• 검색 결과가 없습니다.

 1.  Color Change by Controlling Carrier Recombination Zone for Organic Light Emitting Devices  

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Color Change by Controlling Carrier Recombination Zone for Organic Light Emitting Devices  "

Copied!
4
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

329 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 329-332

(Journal of the Korean Institute of Chemical Engineers)

     

  



  

(2001

Color Change by Controlling Carrier Recombination Zone for Organic Light Emitting Devices

Sungsoo Lee and Sung M. Cho

Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea (Received 26 January 2001; accepted 26 April 2001)

 

      , ,     ! "#$% &'(

 )*+(Hole Transport Layer; HTL), $+(Electron Transport Layer; ETL) -./ 01 &' 2$

 34 . 56    78 9 HTL: α-NPD '( -;   <=>?@

A B 78C$ DE F4 . G BH IJKL #MN  .; OP4?Q, '( R + ST HTL / , ,  ST@ UV4 . α-NPD 01 WX YZ/ [H \(7 V)/T ]H

. ^" 6 _ :\ 11 V` Uabc B. d e?@ .f  13 V` Uabc a ] H e?@ N gh OPGi . jkl α-NPD ]H '(,  '( -./ 01m Gc .@

:9 $ .f. <6G no/  . OPp q:4 . r  s9 R+t &' HOMO u LUMO /vwx )y 78>?@A B 78z  {| }~ .

Abstract−In order to investigate the carrier recombination zone in organic light emitting devices, three different color- emitting(R, G, B) materials are inserted in series between a hole transport layer(HTL) and an electron transport layer(ETL). For controlling the carrier recombination zone and changing the emission wavelength, α-NPD is used as a electron blocking layer to limit the electron transport in the devices. It was found that the recombination zone moved as the applied voltage changed in case of no electron blocking layer used. When the electron blocking layer α-NPD was used, the green emission was observed since the electron transport was limited by α-NPD. In this study, it was shown that the emission color could be controlled by aligning HOMO and LUMO energy bands of organic light emitting materials.

Key words: Organic Light Emitting Devices, Recombination Zone, HTL, ETL

E-mail: smcho@skku.ac.kr

1.  

(Organic light emitting device, OLED)  ,  ,         ! "#

$% &'( ) *+, -$. /0[1-3]. 19871 23$% 

4 56 78% ) 9:;7 7 <= >' /$?, "

@ ABC 7D! > EF% &'( GHI4 4J! K % 

'L0[4-8]. 0M! NO  PCQ R$%ST UV W KXF  YEZ [\C *! > ]^_`7 aHC / bQ cYd& e# fgC ) hi= jD-$. /0. 7D

! > PCQ kk > KXlmnF lmn 97C o 4 p q r 4p st, 9e'( &46 C uv YEZ w x4 yI' = >'L0. 7D! >C 9e6 

st% KXlmn$% N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1- biphenyl-4,4-diamine(TPD), 9e'L, aluminum tris(8-hydroxyqu-

inoline)(Alq3), lmn$% 9e'L0. z! {| n$%

Alq3, }~| n$% perylene bisimide pigment(PBP), q phenyl- pyridine beryllium(BePP2),  | n$% rubrene7 €6 Alq3

= 9e'( = ‚'L0[9-11]. Alq3ƒ PBP= o st, 

n$% 9e!  „…C, &46 , †4‡C uv 

|G PBP n$%ST W  |$%ST Alq3CQ W

ˆ {|$% yIW‰0. 7D! YEZ [\ 7 Š$%

(2)

330 

 39 3 2001 6

ST  6 (GO bƒ YEZ [\CQ yI% ‹ŒW b 0.

Ž >CQ KXlmnF lmn 97C r 4p(R, G, B)

st, 4'( &46 C u YEZ wx 7C *!

>= l'L$?, z! C‘p Š’7 G“d$%  st,

”V'( 'lm• 7, !–$%— YEZ wx= yI

˜ |G, ™š' 'L0. z! HOMO-LUMO C‘p ›œ=

K'( YEZ [\ 7, ‹Œ'L0. >C 9e6 ž< 

st 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl(DPVBi), Ÿ |

st% 9e'L$?,  | st% [2-methyl-6-[2-(2,3,6,7- tetrahydro-1H,5H-benzoquinolizin-9)ethenyl]-4H-pyran-4-ylidene]propane dinitrile(DCM2)7 €6 Alq3,  {| st% Alq3= 9e 'L$?, 4,4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl(α-NPD), 9e '( 'lm• 7, !'L0. z! KXUV ¡, ¢G.

 w'( MRF KXlmn 97C KXUVn, N#'L0.

2.  

 ‚, w'( £ž¤7 15Ω/¥& ITO4 †¦6 

 §, 9e'L0. ¨©©F ¨©rª«, 9e'(  MR , N#'L0. ¨©rª« …¬ ©6 ITO  §, ­7®l (DI water)= 9e'( ¯3}rª, l', 0 trichloroethylene

(TCE), °r±, ²³´, 9e'( §, rª! 8 µp¶$% ­7

®l= 9e'( A· rª, 'L0. rª6 ITO §C s,  X †¦! 8C µp¶$% Li7 0.26 wt% –6 Al : Li Z¸, X

†¦'( MR, N#–$%— = ‚'L0. 9e6 s%

MRCQ UVW KX UV, ¹º'» ' w'( KXUVn$

% 4,4,4-tris[biphenyl-3-yl(phenyl)amino]triphenylamine(m-MTDATA), 9e'L, KXlmn$% 7® (Tg)4  TPD “¼C Tg4 ½ 36oC  α-NPD= 9e'(  ¾d ¿K#, L$

?, n$% HTL wÀ$%ST }~| st% DPVBi, 

| st% DCM24 €6 Alq3,  {| st% Alq3

= 9e'L0. Á s 3Ã10−6 torr XCQ †¦W‰$?,

†¦  ½ 1-2 Å/s$% K'L0. †¦oÄ KXUVn7 10 nm, KXlmnF lmn7 50 nm,  n 15 nm% †¦W‰

0. 3R, N#' wÅ Al : Li Z¸, 3Ã10−6 torrCQ ½ 150 nm

 oÄ% †¦'L0.

€Æ C u Ç = È°É w'(  |  §Ê&

DCM2= 5 wt%ƒ 10 wt% Æ % †¦'( ËÌ'L 'lm•

 7, !'( YEZ [\, ™š' w'(  | nF {| n 97C α-NPD= ”V'( &46 C u |G

 7, Í&'L0.

3. 

Fig. 1 #6 OLED  5Î 70. Fig. 1(a), (b), (c) 

structure I, II, III, ÏÐÑ0. Structure IF II  |  §Ê&

DCM2 Æ Ò7 ÓC Ô ™% #W‰0. n ÕQ

KXlmn$%ST }~|,  |, {| ÕQ70. Structure III

n ÕQ4 struture I, IIƒ ÔpÖ 'lm• 7, !'

wÅQ  | nF {| n 97C α-NPD= ”V'L0. 

n oÄ × 45 nm7?, structure III „…C α-NPD4 5 nm

 oÄ% ”VWb 'lm• 7, !' Ø #'L0.

Fig. 2  ™6 OLED  &46 C u ^ÙÊÚ 70. Structure IF II ½ 7 VCQ DCM24 €6 Alq3n$%ST

 | , ‚'L0. 7D! 7 nCQ KXÉ0 

4 ½ 2ÛK  % 7' fg70[12]. Ü 4 ETL

%ST  KX HTL%ST C UVW‰0£, r 4p 

n PCQ PÝn&  | n ÞÀCQ, Ü HTL-ETL ߣ$%

ST ½ 15 nm àb áCQ 7 ‚W fg70. Fig. 2(a)CQ É(pâ7 &46 , 9 V% †4.£ }~| 7  | 

F ã Ô Ç % ÏÐÏ /3, ä l /0. 7D! 7 &

46 7 †4–C uv nCQ G“d$% 7 = Ï Ðå 4 KXlmn À$% 7'( YEZ [\7  | 

n$%ST }~| n$% ͊W‰ fg7v æ60.  Dç% r èé n {| êG *ëì l4 í‰0. &46

, î ï 7» W£ YEZ [\7 }~| [\CQ 0  | [\$% ð°4 }~|  êž@ ñbœ êG, É L0. 7D! êG 03F Ô7 o 4p 7% ‹Œò l /0. ó èé 7  CQ HTL-ETL „ßnC ôdWb /õ 4 HTL [\$% 7–$%— C [¢, Up ö' fg70. o èé 7% HTL-ETL „ßnC ôdWb /õ 4 Æ 4 

 | n$% ÍaW‰0 æì l /0. DÏ ÷p 7D!

7Ö$% ‹Œì l í0. 7è >CQ 9e6 st PCQ 4Š  7® (½ 72oC)= ÏÐå st7 DPVBi70. u vQ 11 V 7G  7 &4ò f æ ¾C ÅQ DPVBi 4 ¾d øG, V» Wb  ¡7 àbp ù7v æ60.  |  §Ê& DCM2 Æ = 10 wt%% †4ú  ^ÙÊ Ú, Fig. 2(b)C ÏÐå‰0. ûCQ É üƒ Ô7 §Ê Æ Fig. 1. The schematic cross sections of fabricated OLED structures; (a)

structure (I), (b) structure (II), (c) structure (III).

(3)

331

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001

= 2Û% †4ú EF 0  [\ Ç yI4 í7  | }

Š(½ 650 nm) [\Ö7 o Û% †4'L3, *ë'L, YEZ [

\ 7êG structure IF Ô3, È l /‰0. wCQ ýþÿâ7 structure IF II%Q {|  êG, *ëì l í‰0. 7 n CQ G“d$% 7 = 4p / % &! êG7v æWb Fig. 1(c)ƒ Ô ™= N#'(  7, !'

ËÌ, 'L0. Fig. 2(c)CQ É üƒ Ô7 structure III „… structure I, IIƒ  êG7 ½Ý 00. ½ 7 VCQ 7 ‚W

 ù structure IF Ò74 í$Ï [\7 structure ICQ 

| 7õ ùF 0» structure IIICQ {|7 ž ' L0. &46 , 9 V% †4.» W£, {|F  |7 –Ä

'L , 11 V% †4.£ {|F  |  Ç 4

†4'£Q ½Ý }~| êG7 *ëW ‚'L0. 7D!

êG, ‹Œ' wÅQ structure IF IIIC “! HOMO-LUMO C

‘p w K, Fig. 3 (a)ƒ (b)C ÏÐå‰0. ûCQ É

üƒ Ô7 α-NPD4 ”VWp  Fig. 3(a) „…C  7

, !ì l / C‘p Š’7 í fgC  7 Å

p  HTL À$% » 7'» 60. uvQ {| nC Q YEZ7 7bp4 p 0. DÏ Fig. 3(b)ƒ Ô7 G“

d$% LUMO4  α-NPD=  | nF {| n 97 C ”V'» W£ &46 7 , „…C, KX 7C ' ( G“d$%  77 ½, ° YEZ7 {| nCQ -bÏ» W ù70. DÏ &46 , 7» W£ Ç! 

ŠC ÅQ C‘p Š’, , l / ;7 æ» W? 7D

! C ÅQ  | [\CQ 7 ‚W ù70. , î ï 7» W£ G“d$% ; }~|F  | „ß n C‘p Š’ , l /$? µ å }~| p '» W

 ù70.

Fig. 4(a)CQ É(pâ7, &46 7 y–C uv structure I

CIE chromaticity coordinate y'L0. 7 †4–C uv  | , '04 }~|, '» W, î ï  , &4'» W

£ 0  |, '» 60. 7 ÷p &46 C u YE Z [\ 7C ! ùÖ ° v æW? ˁ% , 11 V

% &4'» W£ }~| n& DPVBi4 ¾d øG, » W?,

13 V 7G$% , 7» W£ ï 7G 'p 0. Fig. 4(b)

(a)ƒ Ô êG$% ‹Œì l /$Ï ÷p  | §Ê& DCM2

 Æ 4 ' fgC CIE 7 îï  | [\ À$% x… x êG, *ëì l /0. Fig. 4(c)CQ  | nF {| 

n 97C α-NPD= ”V–$%— {| êG7 *ëW‰ î ï  , &4'» W£ YEZ [\7 }~|F  | [\$

% 7' ù, ä l /‰0.

Fig. 2. EL emission spectra with applied voltages; (a) structure (I), (b) structure (I) and (II) at 11 V, (c) structure (I) and (III) at 11 V.

Fig. 3. The estimated energy diagrams[13, 14]; (a) structure (I) and (II), (b) structure (III).

(4)

332 

 39 3 2001 6

4.  

Ž ËÌCQ r 4p n, –! = ‚'L$

?, &46 , †4‡C uv yI' }Š, K'( Y EZ [\7 760 ù, É(U‰0. YEZ [\ &46 

7 †4–C uv HTL-ETL „ßn À$% 7'L04, 0 î ï

 7 &4W£ HTL-ETL „ßn$%ST 4  }~| 

nCQ  | n$% 7' ù, *ë'L0. 7D! êG Ç! Š$% &'( 4 HTL-ETL „ßn C‘p Š’, T

'ãÏ,  | n$% Ía q }~| n ¾d ø G$% ‹Œò l /0.

z! Ž ËÌCQ  | nF {| n 97C 'lm•

 7, !ì l / α-NPD= ”V'( C 'p õ

{|, ‡$%— YEZ [\, ™šì l /3, É( U‰0.

Ž > !FY÷ "K¯ >F(Fè : 1999-1-30700- 003-3)  #*“ 19991 #> > p¹C

'( 7b ù$%Q > = p¹Å U¼ !FY÷C 9

œ 0.



1. Kido, J., Kimura, M. and Nagai, K.: Science, 267, 1332(1995).

2. Kido, J., Ohtaki, C., Hongawa, K., Okuyama, K. and Nagai, K.: Jpn.

J. Appl. Phys., 32, L917(1993).

3. Kido, J. and Trends: Polym. Sci., 10, 350(1994).

4. Tang, C. W. and Van Slyke, S. A.: Appl. Phys. Lett., 51, 913(1987).

5. Adachi, C., Tsutsui, T. and Saito, S.: Jpn. J. Appl. Phys., 55(1), 1489 (1989).

6. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mckay, K., Friend, R. H., Burn, P. L. and Holmes, A. B.: Nature (London), 347, 539(1990).

7. Parker, I. D.: J. Appl. Phys., 75, 1656(1994).

8. Deshpande, R. S., Bulovic, V. and Forrest, S. R.: Appl. Phys. Lett., 75, 888(1999).

9. Xie, Z. Y., Feng, J., Huang, J. S., Liu, S. Y., Wang, Y. and Shen, J. C.:

Synthetic metals, 108, 81(2000).

10. Xie, X. Y., Huang, J. S., Li, C. N. and Liu, S. Y.: Appl. Phys. Lett., 74, 641(1999).

11. Kalinowski, J., Di Marco, P., Cocchi, M., Fattori, V. and Carnaioni, N.: Appl. Phys. Lett., 68, 2317(1996).

12. Bulovic, V., Burrows, P. E. and Forrest, S. R.: Electroluminescence, 64, 262(2000).

13. Kijima, Y., Asai, N. and Tamura, S.: Jpn. J. Appl. Phys., 38, 5274 (1999).

14. Haskal, E. I.: Synthetic Metals, 91, 187(1997).

Fig. 4. The CIE chromaticity coordinate as the applied voltage changes;

(a) structure (I), (b) structure (II), (c) structure (III).

참조

관련 문서

Second, as a direct impact, the abolishing of licensing gives both incumbent and entrants higher option value directly because the new facility based

Among the commercial fillers, Restylane is biphasic products consisting of crosslinked particles (75%) suspended in uncrosslinked HA (25%) used as a carrier.. In the

Elimination of the smear layer and bacteria in the root canal is the most important in the endodontic treatment, and various irrigation devices have been developed..

Furthermore, these AZO-NFs are integrated into per- ovskite solar devices as the electron transport layer (ETL) and the fabricated devices are tested for photovoltaic perfor-

In the present work, phosphorescent green light emitting devices using solution process with a small molecule TCTA interlayer have been fabricated

Iridium(III) bis(2-phenylpyridinato-N,C 2’ )acetylacetonate ((ppy) 2 Ir(acac)), a green dopant used in organic light-emitting devices (OLEDs), was subjected

When the neighboring local rotational axes of a polymer chain are not collinear, a helical conformation is more stable than an alternately twisted structure.16

Unpaired electron spins in organic molecules are interesting candidates for this purpose: the low spin orbit coupling of the unpaired electron in an organic molecule and