• 검색 결과가 없습니다.

process and cycle Thermodynamic

N/A
N/A
Protected

Academic year: 2022

Share "process and cycle Thermodynamic"

Copied!
26
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

SNU NAOE Youngsub Lim

Thermodynamic

process and cycle

(2)

SNU NAOE Youngsub Lim

Efficiency

• 𝑾 ሶ 𝒔 from energy balance is isentropic work.

• Real turbine or pump(compressor) is not reversible(isentropic)

• Use the efficiency

2

ሶ𝑊𝑠

𝟎 = ሶ 𝑸 + 𝑾 ሶ

𝒔

− ሶ 𝒎∆𝒉

𝑚

ሶ𝑄 ≈ 0

ሶ𝑊𝑠 ሶ𝑄 ≈ 0

𝑚

ሶ 𝑊

𝑠

= ሶ 𝑚∆ℎ 𝑤 = ∆ℎ

ሶ 𝑊

𝑠

= ሶ 𝑚∆ℎ 𝑤 = ∆ℎ 𝜂

𝑡𝑢𝑟𝑏𝑖𝑛𝑒

=

ሶ 𝑊

𝑠,𝑟𝑒𝑎𝑙

ሶ 𝑊

𝑠,𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐

𝜂

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟

=

ሶ 𝑊

𝑠,𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐

ሶ 𝑊

𝑠,𝑟𝑒𝑎𝑙

(3)

SNU NAOE Youngsub Lim

Example 2.5

3

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 1 bar

Enthalpy (kJ/kg) Steam

table

Hysys

Stream 1 -12550.1

Stream 2 -13249.5

Δh(=w) -699.4

𝑊𝑠(MW) -6.98 -6.99

Saturated vapor

3373.6 2675.5 -698.1

ሶ𝑊𝑠 = −6981 kW = −7.0MW

ሶ𝑊𝑠 = 𝑤 ⋅ ሶ𝑚

Adiabatic

Can you

calculate work?

Adiabatic

(4)

SNU NAOE Youngsub Lim

Degree of freedom

• The number of variables which can vary freely in given condition.

– A variable increase DOF by 1, and an independent relation(equation) decrease DOF by 1

– DOF=number of variables –number of equations

4

A system defined with

2 variables and 1 equation:

𝑥 + 𝑦 = 1 DOF=2-1=1

One variable is still free.

(We need to specify one more variable; If we decide x, y is decided. If we decide y, x is decided)

We call this system

“underdetermined.”

No unique solution.

A system defined with

2 variables and 3 equation:

𝑥 + 𝑦 = 1 2𝑥 + 𝑦 = 2 𝑥 + 2𝑦 = 4 DOF=2-3=-1

We call this system

“overdetermined” or

“inconsistent”

No feasible solution.

Or no consistency

If you want to specify all variables (unique

solution), you must make the DOF=0 in your system!

(5)

SNU NAOE Youngsub Lim

Underdetermined (DOF>0)

5

Variables (8)

Any two intensive property in stream 1 Any two intensive property in stream 2 Extensive property: ሶ𝑚𝟏, ሶ𝑚𝟐

ሶ𝑄, ሶ𝑊𝑠 Equations (7)

Stream condition(intensive):

𝑃1 = 10 bar, 𝑇1 = 500℃,

𝑃2 = 1 bar

Stream condition(extensive):

𝑚1 = 10kg/s Mass balance

𝑚𝟏 = ሶ𝑚𝟐 Energy balance

𝟎 = ሶ𝑸 + 𝑾ሶ𝒔 − ሶ𝒎𝟏𝒉𝟏 − ሶ𝒎𝟐𝒉𝟐 Process condition (adiabatic)

ሶ𝑸 = 𝟎 DOF=8-7=1

State Postulate:

If you specify any two intensive properties of a stream, you can

decide all other intensive properties.

underdetermined.

You must have one more relationship(equation) to specify this system.

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚1 = 10kg/s ሶ𝑊𝑠

𝑃2 = 1 bar ሶ𝑄

Adiabatic

(6)

SNU NAOE Youngsub Lim

Overdetermined (DOF<0)

6

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚1 = 10kg/s ሶ𝑊𝑠

𝑃2 = 1 bar Saturated vapor ሶ𝑄

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Variables (8)

Any two intensive property in stream 1 Any two intensive property in stream 2

𝑚𝟏, ሶ𝑚𝟐, ሶ𝑄, ሶ𝑊𝑠 Equations (9)

Stream condition(intensive):

𝑃1 = 10 bar 𝑇1 = 500℃

𝑃2 = 1 bar 𝑠1 = 𝑠2

Stream 2=saturated vapor Stream condition(extensive):

𝑚1 = 10kg/s Mass balance

𝑚𝟏 = ሶ𝑚𝟐 Energy balance

𝟎 = ሶ𝑸 + 𝑾ሶ𝒔 − ሶ𝒎𝟏𝒉𝟏 − ሶ𝒎𝟐𝒉𝟐 Process condition (adiabatic)

ሶ𝑸 = 𝟎 DOF=8-9=-1

(7)

SNU NAOE Youngsub Lim

Ph diagram

7

(8)

SNU NAOE Youngsub Lim

examples

8

ሶ𝑊𝑠

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 1 bar

Enthalpy (kJ/kg) Entropy (kJ/kgK) T (C) Steam

table

Steam table

Steam table

Stream 1 500

Stream 2 Δh(=w)

P=1bar T h s

Steam Table 150 2776.4 7.6133 200 2875.3 7.8342 Interpolation 183.6804 2843.02 7.7621

ሶ𝑊𝑠

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 2 bar

Δh=?

T2=?

h (kJ/kg) Stream 1 -12446.4 Stream 2 -12925.4

Δh(=w) -479

-479

264℃

T2=?183℃

3478.4 7.7621

7.7621

2843.0 183.7

-635.4

w=Δh=?-637

(9)

SNU NAOE Youngsub Lim

Ts diagram

9

(10)

SNU NAOE Youngsub Lim

hs diagram

10

(11)

SNU NAOE

Youngsub Lim 11

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 1 bar 𝑇2 = 183℃

Δℎ = −636.7kJ/kg 𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 2 bar 𝑇2 = 264℃

Δℎ = −479 kJ/kg

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 =?

𝑇2 = Δℎ =?

3.8 bar

-308 kJ/kg

300℃

𝑖𝑠𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 𝑇2 =?

1 bar 495.4℃

(12)

SNU NAOE

Youngsub Lim 12

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 1 bar 𝑇2 = 183℃

Δℎ = −636.7kJ/kg 𝜂 = 50%

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 𝑇2 =?

Δℎ =?

1 bar

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 1 bar 𝑇2 = 300℃

Δℎ =?

𝜂 =?63.4%

𝜂 =?

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 𝑇2 = Δℎ =?

1 bar 120℃

120%

Impossible!

(wrong design) -318.3

342.3℃

-403.9

-762.0

(13)

SNU NAOE

Youngsub Lim 13

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 1 bar 𝑇2 = 183℃

Δℎ = −636.7kJ/kg

𝜂 = 50%

Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 𝑇2 =?

Δℎ =?

1 bar

-318.3

342.3℃

𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 Steam

𝑃1 = 10 bar 𝑇1 = 500℃

𝑚 = 10kg/s

𝑃2 = 1 bar 𝑇2 = 183℃

Δℎ = −636.7kJ/kg

𝑃2 = 1 bar 𝑇2 =

−318.3kJ/kg

−318.3kJ/kg

𝜂 = 50%

342.3℃

(14)

SNU NAOE

Youngsub Lim 14

Ws=1000 kW

P1=100bar T1=500°C

s1=118.9 J/molK

P2=10bar T2=182.8°C s2=118.9

P1=100bar T1=500°C

s1=118.9 J/molK

P2=10bar T2=285.1°C s2=127.4 400

600

1000

P1=100bar T1=500°C

s1=118.9 J/molK

P1=100bar T1=500°C

s1=118.9 J/molK

η=60%

Δh=1000kW Δh=600

Δh=1000

P2=10bar T2=231.8°C s2=123.4 200

600

1000

Q=200η=60%

Δh=800

Q=400

600

P2=10bar T2=182.8°C s2=118.9 1000

η=60%

(15)

SNU NAOE Youngsub Lim

Polytropic efficiency

• Polytropic Process

• Polytropic exponent

• Polytropic efficiency

15

(16)

SNU NAOE Youngsub Lim

Thermodynamic cycle

– A set of processes through which a system returns to the same initial state

• Carnot Cycle

– Proposed by NLS Carnot in 1824

– Reversible cyclic process with Ideal gas – Maximum efficiency of a heat engine

16

http://en.wikipedia.org/wiki/Carnot_cycle

(17)

SNU NAOE Youngsub Lim

A: state 12 Isothermal Expansion

17

𝑞

𝐻

1

2

𝑞

𝐻

𝑤

12

= 𝑅𝑇 ln 𝑣

1

𝑣

2

= 𝑅𝑇 ln 𝑃

2

𝑃

1

Pr essu re P

Volume V

http://www.physics.louisville.edu/cldavis/phys298/notes/carnot_thcycle.html

𝑇

𝐻

𝑇

𝐶

𝑤12

(𝑤12 < 0)

(18)

SNU NAOE Youngsub Lim

B: state 23 Adiabatic Expansion

18

3 2

Pr essu re P

Volume V

𝑇

𝐻

𝑇

𝐶

𝑃

2

𝑃

1

𝑤23 = 1

𝑘 − 1 𝑃2𝑣2 − 𝑃1𝑣1

= 𝑅

𝑘 − 1 𝑇2 − 𝑇1

𝑃𝑣𝑘 = 𝛼(constant), 𝑘 = 𝑐𝑝/𝑐𝑣

𝑤

23

(𝑤23 < 0)

𝑤

23

(19)

SNU NAOE Youngsub Lim

C: state 34 Isothermal Compression

19

3 4

Pr essu re P

Volume V 𝑤

34

𝑞

𝐶

𝑇

𝐻

𝑇

𝐶

𝑤

34

𝑤

34

= 𝑅𝑇 ln 𝑣

1

𝑣

2

= 𝑅𝑇 ln 𝑃

2

𝑃

1

𝑞

𝐶

(𝑤34 > 0)

(20)

SNU NAOE Youngsub Lim

D: state 41 Adiabatic Compression

20

4 1

Pr essu re P

Volume V 𝑤

41

𝑃

4

𝑃

1

𝑤

41

𝑤41 = 1

𝑘 − 1 𝑃2𝑣2 − 𝑃1𝑣1

= 𝑅

𝑘 − 1 𝑇2 − 𝑇1

𝑃𝑣𝑘 = 𝛼(constant), 𝑘 = 𝑐𝑝/𝑐𝑣

(𝑤41 > 0)

(21)

SNU NAOE Youngsub Lim

Internal Energy in Carnot cycle

21

3 2

Pr essu re P

Volume V

4

1 ∆𝑢 𝑐𝑦𝑐𝑙𝑒 = ∆𝑢 1→2→3→4→1

= 𝑢 1 − 𝑢 1 = 0

= 𝑞 𝑛𝑒𝑡 + 𝑤 𝑛𝑒𝑡

(22)

SNU NAOE Youngsub Lim

Total Net Q in Carnot cycle

22

3 2

Pr essu re P

Volume V

4 1

∆𝑢

𝑐𝑦𝑐𝑙𝑒

= 0 = 𝑞

𝑛𝑒𝑡

+ 𝑤

𝑛𝑒𝑡

𝑞 𝑛𝑒𝑡 = 𝑞 𝐻 + 𝑞 𝐶

𝑞

𝐻

𝑞

𝐶

𝑞 𝑛𝑒𝑡 = 𝑞 𝐻 + 𝑞 𝐶 = 𝑞 𝐻 + 𝑞 𝐶

(23)

SNU NAOE Youngsub Lim

Total Net W in Carnot cycle

23

3 2

Pr essu re P

Volume V

4 1

𝑤

𝑛𝑒𝑡

= 𝑤

12

+ 𝑤

23

− 𝑤

34

− 𝑤

41

𝑤

12

𝑤

23

𝑤

34

𝑤

41

𝒘 𝒏𝒆𝒕

∆𝑢

𝑐𝑦𝑐𝑙𝑒

= 0 = 𝑞

𝑛𝑒𝑡

+ 𝑤

𝑛𝑒𝑡

𝑞

𝑛𝑒𝑡

= 𝑞

𝐻

+ 𝑞

𝐶

𝑤𝑛𝑒𝑡 = 𝑤12 + 𝑤23 + 𝑤34 + 𝑤41

(24)

SNU NAOE Youngsub Lim

Efficiency of a heat engine

http://www.physics.louisville.edu/cldavis/phys298/notes/carnot_thcycle.html 24

http://en.wikipedia.org/wiki/Carnot_cycle

Heat Engine

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝜂 ≡ 𝑊 𝑄 𝐻

𝑊 = −𝑊 = 𝑄 = 𝑄

𝐻

− 𝑄

𝐶

𝜂 = 1 − 𝑄

𝐶

𝑄

𝐻

The first Carnot theorem: all

reversible engines operating

between the same two baths has the same e ciency

𝜂 = 1 − 𝑇

𝐶

𝑇

𝐻

(25)

SNU NAOE Youngsub Lim

Heat Engine Example(Power Plant)

25

𝑄

𝐻

𝑄

𝐶

𝑊

𝑊

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝜂 ≡ 𝑊

𝑄

𝐻

(26)

SNU NAOE Youngsub Lim

𝑊

Refrigerator Example

26

𝑄

𝐶

𝑄

𝐻

𝑄

𝐻

𝑄

𝐶

𝑊 𝑇

𝐻

𝑇

𝐶

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 COP = 𝑄 𝐶

𝑊

참조

관련 문서

– If the test is corrupted by noise, the frequency response may be modified significantly by noise. – The disturbance affects both the gain and phase over

– Requires a converter from resistance to electrical signal – Higher price than

Given a feasible solution λ 0 to the original dual problem, set up the associated restricted primal problem. Optimize the

substance, system, state, property, process, work, heat, matter transfer, energy, entropy... The

In order to simulate a thermo-mechanical behavior in the vicinity of the deposited region by a LENS process, a finite element (FE) model with a moving heat flux is developed

The process of budget reviews and resolutions at the National Assembly is a process of confrontation between politics and rationality(efficiency,

SEM micrographs of electrospun fibers fabricated with two different collector speeds (CS) for the (a) normal electrospinning process, (b) modified electrospinning process with

For this reason, in this study, comparing the traditional manufacturing process and relatively high temperature of exhaust gas heat and CO2 laser