• 검색 결과가 없습니다.

Inspired by the metallic means family, Hretcanu and Cras- mareanu [14] constructed a new structure on a Riemannian manifold and named it a metallic structure

N/A
N/A
Protected

Academic year: 2022

Share "Inspired by the metallic means family, Hretcanu and Cras- mareanu [14] constructed a new structure on a Riemannian manifold and named it a metallic structure"

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

https://doi.org/10.5831/HMJ.2020.42.1.63

OPERATORS ON METALLIC RIEMANNIAN STRUCTURES

Has¸im C¸ ayir

Abstract. In this paper firstly, Some properties were given about metallic Riemannian structure on (1, 1)−tensor bundle. Secondly, the Tachibana and Vishnevskii operators were applied to vertical and horizontal lifts with respect to the metallic Riemannian struc- ture on (1, 1)−tensor bundle, respectively.

1. Introduction

Let M be n−dimensional manifold. The metallic means family or metallic proportions, was introduced by de Spinadel in [8, 9, 10, 11].

For two positive integers p and q, the positive solition of the equation x2− px − q = 0 is named members of the metallic means family. All the members of metallic means family are positive quadratic irrational num- bers σp,q = p+

p2+4q

2 . These numbers σp,qare also called (p, q)−metallic numbers. Inspired by the metallic means family, Hretcanu and Cras- mareanu [14] constructed a new structure on a Riemannian manifold and named it a metallic structure. Indeed, a metallic structure is a poly- nomial with the structural polynomial Q(J ) = J2− pJ − qI. Polynomial structures on a manifold were defined in [13]. A polynomial structure F of degree d on a connected manifold M means that a (1, 1)−tensor field F satisfies the following algebraic polynomial equation:

Q(F ) = Fd+ a1Fd−1+ ... + ad−1F + adI = 0,

where a1, a2, ..., ad are real numbers and I is the identity tensor of type (1, 1).

Received April 2, 2019. Revised May 18, 2019. Accepted May 20, 2019.

2010 Mathematics Subject Classification. 15A72, 53A45, 47B47, 53C15.

Key words and phrases. Metallic Riemannian structure, (1, 1)−tensor bundle, Tachibana operators, Vishnevskii operators, Horizontal lift, Vertical lift.

(2)

Given a Riemannian manifold (M, g) endowed with the metallic struc- ture J , then the triple (M, J, g) is named a metallic Riemannian manifold if

(1) g(J X, Y ) = g(X, J Y )

or equivalently

g(J X, J Y ) = g(J2X, Y ) = g((pJ + qI)X, Y ) = pg(J X, Y ) + qg(X, Y ) for all vector fields X and Y on M [14]. The Riemannian metric (1) is referred to as J −compatible or pure metric [16, 24, 25]. In addition, the Riemannian manifolds and the tangent bundles studyed a lot of authors [1, 2, 3, 4, 15, 16, 17, 18, 19, 20, 23] too.

Theorem 1.1. [12] Let M be a metallic Riemannian manifold equipped with a metallic structure J and a Riemannian metric g. Then:

a): J is integrable if φJg = 0,

b): the condition φJg = 0 is equivalent to ∇J = 0, where ∇ is the Levi-Civita connection of g.

Proposition 1.2. [12, 14] If J is a metallic structure on M , then F±= ±( 2

p,q− pJ − p 2σp,q− pI)

are two almost product structures on M. Conversely, every almost prod- uct structure F on M induces two metallic structures on M , given as follows:

J± = p

2I ± (2σp,q− p 2 )F.

Let M be n−dimensional Riemannian manifold with a Riemannian metric g and denote by π : T11(M ) −→ M its (1, 1)−tensor bundle with fibers the (1, 1)−tensor spaces to M . Then T11(M ) is an n + n2−dimensional smooth manifold and some local charts induced nat- urally from local charts on M may be used. Namely, a system of local coordinates (U ; xj) in M induces on T11(M ) a system of local coordinates (π−1(U ); xj, x¯j = tij) j = 1, ..., n, ¯j = n + 1, ..., n + n2, J = 1, ..., n + n2, where (tij) are the Cartesian coordinates in each (1, 1)−tensor space T1(P )1 M at P ∈ M with respect to the natural base.

