• 검색 결과가 없습니다.

제3장: 결정질 고체의 구조

N/A
N/A
Protected

Academic year: 2022

Share "제3장: 결정질 고체의 구조 "

Copied!
49
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

ISSUES TO ADDRESS...

• How do atoms assemble into solid structures?

• How does the density of a material depend on its structure?

• When do material properties vary with the sample (i.e., part) orientation?

제3장: 결정질 고체의 구조

(2)

학습목표...

원자/분자 구조에서 결정질과 비결정질 재료의 차이점 분석

면심입방격자, 체심입방격자, 육방조밀격자의 제도

면심입방격자와 체심입방격자 구조에서 단위정 모서리 길이와 원자 반지름 사이의 관계식 유도

주어진 단위정 차원에서 면심입방격자와 체심입방격자 구조를 갖는 금속의 밀도 계산

세 방향 지수가 주어질 때, 단위정 내에 이 지수와 일치하는 방향 제도

단위정 내에 그려진 면의 Miller 지수 표기

원자의 조밀 충진면으 적층에 의해 면심입방격자와 육방조밀격자가 생기는 과정을 설명

단결정과 다결정 재료의 구분

재료 성질에서 등방성과 이방성의 차이

(3)

• 치밀않음, 불규칙배열(random packing)

• 치밀, 규칙배열(ordered packing)

치밀하고 규칙적인 배열의 구조는 낮은 에너지상태를 갖는

Energy and Packing

Energy

r typical neighbor bond length

typical neighbor bond energy

Energy

r typical neighbor bond length typical neighbor

bond energy

(4)

• 장범위 규칙적 원자배열, 3차원적 패턴 결정질 재료(Crystalline materials...)

-모든 금속

-대부분의 세라믹 -일부의 폴리머

• 장범위 원자의 규칙성 없음

비결정질 재료(Noncrystalline materials...)

-복잡한 구조

-급냉(rapid cooling)

crystalline SiO2

noncrystalline SiO2

“Amorphous" = Noncrystalline

Adapted from Fig. 3.23(b), Callister & Rethwisch 8e.

Adapted from Fig. 3.23(a), Callister & Rethwisch 8e.

Materials and Packing

Si Oxygen

• 예:

• 예:

(5)

금속의 결정 구조

• How can we stack metal atoms to minimize empty space?

2-dimensions

vs.

(6)

• 조밀한 원자 충진

• 이유:

- 일반적으로 오직 한 성분만이 존재, 같은 크기의 원자 - 금속결합: 방향성 무

- 작은 최인접 원자간 거리: 낮은 결합에너지

- 개개의 전자 구름은 중심부를 보호하고 있음(Electron cloud shields cores from each other)

• 가장 간단한 결정구조

We will examine three such structures...

금속의 결정 구조

(7)

• 낮은 충진밀도: 흔하지 않음 (only Polonium(Po) has this structure)

• 입방정의 모서리: 조밀방향 (Close-packed directions)

• 배위수(Coordination #) = 6

[최인접원자수(# nearest neighbors)]

단순입방정 (Simple Cubic Structure (SC))

(Courtesy P.M. Anderson)

(8)

• 단순입방정의 APF = 0.52

APF =

a 3 4

3 p (0.5a) 3 1

atoms unit cell

atom volume

unit cell volume

원자충진율 (Atomic Packing Factor (APF))

APF = Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

Adapted from Fig. 3.24,

close-packed directions

a

R=0.5a

contains 8 x 1/8 = 1 atom/unit cell

(9)

• 배위수(Coordination #) = 8

Adapted from Fig. 3.2, Callister & Rethwisch 8e.

• 체심과 모서리 원자는 입방의 대각선상에 서로 접촉

--Note: 모든 원자는 동일; 중심부의 다른 색깔의 원자는 쉽게 구별하기 위함

체심입방정 [Body Centered Cubic Structure (BCC)]

ex: Cr, W, Fe (), Tantalum, Molybdenum

(10)

원자충진율 (Atomic Packing Factor: BCC)

a

APF =

4

3 p ( 3 a/4 ) 3 2

atoms

unit cell atom

volume

a 3 volume

length = 4R =

Close-packed directions:

3 a

• APF for a body-centered cubic structure = 0.68

R a

Adapted from

Fig. 3.2(a), Callister &

Rethwisch 8e.

a 2 a

3

(11)

Coordination # = 12

Adapted from Fig. 3.1, Callister & Rethwisch 8e.

• 원자는 입방의 모서리와 면의 중심에 위치

--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

면심입방정

[Face Centered Cubic Structure (FCC)]

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

(12)

• APF for a face-centered cubic structure = 0.74

원자충진율 (Atomic Packing Factor: FCC)

최대의 APF

APF =

4

3 p ( 2 a/4 ) 3 4

atoms

unit cell atom

volume

a 3

unit cell volume Close-packed directions:

length = 4R = 2 a Unit cell contains:

6 x1/2 + 8 x1/8 = 4 atoms/unit cell a

2 a

Adapted from Fig. 3.1(a), Callister &

Rethwisch 8e.

(13)

A sites

B B B B B

B B

C sites

C C A C

B B sites

• ABCABC... Stacking Sequence

• 2D Projection

• FCC Unit Cell

FCC 적층 배열

B B B B B

B B B sites

C C A C

C C A C

A B C

(14)

• Coordination # = 12

• ABAB... Stacking Sequence

• APF = 0.74

• 3D Projection • 2D Projection

Adapted from Fig. 3.3(a), Callister & Rethwisch 8e.

조밀육방정

[Hexagonal Close-Packed Structure (HCP)]

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

• c/a = 1.633

c

a

A sites

B sites

A sites Bottom layer

Middle layer Top layer

(15)

이론밀도(Theoretical Density, r)

where n = number of atoms/unit cell A = atomic weight

VC = Volume of unit cell = a3 for cubic NA = Avogadro’s number

= 6.022 x 1023 atoms/mol Density = r =

VCNA r = n A

Cell

Unit

of Volume Total

Cell

Unit

in Atoms of

Mass

(16)

• Ex: Cr (BCC)

A = 52.00 g/mol R = 0.125 nm

n = 2 atoms/unit cell

rtheoretical

a = 4R/ 3 = 0.2887 nm

ractual R a

r

=

a3

52.00 2

atoms unit cell

mol g

unit cell

volume atoms

mol 6.022x1023

Theoretical Density, r

= 7.18 g/cm3

= 7.19 g/cm3

Adapted from

Fig. 3.2(a), Callister &

Rethwisch 8e.

VCNA r = n A

(17)

재료의 밀도

r metals > r ceramics > r polymers 왜?

r(g/cm )3

Graphite/

Ceramics/

Semicond Metals/

Alloys

Composites/

fibers Polymers

1 2 2 0 30

B ased on data in Table B1, Callister

*GFRE, CFRE, & AFRE are Glass, Carbon, & Aramid Fiber-Reinforced Epoxy composites (values based on 60% volume fraction of aligned fibers

in an epoxy matrix).

10

3 4 5

0.5

Magnesium Aluminum Steels

Titanium Cu,Ni Tin, Zinc Silver, Mo Tantalum Gold, W Platinum

G raphite Silicon Glass - soda Concrete Si nitride Diamond Al oxide Zirconia

H DPE, PS PP, LDPE PC

PTFE

PET PVC Silicone

Wood AFRE * CFRE * GFRE*

Glass fibers

Carbon fibers A ramid fibers

금속

(Metals have...)

• 조밀충진(close-packing) (metallic bonding)

• 대부분 큰 원자질량

Ceramics have...

• less dense packing • often lighter elements

Polymers have...

• low packing density (often amorphous)

• lighter elements (C,H,O)

Composites have...

일반적으로

(18)

• Some engineering applications require single crystals:

• Properties of crystalline materials often related to crystal structure.

(Courtesy P.M. Anderson)

-- Ex: Quartz fractures more easily along some crystal planes than others.

-- diamond single

crystals for abrasives

-- turbine blades

Fig. 8.33(c), Callister &

Rethwisch 8e. (Fig. 8.33(c) courtesy of Pratt and Whitney).

(Courtesy Martin Deakins, GE Superabrasives,

Worthington, OH. Used with permission.)

Crystals as Building Blocks

(19)

• Most engineering materials are polycrystals.

<Nb-Hf-W plate with an electron beam weld>

• Each "grain" is a single crystal.

• If grains are randomly oriented,

overall component properties are not directional.

Adapted from Fig. K, color inset pages of Callister 5e.

(Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

1 mm

Polycrystals

등방성(Isotropic) 이방성(Anisotropic)

(20)

• Single Crystals

-Properties vary with direction: anisotropic.

-Example: the modulus

of elasticity (E) in BCC iron:

Data from Table 3.3, Callister & Rethwisch 8e. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

• Polycrystals

-Properties may/may not vary with direction.

-If grains are randomly oriented: isotropic.

(Epoly iron = 210 GPa)

-If grains are textured, anisotropic.

200 mm Adapted from Fig.

4.14(b), Callister &

Rethwisch 8e.

(Fig. 4.14(b) is courtesy of L.C. Smith and C.

Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and

Technology,

Gaithersburg, MD].)

단결정(Single) vs 다결정(Polycrystals)

E (diagonal) = 273 GPa

E (edge) = 125 GPa

(21)

동질이상(Polymorphism)

• 하나 이상의 결정구조를 갖는 재료[Two or more distinct crystal structures for the same material (allotropy/polymorphism)]

titanium , -Ti

carbon

diamond, graphite

BCC FCC BCC

1538ºC 1394ºC

912ºC

-Fe

-Fe

-Fe liquid

iron system

(22)

Fig. 3.4, Callister & Rethwisch 8e.

결정계(Crystal Systems)

7 crystal systems

14 crystal lattices

단위정(Unit cell):

결정의 완벽한 격자 형태를

포함하는 가장 작은 반복 체적(smallest repetitive volume which contains the complete lattice pattern of a crystal)

a, b, and c are the lattice constants

(23)

입방

육방

정방

삼방

사방

단사

(24)

점 좌표(Point Coordinates)

단위정 중심에 대한 점 좌표(Point

coordinates for unit cell center are) a/2, b/2, c/2 ½ ½ ½

단위정 꼭지점에 대한 점 좌표(Point coordinates for unit cell corner are) 111

평행이동(Translation): 격자상수를

곱하여 정수로 표시(integer multiple of lattice constants)  결정격자 내에서는 동일한 위치(identical position in another unit cell)

z

x

y

a b

c

000

111

y z

2c

b b

(25)

결정 방향(Crystallographic Directions)

1. 적절한 크기의 벡터를 좌표축의 중심을 지나도록 한다.

2. 벡터가 각 축에 투영되는 길이를 결정하여 단위정의 크기인 a, b, c로 나타낸다.

3. 최소의 정수로 표기한다.

4. 콤마로 분리하지 않고, 모난 괄호 안에 표시한다.

[uvw]

ex:

1, 0, ½ => 2, 0, 1 => [ 201 ]

-1, 1, 1

z

x

방법(Algorithm)

위의 바(overbar)는 음의 지수(음의 좌표)를 나타냄 [111]

=>

y

(26)

ex: linear density of Al in [110]

direction

a = 0.405 nm

선밀도(Linear Density)

• Linear Density of Atoms  LD =

a

[110]

Unit length of direction vector Number of atoms

# atoms

length

3.5 nm 1

a 2

LD = 2 = -

Adapted from Fig. 3.1(a), Callister &

Rethwisch 8e.

(27)

육방 결정의 방향

(HCP Crystallographic Directions)

1. Vector repositioned (if necessary) to pass through origin.

2. Read off projections in terms of unit cell dimensions a1, a2, a3, or c

3. Adjust to smallest integer values

4. Enclose in square brackets, no commas [uvtw]

[1120] ex: ½ , ½ , -1, 0 =>

Adapted from Fig. 3.8(a), Callister & Rethwisch 8e.

dashed red lines indicate

a2

a3

-a3 2

a 2

2 a 1 a3 -

a1 a2

z

방법

(28)

HCP Crystallographic Directions

• Hexagonal Crystals

– 4개의 축 Miller-Bravais 좌표계에서 방향은 다음과 같은 관계를 갖는다(i.e., u'v'w').

=

=

=

' w w

t v u

) v u

( + -

) ' u ' v 2 3 (

1 - ) ' v ' u 2 3 (

1 -

=

] uvtw [

] ' w ' v ' u

[ 

Fig. 3.8(a), Callister & Rethwisch 8e.

a3 -

a1 a2

z

(29)

결정면(Crystallographic Planes)

(30)

결정면(Crystallographic Planes)

• 밀리지수(Miller Indices): 면과 만나는

3좌표축의 역수, 최소의 정수값. 모든 평행한 면은 동일한 밀러지수(reciprocals of the

(three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel

planes have same Miller indices.)

• Algorithm

1. Read off intercepts of plane with axes in terms of a, b, c

2. Take reciprocals of intercepts

3. Reduce to smallest integer values 4. Enclose in parentheses, no

commas i.e., (hkl)

(31)

결정면(Crystallographic Planes)

z

x

y

a b

c

4. Miller Indices (110)

example a b c z

y

a b

c

4. Miller Indices (100)

1. Intercepts 1 1  2. Reciprocals 1/1 1/1 1/

1 1 0 3. Reduction 1 1 0

1. Intercepts 1/2   2. Reciprocals 1/½ 1/ 1/

2 0 0 3. Reduction 2 0 0 example a b c

(32)

결정면(Crystallographic Planes)

z

x

y

a b

c

4. Miller Indices (634) example

1. Intercepts 1/2 1 3/4 a b c

2. Reciprocals 1/½ 1/1 1/¾ 2 1 4/3 3. Reduction 6 3 4

(001) (010),

Family of Planes {hkl}

(100), (010), (001),

Ex: {100} = (100),

(33)

결정면[Crystallographic Planes (HCP)]

• In hexagonal unit cells the same idea is used

example a1 a2 a3 c

4. Miller-Bravais Indices (1011)

1. Intercepts 1  -1 1 2. Reciprocals 1 1/

1 0

-1 -1

1 1 3. Reduction 1 0 -1 1

a2

a3

a1 z

Adapted from Fig. 3.8(b), Callister & Rethwisch 8e.

(34)

결정면(Crystallographic Planes)

• 결정면의 원자충진

• 철 포일도 촉매제로 사용이 가능. 노출면의 원자충진이 중요.

a) Fe의 (100)과 (111) 결정 면을 그리시오.

b) 각각의 결정 면에 대한 면밀도를 계산하시오.

(35)

Virtual Materials Science & Engineering (VMSE)

• VMSE is a tool to visualize materials science topics such as crystallography and polymer structures in three dimensions

(36)

VMSE: Metallic Crystal Structures &

Crystallography Module

• VMSE allows you to view crystal structures, directions, planes, etc. and manipulate them in three dimensions

(37)

Unit Cells for Metals

• VMSE allows you to view the unit cells and manipulate them in three dimensions

• Below are examples of actual VMSE screen shots

(38)

VMSE: Crystallographic Planes Exercises

Additional practice on indexing crystallographic planes

(39)

면밀도(Planar Density) of (100) Iron

Solution: At T < 912ºC iron has the BCC structure.

(100)

Radius of iron R = 0.1241 nm

3 R 3 a = 4

Adapted from Fig. 3.2(c), Callister & Rethwisch 8e.

2D repeat unit

=

Planar Density =

a 2 1 atoms

2D repeat unit

=

nm

2

atoms 12.1

m

2

atoms

= 1.2 x 10

19

1

3 2

area 4

(40)

Planar Density of (111) Iron

Solution (cont): (111) plane 1 atom in plane/ unit surface cell

3

3 3 2

2

3 R R 16

3 4 a 2

3 ah

2

area =

=

=

=

atoms in plane

atoms above plane atoms below plane

a h 2

= 3

a 2

1

= =

nm

2

atoms

7.0 m

2

atoms 0.70 x 10

19

3 2 3 R

16

Planar Density =

atoms

2D repeat unit area

2D repeat unit

(41)

VMSE Planar Atomic Arrangements

• VMSE allows you to view planar arrangements and rotate them in 3 dimensions

BCC (110) Plane

http://bcs.wiley.com/he-bcs/Books?action=mininav&bcsId=5242&itemId=0470419970&assetId=199053&resourceId=19134

(42)

X-선 회절(X-Ray Diffraction)

• Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.

• Can’t resolve spacings  

• Spacing is the distance between parallel planes of atoms.

(43)

X-Rays to Determine Crystal Structure

X-ray intensity (from detector)

q d = n

2 sin q c

Measurement of

critical angle, q

c

,

allows computation of planar spacing, d.

• 결정면에 대한 입사 X-선의

회절

(Incoming X-rays diffract from crystal planes).

Adapted from Fig. 3.20, Callister & Rethwisch 8e.

reflections must be in phase for a detectable signal

spacing between planes d

q 

q

extra distance travelled by wave “2”

(44)

회절의 조건;

여기서 면간 거리,

Bragg의 법칙

(45)
(46)

X-Ray Diffraction Pattern

Adapted from Fig. 3.22, Callister 8e.

(110)

(200)

(211)

z

x

a b y c

Diffraction angle 2q

Diffraction pattern for polycrystalline -iron (BCC)

Intensity (relative)

z

x

a b y c

z

x

a b y c

(47)

SUMMARY

• Atoms may assemble into crystalline or amorphous structures.

• We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal

geometry (e.g., FCC, BCC, HCP).

• Common metallic crystal structures are FCC, BCC, and HCP . Coordination number and atomic packing factor

are the same for both FCC and HCP crystal structures.

• Crystallographic points, directions and planes are specified in terms of indexing schemes.

Crystallographic directions and planes are related

to atomic linear densities and planar densities.

(48)

• Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).

SUMMARY

• Materials can be single crystals or polycrystalline.

Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.

• X-ray diffraction is used for crystal structure and

interplanar spacing determinations.

(49)

Core Problems:

Self-help Problems:

ANNOUNCEMENTS

Reading:

참조

관련 문서