• 검색 결과가 없습니다.

kô #Q7#,z2,ÉÊOë#¿¨á#øn‚û.##忨#`á#

N/A
N/A
Protected

Academic year: 2022

Share "kô #Q7#,z2,ÉÊOë#¿¨á#øn‚û.##忨#`á#"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Demo

1. #g«#

ÓF2(lactide), V²2(glycolide), Bê ε-ÊZ²Óú(ε-capro- lactone) o– ®Óú’²Ö† ¿‡r Ç J&ú¢Ê:– 

¿,1,2 ӒÆ^ÿ n,3,4 >^g¿r GR5,6 o– ®"ÿ 3Ú Ê‡ 6Úæ²r f §ÿn6 Þ:. ®" W’² §ÿn†

ZÊrê Ïêf, k‡, ÿÊ, W^² †W k– k2® v

, 3ÚÊ ã G® ’‡:š ÿ& W¿®â rÊÒ" ²:.7,8 Ê® ’‡š û2ú† Z®B BB V ë:Ê FÂn ª :. N, r² :Î ’‡š V >Òg¿:® Ž Jšš Z®

B Kg¿Ò "6:. ß ÏêfÊ è6, k‡Ê ÂÆ, ÿÊV

– JÓF2(PLA), JV²2(PGL)Ò ÏêfR k‡Ê

6 vF®B ÿÊV ᖠJ(ε-ÊZ²Óú)(PCL)R Kg¿2

r >fš Ž Jš²:.9®N, g¿n§® ÆÊ& †Ò †² K g¿:® ƇR Úæš Æ^¾’²¾ ÿ‹~(Tm), vZÊ

~(Tg), 3ÚÊ Æ/, Bê †W k Gš r²:.10 ¡N, V

Žº(glycerol), pentaerythritolR o– :Vû‡ r2r:š Êÿ®

B úk(stat-shaped) PGL, PLA e N:® Kg¿Ò rÆ®B ª :.11 N Êvê úk 6Úæ:Ê vk(linear-shaped) 6Úæ:& š

®B Tm, Tge ÿ‹fê " JWžk‡Ê VW’² n¶

 šÒ 3ÚÊ ãV ¶Î ‡ ¢ŽÊ:.12ÊÎ&, Okada G

– Ç J&ú¢Ê® ª¯W NŽÂÆV g¿® ’‡R 3 ÚÊ ‡& N®ê Wûš Æ®B ª:.13,14

®" ^¢ rrr Ê: 3Úʇ Ç J&ú¢Ê K Ê:. †Òr g¿® ÂƖ ’‡ Ê® VVÒ Û«®â Æ

®êÆ zÊ Þ:.

N FÂ&rê ÊF ŽrÒ OK®† Z®B, 1,4-butanediol(BD), 1,6-hexanediol(HD), 1,4-cyclohexanediol(CHD), Bê 1,4-cyclohexane- dimethanol(CHDM)R o– ÊVû‡ r2r² V²2Ò r®

kô #Q7#,z2,ÉÊOë#¿¨á#øn‚û.##忨#`á#

`'/}§Ü'%#

œÑ(™#^™</#œ­<™F<#Fåq ÄÐÌì¬| # +5338T#6#55¼#Q:/#5338T#8#<¼#T,#

#

Qhz#Dolskdwlf#Glro2Glfduer{|olf#Dflg#Edvhg#Elrghjudgdeoh#Sro|hvwhuv##

dqg#Wkhlu#lq0ylwur#Ghjudgdwlrqv#

Wdh0Jrq#Ndqj#dqg#\dqj0N|rr#Kdq%# Department of Chemistry, Hanyang University, Seoul 133-791, Korea Korea Center for Advanced Functional Polymers, KAIST, Daejeon 305-701, Korea

(Received March 22, 2005;accepted May 9, 2005)

5¨Ü _:Î stannous octoate Ê ®&r V²2Ò ÊVû‡ r2rÎ 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexane- diol, 1,4-cyclohexanedimethanol

succinic acid, adipic acid, – suberic acid– titanium(IV) isopropoxide _:®&r 170, 190, Bê 220 ×&r ë¿g¿

2r ÚæÂÆV 2¯W’² †Jr ² Ç J&ú¢Ê– Šr² ÂÆÒ lê J&ú¢ÊÒ WW 

:. Ê: Ç J&ú¢Ê:® vZÊ~(Tg)ê -40&r 30 × ÊV:. B² 170 ×&r rÆr ÚæÂÆ V 2¯W’² †Jr J&ú¢ÊV è– ~&r ¿‡r ÂÆV Šr² J&ú¢Ê:J: TgV 5-10 ×

&r VnÚÊãV æŽ:.G

Abstract:Four kinds of new aliphatic diols were synthesized by the ring opening reaction of glycolide with 1,4-butane- diol, 1,6-hexanediol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol, a difunctional initiator, in the presence of stannous octoate catalyst. The resulting diols were melt-polymerized with succinic acid, adipic acid, or suberic acid at 170, 190, or 220 × to produce new sequentially ordered aliphatic polyesters and their corresponding polyesters with random structure.

Their glass transition temperatures (Tg) ranged from -40 to 30 ×. The sequentially ordered polyesters prepared at 170 × had higher Tg of 5 to 10 × than the polyesters with random structure produced at higher temperature. From in-vitro degradation test, the sequentially ordered polyesters was slower in the rate of hydrolysis in a buffer solution than the polymers with random molecular structure.

Keywords: sequentially ordered aliphatic diol, biodegradable polyesters, transesterification, in-vitro degradation, degradation rate.

To whom correspondence should be addressed. E-mail: ykhan@hanyang.ac.kr

(2)

2r ç &>& V²2 ÂÆV Ûr ÚæÂÆV 2¯W’² j‚:š succinic acid(SCA), adipic acid(APA), N6 suberic acid(SBA)

– ÿ: Ê g¿~Ò ª2úÊr ë¿n§š Ғr ª¯W NŽÂÆV 2¯W’² †Jr g¿– ÂÆV Šr² 6ÚæÒ WW rÆ®V:. B² Ê: g¿:® ª¯W NŽÂÆ® †JÊ JW‡ e VnÚÊ Æ/& N®ê Wûš Æ®V:.

2. /

2.1 ÷

ÊVû‡ r2r² ÿr BD, HD, CHD, CHDM G® j‚–

Aldrich® 2Ó(99%)š NV² ÿ®V:. V²2 IR e 1H- NMRš Ê ÂÆÒ «Î²  NV² ÿ®V:. jÊK: SCA, APA, SBA:– Aldrich® 2Ó(99%)š ª 뒲 kr®B  ÿ®V:. _:² ÿr stannous octoate(Sn-oct, 95%)ê Sigma®

2Ӛ, titanium(IV) isopropoxide(TIP, 99.9%)R VnÚÊ :.&  ÿr ÎR šÿÿ·– Aldrich® 2Ӛ ÂÛ²V² ÿ®V :. † 2Ӗ 1_ 2Ӛ kr®  6 NV² ÿ®V:.

2.2 ·»Ïh

¿‡² ’:® ÂÆê FT-IR(Brucker IFS 48)R FT-NMR(Varian- 400)š ÿ®B Ús®V:. g¿® 6vfê Witeg® Cannon- Fenskek fÒ ÿ®B 25.0 ×&r ʲ²BÚ ÿ: &r

tific Ltd.® DSC Plus(~ã 5»10 ×/min) e TGA 1000(~ã

 10 ×/min)š ÿ®B â ÚZ† ®&r wk®V:. g¿

® Úæ e ÚæÚBê THF ÿ:– Styragel columnš ÿ®B Shimazu LC-4A GPC² wk®V:. B² g¿® šÚš pH 7.0®

šÿÿ· ã&r VnÚʲ  šÚ²Ê® ÚÊ2Ò Hitachi®

S-2500C SEM’² «Î®V:.

2.3 §ÿ t¼  _w£ ´|

BD 5.20 g(57.7 mmol), GL 13.387 g(115.4 mmol), Sn-oct 0.093 g(0.23 mmol)š 100 mL 2- »R bÒúÂ& y–  bÒúÂÒ 100 ×

² ^Jr :® †Ú g+& y6 â ÚZ† ®&r ¦n®Ê r 52Z n§2†:. n§  ʲ²BÚ 100 mLÒ n§’& y6

¦n®B ÏÎ :¢ ÿÊn  – Æ ¾Z’š BR®B rÆ

®V:. BRr ʲ²BÚ ÿ·š âZ3 ór†² ʲ²BÚ ÿ :Ò rƲ  40 ×® Kzf&r 242Z Ê ÊÆ®B ² Ç &ú¢Ê j‚(BD/GL diol: BGD)š ¿‡®V:.

ÊÎ&, r2r²r BD V6& HD, CHDÒ ÿ²  Z–

/Ò² Æʒ² n§2r ² j‚:²r HD/GL diol(HGD)R CHD/GL diol(CHGD)š rÆ®V:.

:" r2r²r CHDMš ÿ² &ê n§  ʲ²BÚ 100 mLÒ n§’& y6 ¦n®B ÏÎ :¢ ÿÊn  – Æ

¾Z’š BR®B rƲ  BRr ʲ²BÚ ÿ·š ó®n(100 mLÝ7â)² Žï®B n§®  6 þšÞê CHDMš rÆ®V :. N ʲ²BÚ ÿ·& Ó 3 g® Šn ¿ Nzîš þV

®B 22Z /ž ¦n®B ÿ· & þšÞê nښ rÆ®V:.

BRr ÿ·š âZ3 ór†² ʲ²BÚ ÿ:Ò rƲ  40 ×

® Kzf&r 242Z Ê ÊÆ®B CHDM/GL diol(CHMGD)š

rƮV:.

¿‡r 4Û®® ² j‚ ª¿’® ÂÆê IRR 1H-NMR úï

R’²Ö† «Î®V’Æ, N:® ‡ ’Â:– šî– o:.

2.3.1#EJG#

IR(NaCl plate, Figure 1(a): 1105(C-O), 1197(OC-O), 1429(H-C-H), 1747(CO), 2960(C-H), 3469 cm-1(O-H); 1H-NMR(CDCl3 Figure 1(E /

1.75(4H, m, C-CH2-C), 3.3(2H, broad s, OH), 4.2(4H, t, COO-CH2-C), 4.3 (4H, s, COO-CH2-OH), 4.75(Ha, d, COO-CH2-COO), 4.85 ppm(Ha', d, COO-CH2-COO).

2.3.2 KJG/ /

IR(NaCl plate): 1100(C-O), 1179(OC-O), 1426(H-C-H), 1750(C

O), 2940(C-H), 3468 cm-1(O-H); 1H-NMR(CDCl3  /  + P &-C- CH2-C-C), 1.7(4H, m, COO-C-CH2-C-COO), 3,2(2H, broad s, OH), 4.2(4H, t, COO-CH2-C), 4.3(4H, s, COO-CH2-OH), 4.75(Ha, d, COO- CH2-COO), 4.85 ppm(Ha', d, COO-CH2-COO).

2.3.3 FKJG##

IR(NaCl plate): 1103(C-O), 1184(OC-O), 1428(H-C-H), 1748(CO), 2950(alC-H), 3467 cm-1(O-H); 1H-NMR(CDCl3): δ 2.0-1.4(8H, m, CH2 in cyclohexane), 3.0(2H, broad s, OH), 4.15(2H, d, COO-CH2-OH), 4.30(2H, d, COO-CH2-OH), 4.75(Ha, d, COO-CH2-COO), 4.85(Ha', d, COO-CH2-

COO), 4.95 ppm(2H, s, COO-CH-, methyne group in cyclohexane).

2.3.4 FKPJG/ /

IR(NaCl plate): 1104(C-O), 1190(OC-O), 1427 (H-C-H), 1749(CO), 2955(alC-H), 3465 cm-1(O-H); 1H-NMR(CDCl3 /-1.4(10H, m, CH2 in cyclohexane), 3.1(2H, broad s, OH), 4.0(Ha, d, COO-CH2-cyclohexyl), 4.1(Ha', d, CH2-cyclohexyl), 4.15(Hb, d, COO-CH2-OH), 4.30(Hb', d, COO- CH2-OH), 4.75(Hc, s, COO-CH2-COO), 4.85 ppm(Hc', s, COO-CH2-COO).

2.4 §ÿ t¼ ?÷£ ´|

1- »R bÒúÂ& ¿‡² BGDÒ 3.09 g(9.59 mmol), SCAÒ 1.10 g(9.30 mmol), _:²r titanium(IV) isopropoxide 11.0 mg(0.039 mmol)š y:. 170 ײ ^Jr :®†Ú g+& 1- »R b ÒúÂÒ šZÞ JN6 6 2"V ϖ ٚ «Î² , