha convexsplittingstrategyanda resemblecondition, referred to asthe CSRK-Rmethod. InSection 3,we provide asufficient condition to ensurethe proposed methodisun- conditionally energystablewithdetailedproof.InSection 4,forthe practicalimplementations,we considerthe IMEX-RK methodswhileguaranteeingtheuniquesolvability.Wealsopresentanumberofnumericalmethodsthatachievethehigher order ofaccuracy intime.InSection 5,weapply theproposed methodstotheCahn–Hilliard equation,whichisa typical gradientflowinthephasefieldmodel.Finally,conclusionsaredrawninSection6.IntheAppendix A,toensurethisarticle isself-contained,webrieflyintroducetheorderconditionsforthetwo-additiveRKmethods.

2. ConvexSplittingRunge–Kuttamethodswitharesemblecondition(CSRK-R)

First,webrieflyreviewatwo-additiveRKmethod.Inmanyapplications,initialvalueproblemscanbegivenasadditively partitionedsystems,

(3)

∂φ

t

=

f

(φ) +

g

(φ)

and

φ (

0

) = φ

0

,

(7)

wheretheright-handsideissplitintotwodifferentpartswithrespecttostiffness,nonlinearity,dynamicalbehavior,evalu- ationcost,etc.Wereferto[25,26]forinformationonthecaseofmorethantwosplittingsystems.Anadditiveschemefor (7)appliestwodifferentRKmethodsforeach f

(φ)

andg

(φ)

.Wedenotetwos-stageRKtablesintheButchernotation

c A

bT

=

0 0 0 0

· · ·

0

c1 a10 a11 a12

· · ·

a1s

c2 a20 a21 a22

· · ·

a2s

.. . .. . .. . .. . . . . .. .

cs as0 as1 as2

· · ·

ass

b0 b1 b2

· · ·

bs

,

c

ˆ

A

ˆ

b

ˆ

T

=

0 0 0 0

· · ·

0

ˆ

c1 a

ˆ

10 a

ˆ

11 a

ˆ

12

· · · ˆ

a1s

ˆ

c2 a

ˆ

20 a

ˆ

21 a

ˆ

22

· · · ˆ

a2s

.. . .. . .. . .. . . . . .. . ˆ

cs a

ˆ

s0 a

ˆ

s1 a

ˆ

s2

· · · ˆ

ass

b

ˆ

0 b

ˆ

1 b

ˆ

2

· · ·

b

ˆ

s

.

(8)

where A

,

A

ˆ ∈ R

(s+1)×(s+1),b

,

b

ˆ ∈ R

s+1, andthecoefficients c and

ˆ

c areusually givenby c

=

A1 and c

ˆ = ˆ

A1,respectively, with1

= (

1

,

1

, . . . ,

1

)

T

∈ R

s+1.

WiththeButchertables(8),thetimemarchingalgorithmcanbewrittenasfollows:Wedenote

φ

n asanapproximation of

φ 

tn



. Witha time stepsize

Δ

t, one step evolutionfromtn to tn+1

=

tn

+ Δ

t ofthe additive RK methodisgiven as follows.Given

φ

n,wewillcalculatethenexttimeapproximation

φ

n+1 withtheintermediatestages,

φ

0

, φ

1

, · · · , φ

s.Weset azero-stageask0

=

f

0

)

andk

ˆ

0

=

g

0

)

,where

φ

0

= φ

n.Foreachstagei

=

1

,

2

, . . . ,

s,wecalculate

φ

i

= φ

0

+ Δ

t

s

j=0 ai jkj

+

s

j=0

ˆ

ai jk

ˆ

j

⎠ ,

(9)

whereki

=

f

i

)

andk

ˆ

i

=

g

i

)

.Here,

φ

i istheapproximation of

φ 

tn

+

ci

Δ

t



onthei-thstage.Inaddition,weevaluate thenexttimeapproximation

φ

n+1 as

φ

n+1

= φ

0

+ Δ

t

s

j=0



bjkj

+ ˆ

bjk

ˆ

j



.

(10)

IntheAppendix A,wedescribetheorderconditionsofthetwo-additiveRKmethoduptothirdorderaccuracy.

WenowintroduceanewclassofCSRKmethodwiththeadditionaldesigncriterioncalledtheresemblecondition, which playsakeyroleinthedevelopmentofenergystablemethods.Westartbyconsideringtwoconditionsasfollows.

Condition1(Resemblecondition).FortheButchernotationsin(8),A andA are

ˆ

saidtobesatisfyingtheresembleconditionifA

ˆ =

AS, whereSi j

= δ

i,j+1isashiftmatrixand

δ

i jistheKroneckerdeltasymbol.

Condition2(Stifflyaccuratecondition).FortheButchernotationsin(8),A,b andA,

ˆ

b are

ˆ

saidtobesatisfyingthestifflyaccurate conditionifbj

=

asjandb

ˆ

j

= ˆ

asjforj

=

0

,

1

, . . . ,

s.

Tobesatisfiedthecondition1,A andA should

ˆ

beconstructedas A

=

0 0T 0 R

 ,

A

ˆ =

0T 0 R 0



,

(11)

wherewedenoteasaresemblebasematrixR,

R

=

⎜ ⎝

r11

· · ·

r1s

.. . . . . .. .

rs1

· · ·

rss

⎠ .

(12)

Therefore, the condition 1 automatically impliesthat the (canopy node)condition c

= ˆ

c. In addition, the condition 2 is motivatedbecause it isknown that an A-stable RK methodis L-stable ifbj

=

asj [27].With theconditions 1 and 2,we considerthes-stageresembleRKtableonlywitharesemblebasematrixR

(4)

c A bT

=

0 0 0 0

· · ·

0

c1 0 r11 r12

· · ·

r1s

c2 0 r21 r22

· · ·

r2s

.. . .. . .. . .. . . . . .. .

cs 0 rs1 rs2

· · ·

rss

0 rs1 rs2

· · ·

rss

,

c

ˆ

A

ˆ

b

ˆ

T

=

0 0 0 0

· · ·

0

c1 r11 r12 r13

· · ·

0 c2 r21 r22 r23

· · ·

0

.. . .. . .. . .. . . . . .. .

cs rs1 rs2

· · ·

rss 0 rs1 rs2

· · ·

rss 0

.

(13)

Using the conditions 1 and 2, we can describe the resemble RK method (13) only using a resemble base matrix R.

Furthermore,bycondition2,thetimeevaluation(10)isreducedto

φ

n+1

= φ

s.

We nowproposethe s-stageCSRKmethodswiththeresemble condition(CSRK-R). First,werecalltheconvexsplitting (CS)method(6)for

∂φ

t

= −

grad

(

Fc

(φ)

Fe

(φ))

(14)

canbewrittenas

φ

1

= φ

0

− Δ

t grad

(

Fc

1

)

Fe

0

)) ,

(15)

where

φ

0

= φ

nand

φ

1

= φ

n+1.Wecanrepresent(15)astheframeworkoftheresembleRKmethodwithatrivialresemble basematrixR

= (

1

)

bydefining f

(φ) = −

grad Fc

(φ)

andg

(φ) =

grad Fe

(φ)

.

We now define the p-thorder s-stageCSRK-R

(

p

)

methods by combiningthe CS scheme andthe p-th order accurate resemble RKmethod(13).Letusconsidera generalresemblebasematrixR with s-stages.Toevaluate onetimestep,we set

φ

0

= φ

nandestimate

φ

i

= φ

0

− Δ

t

s

j=1

ri jgrad



Fc

 φ

j

 −

Fe

 φ

j1



,

(16)

fori

=

1

,

2

, . . . ,

s andwehave

φ

n+1

= φ

s.

3. UnconditionalenergystabilityrequirementofCSRK-R

WegiveasinglelemmabeforewepresentaconditiontomaketheproposedCSRK-Rscheme(16)unconditionallyenergy stable.

Lemma1.Supposethat

φ

and

ψ

aresufficientlyregularandF

(φ)

istwotimescontinuouslydifferentiable.Considerthecanonical convexsplittingofF

(φ)

intoF

(φ) =

Fc

(φ)

Fe

(φ)

;i.e.bothFc

(φ)

andFe

(φ)

areconvex,then

F

(φ)

F

(ψ ) ≤ 

gradFc

(φ)

grad Fe

(ψ ) , φ − ψ .

(17)

Proof. The analogousproof could befoundin [14],howeverwe introduceitforaself-containeddescription.Since Fc

(φ)

and Fe

(φ)

areconvex,

Fc

(φ)

Fc

(ψ ) ≤ 

grad Fc

(φ) , φ − ψ ,

(18)

Fe

(φ)

Fe

(ψ ) ≥ 

grad Fe

(ψ ) , φ − ψ .

(19)

Usingtwoinequalities,

F

(φ)

F

(ψ ) = (

Fc

(φ)

Fe

(φ)) − (

Fc

(ψ )

Fe

(ψ ))

≤ 

grad Fc

(φ) , φ − ψ − 

grad Fe

(ψ ) , φ − ψ

= 

grad Fc

(φ)

grad Fe

(ψ ) , φ − ψ . 2

(20)

Condition3(Positivedefinitecondition).TheCSRK-Rmethoddefinedin(16)issaidtobesatisfyingthepositivedefiniteconditionif arowdifferencematrix



R ispositivedefiniteafterasymmetrictransformation,where



R

=

R

SR isdefinedasfollowswithashift matrixSi j

= δ

i,j+1,



R

=

⎜ ⎜

⎜ ⎝

˜

r11 r

˜

12

· · · ˜

r1s

˜

r21 r

˜

22

· · · ˜

r2s

.. . .. . . . . .. .

˜

rs1 r

˜

s2

· · · ˜

rss

⎟ ⎟

⎟ ⎠ =

⎜ ⎜

⎜ ⎝

r11 r12

· · ·

r1s

r21 r22

· · ·

r2s

.. . .. . . . . .. .

rs1 rs2

· · ·

rss

⎟ ⎟

⎟ ⎠ −

⎜ ⎜

⎜ ⎝

0 0

· · ·

0

r11 r12

· · ·

r1s

.. . .. . . . . .. .

rs1,1 rs1,2

· · ·

rs1,s

⎟ ⎟

⎟ ⎠ .

(21)

(5)

Theorem2(Unconditionalenergystability).Supposethattherowdifferencematrix



R ispositivedefinite.TheproposedCSRK-Rscheme (16)isthenunconditionallyenergystable,meaningthatforanytimestepsize

Δ

t

>

0,

F

 φ

n+1

 ≤

F

 φ

n



.

(22)

Proof. For simple description, we define the difference operator by

JφK

nm

= φ

n

− φ

m and the auxiliary variable by Gj

=

Fc

 φ

j

 −

Fe

 φ

j1



.Then,wecanrewrite(16)as

JφK

i0

= −Δ

t

s

j=1

ri jgrad Gj

,

(23)

fori

=

1

,

2

, . . . ,

s.Thedifferencebetweenthetwoadjacentstagescanbecalculatedas

JφK

ii1

= JφK

i0

− JφK

i01

= −Δ

t

s

j=1

˜

ri jgrad Gj

,

(24)

foralli.ByLemma 1,theenergydifferencebetweentwoadjacentstagesis

J

F

(φ)K

ii1

≤ 

grad Fc

i

)

grad Fe

i1

) ,JφK

ii1



= 

grad Gi

, JφK

ii1



.

(25)

Aftersummingup,wehave

J

F

(φ) K

s0

=

s

i=1

J

F

(φ) K

ii1

s

i=1



grad Gi

, JφK

ii1

 = −Δ

t



grad G

,

R grad G



s

,

(26)

where grad G

= (

grad G1

, · · · ,

grad Gs

)

T and we define an s-dimensional inner product as

φ, ψ

s

=

s

i=1

i

, ψ

i



for φ

=

1

, · · · , φ

s

)

T and ψ

= (ψ

1

, · · · , ψ

s

)

T. Since



R is positive definite,

J

F

(φ)K

s0

0. It follows that the energy dissipation F



φ

n+1



=

F

s

)

F

0

) =

F

 φ

n



.

2

Finally,wecoulddesignanenergystablemethodfortheCSRK-Rmethodsusingonlythepositivedefinitenesscondition of



R.ThethreesufficientconditionsplayanimportantroleintheCSRKmethodinbeingunconditionallyenergystable.Note thatthisdevelopmentprovidesthepossibilityofexistingconditionsordesignstoguaranteetheenergystability.