Let X = Xi ∂∂xi and A = Aij∂xi ⊗ dxj be the local expressions in U of a vector field X and a (1, 1)−tensor field A on M , respectively. Then

(3)

the vertical lift VA of A and the horizontal liftHX of X are given, with respect to the induced coordinates, by [12]

AV =

 Aj V A¯j V



=

 0 Aij



and

XH =

 Xj H X¯j H



=

 Xj

Xsmsjtim− Γismtmj )



where Γhij are the coefficients of the Levi-Civita connection ∇ of g.

The Sasaki type metricSg on T11(M ) is defined by the following three equations:

Sg(AV, BV) = g(A, B),

Sg(AV, YH) = 0,

Sg(XH, YH) = g(X, Y ),

for any vector fields X and Y and (1, 1)−tensor fields A,B on M , where g(A, B) = gitgjlAijBtl [12, 22].

The bracket operation of vertical and horizontal vector fields is given by the formulas

[VA,V B] = 0 , (2)

[HX,V A] = V(∇XA),

[HX,HY ] = H[X, Y ] + (˜γ − γ)R(X, Y ),

where R denotes the curvature tensor field of the connection ∇, and

˜

γ − γ : ϕ → =10(T11(M )) is the operator defined by (˜γ − γ)ϕ =

 0

timϕmj − tmj ϕim



for any ϕ ∈ =11(M ) [22].

The horizontal lifts, orthogonal to the fibers of T11(M ). Let now E be a nowhere zero vector field on M . For any vector field X and covector field ˜E = g ◦ E on M , we define the vertical lift (X ⊗ ˜E)V of X with respect to E. The map X → (X ⊗ ˜E)V is a monomorphism. Hence, an n−dimensional C vertical distribution VE is defined on T11(M ).

Let V be the distribution on T11(M ), which is orthogonal to H and VE. Then H, VE and V are mutually orthogonal distributions with

(4)

respect to the Sasaki type metric Sg. We define a (1, 1)−tensor field ˜J on T11(M ) by [12]

(3)

J X˜ H = p2XH + (p,q2−p)(X ⊗ ˜E)V, J (X ⊗ ˜˜ E)V = p2(X ⊗ ˜E)V + (p,q2−p)XH, J (A˜ V) = σp,q AV,

for any vector field X and (1, 1)−tensor fields A on M , where ˜E = g ◦ E is a covector field on M . The restrictions of ˜J to H + VE and V are endomorphisms, and hence ˜J is a (1, 1)−tensor field on T11(M ). It is easily see that ˜J2− p ˜J − qI = 0, i.e. ˜J is a metallic structure on T11(M ).

We point out here and once that all geometric objects considered in this paper are supposed to be of class C

2. Main Results

2.1. The Tachibana operators applied to vertical and hori- zontal lifts with respect to metallic Riemannian struc- ture.

Definition 2.1. Let ϕ ∈ =11(M ), and =(M ) = P

r,s=0=rs(M ) be a tensor algebra over R. A map φϕ |

r+si0:

=(M ) → =(M ) is called a Tachibana operator or φϕ operator on M if

a) φϕ is linear with respect to constant coefficient, b) φϕ:

=(M ) → =rs+1(M ) for all r and s,

c) φϕ(K⊗ L) = (φC ϕK) ⊗ L + K ⊗ φϕL for all K, L ∈

=(M ),

d) φϕXY = −(LYϕ)X for all X, Y ∈ =10(M ) where LY is the Lie derivation with respect to Y,

e)

ϕXη)Y = (d(ıYη))(ϕX) − (d(ıY(ηoϕ)))X + η((LYϕ)X) (4)

= φX(ıYη) − X(ıϕYη) + η((LYϕ)X)

for all η ∈ =01(M ) and X, Y ∈ =10(M ), where ıYη = η(Y ) = η⊗Y,C

=rs(M ) the module of all pure tensor fields of type (r, s) on M according to the affinor field ϕ [5, 6, 7, 17](see [21] for applied to pure tensor field).

Theorem 2.2. For LX the operator Lie derivation with respect to X, ˜J is a metallic structure on T11(M ) defined by (3), φJ˜the Tachibana

(5)

operator on M , we get the following formulas

i) φJ X˜ HYH = (−p

2 + σp,q)(˜γ − γ)R(Y, X)

−(2σp,q− p

2 )((∇YX) ⊗ ˜E +X ⊗ (g ◦ (∇YE)) +(LYX) ⊗ ˜E)V ii) φJ X˜ H(Y ⊗ ˜E)V = (p

2− σp,q)(Y ⊗ (g ◦ (∇XE)))V

−(2σp,q− p

2 )(∇XY )H iii) φJ (X⊗ ˜˜ E)V(Y ⊗ ˜E)V = (2σp,q− p

2 )((∇XY ) ⊗ ˜E +Y ⊗ (g ◦ (∇XE)))V iv) φJ (X⊗ ˜˜ E)VYH = (σp,q−p

2)(X ⊗ (g ◦ (∇YE)))V +(2σp,q− p

2 )((∇YX)H− (LYX)H

−(˜γ − γ)R(Y, X)) v) φJ X˜ HBV = (p

2− σp,q)(∇XB)V vi) φJ A˜ VBV = 0

vii) φJ A˜ VYH = 0 viii) φJ A˜ V(Y ⊗ ˜E)V = 0

where R is the curvature tensor of ∇, E be a nowhere zero vector field on M . any vector field X and (1, 1)−tensor fields A,B on M , ˜E = g ◦ E is a covector field on M . The restrictions of ˜J to H + VE and V are endomorphisms, ˜J is a (1, 1)−tensor field on T11(M ).

(6)

Proof. i)

φJ X˜ HYH = −(LYHJ )X˜ H = −LYHJ X˜ H + ˜J LYHXH

= −LYH(p

2XH + (2σp,q− p

2 )(X ⊗ ˜E)V) + ˜J ([Y, X]H + (˜γ − γ)R(Y, X))

= −p

2[Y, X]H−p

2(˜γ − γ)R(Y, X)−(2σp,q− p

2 )(∇Y(X ⊗ ˜E))V +p

2[Y, X]H+(2σp,q− p

2 )([Y, X]⊗ ˜E)Vp,q(˜γ − γ)R(Y, X)

= (−p

2+ σp,q)(˜γ − γ)R(Y, X) − (2σp,q− p

2 )((∇YX) ⊗ ˜E +X ⊗ (g ◦ (∇YE)) + (LYX) ⊗ ˜E)V

ii)

φJ X˜ H(Y ⊗ ˜E)V = −(L(Y ⊗ ˜E)VJ )X˜ H= −L(Y ⊗ ˜E)VJ X˜ H+ ˜J L(Y ⊗ ˜E)VXH

= −L(Y ⊗ ˜E)V(p

2XH + (2σp,q− p

2 )(X ⊗ ˜E)V)

− ˜J (∇X(Y ⊗ ˜E))V

= (p

2−σp,q)(Y ⊗ (g ◦ (∇XE)))V−(2σp,q− p

2 )(∇XY )H

iii)

φJ (X⊗ ˜˜ E)V(Y ⊗ ˜E)V = −(L(Y ⊗ ˜E)VJ )(X ⊗ ˜˜ E)V

= −L(Y ⊗ ˜E)VJ (X ⊗ ˜˜ E)V + ˜J L(Y ⊗ ˜E)V(X ⊗ ˜E)V

= −p

2L(Y ⊗ ˜E)V(X ⊗ ˜E)V − (2σp,q− p

2 )L(Y ⊗ ˜E)VXH

= (2σp,q− p

2 )((∇XY ) ⊗ ˜E + Y ⊗ (g ◦ (∇XE)))V

(7)

iv)

φJ (X⊗ ˜˜ E)VYH = −(LYHJ )(X ⊗ ˜˜ E)V

= −LYHJ (X ⊗ ˜˜ E)V + ˜J LYH(X ⊗ ˜E)V

= −LYHp

2(X ⊗ ˜E)V+(2σp,q− p

2 )XH+ ˜J (∇Y(X ⊗ ˜E))V

= −p

2((∇YX) ⊗ ˜E)V −p

2(X ⊗ (g ◦ (∇YE)))V

−(2σp,q− p

2 )([Y, X]H+ (˜γ − γ)R(Y, X)) +p

2((∇YX) ⊗ ˜E)V + (2σp,q− p

2 )(∇YX)Hp,q(X ⊗ (g ◦ (∇YE)))V

= (σp,q−p

2)(X ⊗ (g ◦ (∇YE)))V +(2σp,q− p

2 )((∇YX)H−(LYX)H−(˜γ − γ)R(Y, X)) v)

φJ X˜ HBV = −(LBVJ )X˜ H = −LBVJ X˜ H+ ˜J LBVXH

= −LBV(p

2XH+ (2σp,q− p

2 )(X ⊗ ˜E)V) − ˜J (∇XB)V

= p

2(∇XB)V − (2σp,q− p

2 )LBV(X ⊗ ˜E)V − σp,q(∇XB)V

= (p

2 − σp,q)(∇XB)V vi)

φJ A˜ VBV = −(LBVJ )A˜ V = −LBVJ A˜ V + ˜J LBVAV

= −σp,qLBVAV

= 0 vii)

φJ A˜ VYH = −(LYHJ )A˜ V = −LYHJ A˜ V + ˜J LYHAV

= −LYHσp,qAV + ˜J (∇YA)V

= −σp,q(∇YA)V + σp,q(∇YA)V

= 0

(8)

viii)

φJ A˜ V(Y ⊗ ˜E)V = −(L(Y ⊗ ˜E)VJ )A˜ V = −L(Y ⊗ ˜E)VJ A˜ V + ˜J L(Y ⊗ ˜E)VAV

= −σp,qL(Y ⊗ ˜E)VAV

= 0

2.2. The Vishnevskii Operators applied to vertical and hor- izontal lifts with respect to metallic Riemannian struc- ture.

Definition 2.3. Suppose now that ∇ is a linear connection on M , and let ϕ ∈ =11(M ). We can replace the condition d) of defination 2.1 by

(5) d0) ψϕXY = ∇ϕXY − ϕ∇XY

for any X, Y ∈ =10(M ). Then we can consider a new operator by a Vishnevskii operator or ψϕ−operator on M , we shall mean a map ψϕ :

=(M ) → =(M ), which satisfies conditions a), b), c), e) of definition 2.1 and the condition (d0) [6, 7, 17].

Let ω ∈ =01(M ). Using Definition 2.3, we have (ψϕω) (X, Y ) = (ψϕXω)Y

(6)

= (ϕX)(ιYω) − X(ιϕYω) − ω (∇ϕXY − ϕ (∇XY ))

= (∇ϕXω − ∇X(ω ◦ ϕ)) Y

for any X, Y ∈ =10(M ),where (ω ◦ ϕ) Y = ω (ϕY ). From (6) we see that ψϕXω = ∇ϕXω − ∇X(ω ◦ ϕ) is a 1−form [17].

Theorem 2.4. ˜J is a metallic structure on T11(M ) defined by (3), ψJ˜

the Vishnevskii operator on M defined by (5), we get the following

(9)

results

i) ψJ X˜ H(Y ⊗ ˜E)V = (p

2+ σp,q)(Y ⊗ (g ◦ (∇XE)))V

−(2σp,q− p

2 )(∇XY )H ii) ψJ (X⊗ ˜˜ E)V(Y ⊗ ˜E)V = (2σp,q− p

2 )(∇XY )⊗ ˜E +Y ⊗(g ◦ (∇XE)))V iii) ψJ X˜ HYH = −(2σp,q− p

2 )((∇XY ) ⊗ ˜E)V iv) ψJ X˜ HBV = (p

2− σp,q)(∇XB)V v) ψJ (X⊗ ˜˜ E)VYH = (2σp,q− p

2 )(∇XY )H vi) ψJ A˜ V(Y ⊗ ˜E)V = 0

vii) ψJ A˜ VYH = 0 viii) ψJ A˜ VBV = 0

where R is the curvature tensor of ∇, E be a nowhere zero vector field on M . any vector field X and (1, 1)−tensor fields A,B on M , ˜E = g ◦ E is a covector field on M . The restrictions of ˜J to H + VE and V are endomorphisms, ˜J is a (1, 1)−tensor field on T11(M ).

Proof. i)

ψJ X˜ H(Y ⊗ ˜E)V = ∇HJ X˜ H(Y ⊗ ˜E)V − ˜J ∇HXH(Y ⊗ ˜E)V

= ∇Hp

2XH+(2σp,q −p2 )(X⊗ ˜E)V(Y ⊗ ˜E)V− ˜J ∇HXH(Y ⊗ ˜E)V

= p

2((∇XY ) ⊗ ˜E)V +p

2(Y ⊗ (g ◦ (∇XE)))V

−p

2((∇XY ) ⊗ ˜E)V

−(2σp,q− p

2 )(∇XY )H + σp,q(Y ⊗ (g ◦ (∇XE)))V

= (p

2 + σp,q)(Y ⊗ (g ◦ (∇XE)))V

−(2σp,q− p

2 )(∇XY )H

(10)

ii)

ψJ (X⊗ ˜˜ E)V(Y ⊗ ˜E)V = ∇HJ (X⊗ ˜˜ E)V(Y ⊗ ˜E)V − ˜J ∇H(X⊗ ˜E)V(Y ⊗ ˜E)V

= ∇Hp

2(X⊗ ˜E)V+(2σp,q −p2 )XH(Y ⊗ ˜E)V

= p 2∇H

(X⊗ ˜E)V(Y ⊗ ˜E)V+(2σp,q− p

2 )∇HXH(Y ⊗ ˜E)V

= (2σp,q− p

2 )(∇X(Y ⊗ ˜E))V

= (2σp,q− p

2 )(∇XY ) ⊗ ˜E + Y ⊗ (g ◦ (∇XE)))V iii)

ψJ X˜ HYH = ∇H˜

J XHYH − ˜J ∇HXHYH

= ∇Hp

2XH+(2σp,q −p2 )(X⊗ ˜E)VYH − ˜J (∇XY )H

= p

2(∇XY )H + (2σp,q− p

2 )∇H(X⊗ ˜E)VYH −p

2(∇XY )H

−(2σp,q− p

2 )((∇XY ) ⊗ ˜E)V

= −(2σp,q− p

2 )((∇XY ) ⊗ ˜E)V iv)

ψJ X˜ HBV = ∇H˜

J XHBV − ˜J ∇HXHBV

= ∇Hp

2XH+(2σp,q −p2 )(X⊗ ˜E)VBV − ˜J (∇XB)V

= p

2∇HXHBV + (2σp,q− p

2 )∇H(X⊗ ˜E)VBV − σp,q(∇XB)V

= (p

2 − σp,q)(∇XB)V v)

ψJ (X⊗ ˜˜ E)VYH = ∇H˜

J (X⊗ ˜E)VYH − ˜J ∇H(X⊗ ˜E)VYH

= ∇Hp

2(X⊗ ˜E)V+(2σp,q −p2 )XHYH

= (2σp,q− p

2 )(∇XY )H

(11)

vi)

ψJ A˜ V(Y ⊗ ˜E)V = ∇H˜

J AV(Y ⊗ ˜E)V − ˜J ∇HAV(Y ⊗ ˜E)V

= σp,qHAV(Y ⊗ ˜E)V

= 0 vii)

ψJ A˜ VYH = ∇H˜

J AVYH − ˜J ∇HAVYH

= ∇Hσ

p,qAVYH

= 0 viii)

ψJ A˜ VBV = ∇H˜

J AVBV − ˜J ∇HAVBV

= σp,qHAVBV

= 0

References

[1] M. A. Akyol and Y. G¨und¨uzalp, Hemi-Slant Submersions from Almost Product Riemannian Manifolds, Gulf Journal of Mathematics, 4(3)(2016), 15-27.

[2] M. A. Akyol and Y. G¨und¨uzalp, Hemi-Invariant Semi-Riemannian Submersions, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1)(2018), 80-92.

[3] R. Cakan, On gh-lifts of Some Tensor Fields, Comptes rendus de l’Acade’mie bulgare des Sciences,71(3)(2018), 317-324.

[4] N. Cengiz and A. A. Salimov, Diagonal Lift in the Tensor Bundle and its Ap- plications, Applied Mathematics and Computation, 142(2003) 309-319.

[5] H. C¸ ayır, Some Notes on Lifts of Almost Paracontact Structures, American Re- view of Mathematics and Statistics, 3(1)(2015), 52-60.

[6] H. C¸ ayır, Tachibana and Vishnevskii Operators Applied to XV and XCin Almost Paracontact Structure on Tangent Bundle T (M ), Ordu ¨Universitesi Bilim ve Teknoloji Dergisi, 6(1) (2016), 67-82.

[7] H. C¸ ayır, Tachibana and Vishnevskii Operators Applied to XV and XH in Al- most Paracontact Structure on Tangent Bundle T (M ), New Trends in Mathe- matical Sciences 4(3)(2016), 105-115.

[8] V.W. de Spinadel, The metallic means family and multifractal spectra. Nonlinear Anal Ser B, 36(1999), 721-745.

[9] V.W. de Spinadel, The family of metallic means. Vis Math, 1(3) (1999).

[10] V.W. de Spinadel, The metallic means family and renormalization group tech- niques. Proc Steklov Inst Math Control Dynamic System, 1(2000), 194-209.

[11] V.W. de Spinadel, The metallic means family and forbidden symmetries. Int Math J., 2(2002), 279-288.

(12)

[12] A. Gezer, C¸ . Karaman, On metallic Riemannian structures. Turk J Math 39(2015), 954-962.

[13] S.I. Goldberg, K. Yano, Polynomial structures on manifolds. Kodai Math Sem Rep 22(1970), 199-218.

[14] C. Hretcanu, M. Cresmareanu, Metallic structures on Riemannian manifolds.

Rev Un Mat Argentina 54(2013), 15-27.

[15] E. Musso and F. Tricerri, Riemannian Metric on Tangent Bundles, Ann. Math.

Pura. Appl., 150(4)(1988), 1-9.

[16] A. A. Salimov, On operators associted with tensor fields. J Geom, 99(2010), 107-145.

[17] A. A. Salimov, Tensor Operators and Their applications, Nova Science Publ., New York, 2013.

[18] Y. Soylu, A Myers-type compactness theorem by the use of Bakry-Emery Ricci tensor, Differ. Geom. Appl., 54(2017), 245–250.

[19] Y. Soylu, A compactness theorem in Riemannian manifolds, J. Geom., 109(20) 2018.

[20] A. A. Salimov and R. Cakan, Problem of g-lifts, Proceeding of the Institute of Mathematics and Mechanics, 43(1)(2017), 161-170.

[21] A. A. Salimov, H. C¸ ayır, Some Notes On Almost Paracontact Structures, Comptes Rendus de 1’Acedemie Bulgare Des Sciences, 66(3)(2013), 331-338.

[22] A. A. Salimov, A. Gezer, On the geometry of the (1, 1)−tensor bundle with Sasaki type metric. Chinn Ann Math Ser B 32(2011), 369-386.

[23] B. Sahin, Semi-invariant Riemannian submersions from almost Hermitian man- ifolds, Canad.Math. Bull., 56(2013), 173-183.

[24] S. Tachibana, Analytic tensor and its generalization. Tohoku Math J 12(1968), 208-221.

[25] K. Yano, M. Ako, On certain operators associated with tensor fields. Kodai Math Sem Rep 20(1968), 414-436.

Ha¸sim C¸ AYIR

Department of Mathematics, Giresun University, 28100, Giresun, Turkey.

E-mail: hasim.cayir@giresun.edu.tr

참조

관련 문서

 Students needing additional information about grading policies and procedures should meet with their faculty advisor, Executive Director/Chairperson or a

For this study—our third on global workforce trends, follow- ing studies in 2014 and 2018—Boston Consulting Group and The Network surveyed some 209,000 people in 190 countries

We therefore link these wonderful creatures to our LIN RGB products which enable changing ambient light according to the car

Basic aspects of AUTOSAR architecture and methodology Safety mechanisms supported by AUTOSAR.. Technical safety concepts supported by AUTOSAR Relationship to ISO

GDP impact of COVID-19 spread, public health response, and economic policies. Virus spread and public

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

● With the structure of a valve preventing fixation and resistant to dust, it operates perfectly... operating

Manual Handle Interrupt AI-Nano Contouring Control Data Server.