4. ImplementationsofunconditionallyenergystableCSRK-Rmethod

Asimple choice forCSRK-R is toconsider the type ofimplicit–explicit Runge–Kutta(IMEX-RK) method whichapplies animplicitdiscretizationtoone termandan explicitdiscretizationtotheotherterm.Amethodwithafullmatrixin(13) requiresthe solutionof s simultaneousimplicit (ingeneral nonlinear) equationsper step.Tocircumvent thisdifficulty,a lowertriangularmatrixcouldbe suggested.Thenwe justneedtosolvea singleimplicitequationforeachstage,whichis motivatedby “diagonallyimplicit”RK method[28].Thismeans that,in CSRK-R,we selectalower triangulartype forthe resemblebasematrix

R

=

⎜ ⎜

⎜ ⎝

r11 0

· · ·

0

r21 r22

· · ·

0

.. . .. . . . . .. .

rs1 rs2

· · ·

rss

⎟ ⎟

⎟ ⎠ .

(27)

Withtheresemblebasematrix(27),theresembleRKmethod(13)isthenreducedasfollows:

c A

bT

=

0 0 0 0

· · ·

0

c1 0 r11 0

· · ·

0

c2 0 r21 r22

· · ·

0

.. . .. . .. . .. . . . . .. .

cs 0 rs1 rs2

· · ·

rss

0 rs1 rs2

· · ·

rss

, ˆ

c A

ˆ

b

ˆ

T

=

0 0 0 0

· · ·

0

c1 r11 0 0

· · ·

0

c2 r21 r22 0

· · ·

0

.. . .. . .. . .. . . . . .. .

cs rs1 rs2

· · ·

rss 0 rs1 rs2

· · ·

rss 0

.

(28)

As(16)comesfrom(13),wecanderivethefollowingschemefrom(28).First,wesetazero-stageask0

= −

grad Fc

0

)

andk

ˆ

0

=

grad Fe

0

)

,where

φ

0

= φ

n.Foreachstagei

=

1

,

2

, . . . ,

s,wecalculate

(6)

Table 1

Orderconditionsoftwo-additiveRKmethodsuptothethirdorder accuracy.

Order Stand-alone conditions Coupling conditions

1 b·1=1 bˆ·1=1

2 b·c=1/2 bˆ·c=1/2

3 b·c2=1/3 bˆ·c2=1/3 b· ˆAc+ ˆb·Ac=1/3 b·Ac=1/6 bˆ· ˆAc=1/6

φ

i

= φ

0

+ Δ

t

i

j=1

ri jkj

+

i1

j=0

ri,j+1k

ˆ

j

⎠ ,

(29)

whereki

= −

grad Fc

i

)

andk

ˆ

i

=

grad Fe

i

)

.Finally,weevaluatethenexttimeapproximationas

φ

n+1

= φ

s.

Theorem3(Uniquesolvability).TheproposedCSRK-Rscheme(29)isuniquelysolvableforanytimestepsize

Δ

t

>

0,providedthat rii

0 foralli.

Proof. Foreachstagei

=

1

,

2

, · · · ,

s of(29),weneedtosolve

φ

i

+

rii

Δ

t grad Fc

i

) =

Si

,

(30)

where

Si

= φ

0

− Δ

t

i1

j=1

ri jgrad Fc

 φ

j

 −

i1

j=0

ri,j+1grad Fe

 φ

j

 ⎞

⎠ .

(31)

Since Fc isconvex,thefunction Q

(φ) =

1

2

φ

2

+

rii

Δ

t Fc

(φ) − φ,

Si



(32)

hasauniqueminimizationforanytime stepsize

Δ

t

>

0.Attheuniqueminimizerforeachstage,grad Q

(φ) =

0 and(30) hasauniquesolution

φ

i.Therefore,theproposedscheme(29)isuniquelysolvableforanytimestepsize

Δ

t

>

0.

2

Remark1.Thes-stageCSRK-Rdefinedin(29)requiresthes inversionspersteplike(30),whileoneinversionisneededto solvesomeofexistingsecondorderconvexsplittingmethods.

WenowintroducesomeexamplesfortheresemblebasematrixR sothat



R ispositivedefinite.Ofcourse,A andA made

ˆ

fromagivenresemblebasematrixR shouldsatisfytheorderconditions.Wehavec andc by

ˆ

theusualrelationsc

=

A1 and

ˆ

c

= ˆ

A1,respectively.Bycondition 2,wereconstructb andb from

ˆ

A andA,

ˆ

respectively.Condition1automaticallyimplies thatc

= ˆ

c,anditreducesthemassiveorderconditionslistedintheAppendix A(Table 2);thereducedconditionsarelisted inTable 1.Obviously,theconditions1 and2implythatthetwo orderconditionsb

·

1

=

1 andb

ˆ ·

1

=

1 areidentical.We have 1 condition forthe first orderaccuracy, 3 conditionsforthe second order accuracy, and8 conditions forthe third orderaccuracy.

Inaddition,forconvenientdesignofthetables,we considerasinglydiagonalmatrix,i.e.rii

= γ

,fori

=

1

,

2

, . . . ,

s.For thefirstorderaccuracy,aresemblebasematrixR is

R

= 

1



.

(33)

Itiseasytoshowthat(33)constructsawell-knownCSmethod.Forthesecondorderaccuracy,CSRK-R(2),apossiblechoice ofresemblebasematrixR is

R

=

⎜ ⎝

2

3 0 0

127 23 0

13 23 23

⎠ .

(34)

The positive definiteness of



R iseasily shown by evaluating theall eigenvalues of



R

+

RT



/

2 are positive.For (34), the eigenvaluesof



R

+

RT



/

2 are0

.

0293,0

.

6667,and1

.

3040.Forthethirdorderaccuracy,apossiblechoiceofresemblebase matrixR is

(7)

R

=

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎜

⎜ ⎝

1

2 0 0 0 0 0

1 2

1

2 0 0 0 0

101 101 12 0 0 0

a41 a42 a43 1

2 0 0

a51 a52 a53 201 12 0 a61 a62 a63 a64 a65 12

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎟

⎟ ⎠

,

(35)

where

a41

=

1325205150981620

,

a42

= −

100507933407852960

,

a43

=

1929095381570592

,

a51

=

5098162000401851541

,

a52

= −

63727025020327867

,

a53

= −

1019632400200790581

,

a61

=

143003217

,

a62

= −

7150703

,

a63

= −

429006359

,

a64

= −

107254556

,

a65

=

406429

.

For(35),theeigenvaluesof



R

+

RT



/

2 are0

.

0063,0

.

1105,0

.

3582,0

.

5722,0

.

9225,and1

.

0303.Therefore,wecansaythat ourmethodsmadeby (34)and(35)satisfy thecondition 3anditiseasy tocheck thatthecoefficientsinduced bythose matricessatisfytheorderconditionsinTable 1.

Remark2.The examples(34) and(35) showthat thedesiredmethods doindeedexist,which aretheIMEX-RK methods withsome special conditions.Forinterested readers onthe construction oftables, we note that no 2-stage resemble RK method exists for the second order accuracy. Furthermore, the finding of the resemble RK methods for the third order accuracywithlessthan6stagesisopen.

Remark3.Weonlyconsideruptothethirdorder,becausetheobjectofthispaperistoshowtheexistenceoftheuncon- ditionallygradientstablemethodswiththesufficienthighorderaccuracyintime.Findinghigherordermethodsappearsto berathertediousandcouldbesomewhatdifficultwithoutsometypeofsimplifyingassumptions.

5. NumericalexampleswithCahn–Hilliardequation

Inthissection,we applythe proposedCSRK-R methodtotheCahn–Hilliard(CH) equationtonumericallydemonstrate thatthe methodachieveshighorderaccuracyandenergystability.Becauseofthehighderivative termandthenonlinear term, whichintroduce asevere time steprestriction forstability,theCH equation isa goodexample todemonstratethe applicabilityoftheproposedmethods.Tothebestofourknowledge,nothirdordermethodguaranteeingtheunconditional gradientstabilityhasbeenproposedtodate.

Fortheorderparameter

φ

,theGinzburg–Landaufreeenergyfunctionalisgivenby

E (φ) =





(φ) +

2

2

|∇φ|

2



dx

,

(36)

where



is adomain in

R

d

(

d

=

1

,

2

,

3

)

,

(φ)

isabulk free energywithtwo minimacorresponding tothetwo phases, and

>

0 isaparameterrelatedtotheinterfacialthickness.Forsimplicity,weconsiderthepolynomialfreeenergy

(φ) =

1 4

 φ

2

1



2

.Wenotethattheenergyfunctional(3)satisfiestheconditions(3)and(4),sothatcombiningwiththeCSRK-R methodguaranteeingenergystability(5)providesagradientstablemethod.

We considerthe Hilbertspace H0 asa zeroaverage space. Forgiven v1

,

v2

H0, wedefine the inner productofthe dualspaceby

(

v1

,

v2

)

H−1

= 

ϕ

v1

,ϕ

v2



L2,where

ϕ

v1

, ϕ

v2

H0arethesolutionsofthehomogeneousNeumannboundary valueproblems

ϕ

v1

=

v1and

ϕ

v2

=

v2 in



.Fromtheabovedefinition,if

ψ

H0,thenwehavetheidentity

(− φ, ψ)

H1

= (φ, ψ)

L2

.

(37)

TheCHequationisderivedbythegradientflowwiththeGinzburg–Landaufreeenergyfunctional(36)undertheH1inner product

∂φ

t

= −

gradH1

E (φ) = 

(φ)

2

φ



,

(38)

where



gradH1

E (φ) ,

v



H1

=

d

d

θ E + θ

v

) 



θ=

0

= 

(φ)

2

φ,

v



L2

= 



(φ)

2

φ

 ,

v



H1

.

(39)

(8)

Toobtaintheenergystablemethod,Eyre[29]developedthefirstordernonlinearCSmethodfortheCHequationas

φ

n+1

− φ

n

t

= 

φ

n+1



3

2

φ

n+1

− φ

n



.

(40)

Inthismethod,

E(φ)

issplitintoacontractivepartandanexpansivepart:

E(φ) = E

c

(φ)E

e

(φ)

where

E

c

(φ) =





1 4

φ

4

+

1

4

+

2

2

|∇φ|

2



dx

, E

e

(φ) =



 1

2

φ

2dx

.

(41)

And

E

c

(φ)

istreatedimplicitly,whereas

E

e

(φ)

istreatedexplicitly.Itiseasytoshowthatboth

E

c

(φ)

and

E

e

(φ)

areconvex.

Now, we can constructthe numerical method using the splitting(41) and s-stage CSRK-R(p) method (29) in Section 4.

Giventhe resemblebasematrixR with s-stagesanddesiredorderofaccuracy,we evaluateone timestepasfollows:we set

φ

0

= φ

nandevaluate

φ

i

− φ

0

Δ

t

=

i

j=1

ri j



φ

j



3

2

φ

j

− φ

j1



,

(42)

fori

=

1

,

2

, . . . ,

s andwehave

φ

n+1

= φ

s.Tosolvethei-thstageevaluation(42),weuseanonlineariterativemethodwith aNewton-typelinearizationof

i

)

3.Wereferto[16,30]fordetailsofthenonlineariterativesolver.

Remark4. As we introduce in (38), the CH equation is one of gradient flows under the H1 inner product. Intuitively, thegradientin H1 canbe consideredasgradH−1

= −

δφδ ,where δφδ isthefunctionalderivative. Therefore,theuncondi- tionalenergystabilityanduniquesolvabilityof(42)areguaranteedbyTheorem 2 and 3withtheresemble basematrices introducedinSection4.

Remark5. We apply anonlinear convexsplitting(41)to constructa CSRK-Rmethod,so that thenonlinear systems(42) are obtained. However, itisjustan exampletoshow theapplicability ofCSRK-R methods.We canmake alinearCSRK-R methodbyconsideringthelinearconvexsplittingfor(36).Wereferto[23]forinterestedreaders.

We nowpresentexamples tonumericallydemonstratethe accuracyandstability oftheproposed method,CSRK-R

(

p

)

, correspondingtothefirstordermethod(33),secondordermethod(34),andthirdordermethod(35).

5.1. Solutionevolutionwithrandominitialdatain1D

We beginby showingthe solutionevolution oftheCH equation withthe zeroNeumannboundary condition andthe randomlyperturbedinitialcondition

φ (

x

,

0

) =

0

.

01

·

rand

(

x

)

(43)

onadomain

 = [

0

,

1

]

,wheretherandomnumberrand

(

x

)

isuniformlydistributedbetween

1 and 1.Forthenumerical simulations,

=

0

.

02 is used and the grid size is fixed at

x

=

1

/

128 which provides sufficient spatial accuracy. The numerical solutionisevolvedtotime Tf

=

0

.

08.Weremarkthat spectralmethods areused forspatialderivatives inthe numericalcomputations.SimulationsareexecutedbyusingtheMATLABprogramwithafastFouriertransform.

Fig. 1 showsthe time evolutionofthe solutionwitha sufficientlysmalltime step

Δ

t

=

Tf

/

217 usingthethird order methodCSRK-R(3).Attheearlystage,solutionsarerearrangedandadjustedtofindtheirdesiredmodewithlowmagnitude.

Afterfinishingtheadjustment,thesolutionmaturesandapproachesthesteady-statesolution.Thesesolutionswillbeused asthereferencesolutiontoestimatetheconvergencerateinSection5.2.

Fig. 2 showsthe time evolution offree energy functional

E (φ)

corresponding tothe solution in Fig. 1. The property of theenergydissipation isvalidatedandenergytransitionsareobserved.The evolutionwill beused asthe referenceto comparewiththeenergyevolutioninSection5.3.

5.2. Numericalconvergencetestwithrandominitialdatain1D

We demonstratethe numericalconvergence usingthe sameconditions andparameters asthoseused inthe previous section. Toestimate theconvergenceratewithrespectto atime step

Δ

t, simulationsare performedbyvarying thetime steps

Δ

t

=

Tf

/

215

,

Tf

/

214

, . . . ,

Tf

/

23.

Fig. 3showstherelativel2-errorsof

φ (

x

,

t

)

withvarioustimesteps.Here,theerrorsarecomputedbycomparisonwith thereferencesolution.ItisobservedthattheCSRK-R(p)methodsgivethedesiredp-thorderaccuracyintime.

(9)

Fig. 1. Time evolution of solution for the CH equation in 1D.

Fig. 2. Energy evolution for the CH equation in 1D.

5.3. Energystabilityperformancewithrandominitialdatain1D

We display the energy evolutions with the same conditions and parameters as those used in the previous section.

Simulationsareperformedbyrelativelylargetimesteps

Δ

t

=

Tf

/

27

,

Tf

/

25

,

Tf

/

23.

Fig. 4showstheenergyevolutionwithlargetimestepsandtheenergydissipationsareobservedforallsimulations.

5.4. Solutionevolutionwithrandominitialdatain2D

Next,wedisplaythesolutionevolutionoftheCHequationwiththezeroNeumannboundaryconditionandtherandomly perturbedinitialcondition

φ (

x

,

y

,

0

) =

0

.

001

·

rand

(

x

,

y

)

(44)

ona domain

 = [

0

,

1

] × [

0

,

1

]

.Forthenumericalsimulations,

=

0

.

02 isusedandthe gridsize isfixedat

x

=

y

=

1

/

512.ThenumericalsolutionisevolvedtotimeTf

=

0

.

08.

(10)

Fig. 3. Relative l2-errors for various time steps t in 1D.

Fig. 4. Energy evolution for the CH equation in 1D.

(11)

Fig. 5. TimeevolutionofsolutionfortheCHequationin2D.(Forinterpretationofthereferencestocolorinthisfigure,thereaderisreferredtotheweb versionofthisarticle.)

Fig. 6. Energy evolution for the CH equation in 2D.

Fig. 5 showsthetime evolution ofthesolution withasufficiently smalltime step

Δ

t

=

Tf

/

217 usingthe third order methodCSRK-R(3). Ineach figure,thered, green,andblueregions indicate

φ =

1,0,

1,respectively. Atthe earlystage, solutionsare rearrangedandadjustedtofindtheir desiredmode withlow magnitude.Afterfinishingtheadjustment,the solutionmatures andmerges. Thesesolutions willbe used asthereferencesolution toestimate the convergenceratein Section5.6.

Fig. 6shows thetime evolutionof free energyfunctional

E (φ)

corresponding to the solutionin Fig. 5.The property oftheenergydissipation isvalidatedandenergytransitionsare observed.The evolutionwillbe usedasthereferenceto comparewiththeenergyevolutioninSection5.6.

5.5. Numericalconvergencetestwithrandominitialdatain2D

We demonstratethe numericalconvergenceusing thesame conditionsandparameters asthose usedin theprevious section. Toestimatethe convergenceratewithrespect toa timestep

Δ

t,simulations areperformedby varying thetime steps

Δ

t

=

Tf

/

215

,

Tf

/

214

, . . . ,

Tf

/

23.

Fig. 7 showstherelative l2-errors of

φ (

x

,

y

,

t

)

withvarious time steps.Here, the errorsare computedby comparison withthereferencesolution.ItisobservedthattheCSRK-R(p)methodsgivethedesired p-thorderaccuracyintime.

5.6. Energystabilityperformancewithrandominitialdatain2D

We display the energy evolutions with the same conditions and parameters as those used in the previous section.

Simulationsareperformedbyrelativelylargetimesteps

Δ

t

=

Tf

/

27

,

Tf

/

25

,

Tf

/

23.

Fig. 8showstheenergyevolutionwithlargetimestepsandtheenergydissipationsareobservedforallsimulations.

5.7. Long-timeevolutionwithrandominitialdatain2D

We display the long-time evolution usingthe same conditions andparameters asthose used in theprevious section except Tf

=

16 and

Δ

t

=

212.Here,we justprovide aresolved computation forthe long-timeevolution withrelatively

(12)

Fig. 7. Relative l2-errors for various time steps t in 2D.

Fig. 8. Energy evolution for the CH equation in 2D.

(13)

Fig. 9. TimeevolutionofsolutionfortheCHequationin2D.(Forinterpretationofthereferencestocolorinthisfigure,thereaderisreferredtotheweb versionofthisarticle.)

Fig. 10. Energy evolution for the CH equation in 2D.

smallertimestepsizeandtheinterestedreaderscanconsideranalgorithmsuchasanadaptivetimesteppingprocedureto chooseabiggertimestepsize.

Fig. 9showsthe timeevolutionofthesolutionusingthethirdordermethodCSRK-R(3).Ineachfigure,thered, green, and blue regions indicate

φ =

1, 0,

1, respectively. The coarsening is observed for long time and the solution finally approachesthesteadystate.

Fig. 10showsthetimeevolutionoffreeenergyfunctional

E (φ)

correspondingtothesolutioninFig. 9.

6. Conclusions

Weproposedunconditionallygradientstablemethodstosolveagradientflowwhichisafundamentalconceptinvarious dynamical systems.Themainfeature oftheschemeisa combinationofthe convexsplitting methodandthe multi-stage two-additiveRunge–Kuttamethod withtheresemble design.The proposed methods arehighorder accuratein time and assureunconditionalgradientstability.Inpracticalterms,weprovidedsomeexamplesofimplicit–explicitRunge–Kuttatype methods,whicharenotonlyunconditionallygradientstablebutalsouniquelysolvable.Applyingtheproposedmethodsto theCahn–Hilliardequation, wepresentednumericalexperimentstoshow highorderaccuracy andunconditionalgradient stability.Wedemonstratedtheexistenceofthethirdorderandenergystablemethodbypresentingthespecificexamples.In future,weneedtostudywhatareoptimalchoicesamongtheproposedmethodsandcomparewiththeexistingnumerical methodsintermsofnumericalconvergenceerror.

Acknowledgements

Thisresearch was supported by the BasicScience ResearchProgramthrough the NationalResearchFoundation ofKo- rea (NRF), funded by the Korean Government MOE (2009-0093827) and MSIP (2015-003037, 2017R1D1A1B0-3032422, 2017R1D1A1B0-3034619).

Appendix A. Orderconditionsfortwo-additiveRunge–Kuttamethod

Althoughcouldreferto[23,25,26,31]forinformationonthederivationandlistoftheorderconditions,inthisappendix, webrieflyintroducetheorderconditionsofatwo-additiveRunge–Kuttamethodtoprovidedefinitenotationsandinforma- tion.Thetwo-additivelypartitionedsystem

∂φ

t

=

f

(φ) +

g

(φ)

and

φ (

0

) = φ

0

,

(45)

참조

관련 문서

Unlike the CH equation, designing an unconditionally energy stable scheme for multi- component systems requires not only the convex splitting idea but also a specific method

To understand the convergence behaviors of the new scheme for the choice of G-propagators, the first order Backward Euler (BE) methods, second order Trapezoidal Rule (TR) and

The purpose of this paper is to characterize higher order operator splitting schemes and pro- pose several higher order methods to solve the AC equation with a Fourier

Stiffly accurate Runge–Kutta methods are high order accurate in terms of time and also assure the energy stability for any time step size when they satisfy the

In this paper, we present operator splitting methods for solving the phase field crystal equation which is a model for the microstructural evolution of two-phase systems on

The first- and second-order methods are shown analytically to be unconditionally stable with respect to the energy and pseudoenergy of the MPFC equation,

In this paper, we presented the first, second, and some special cases of the third-order Convex Splitting Runge–Kutta (CSRK) methods for solving phase-field models such

Keywords Conservative Allen–Cahn equation · Convex splitting · Mass conservation · Unconditional unique solvability · Unconditional energy stability · High-order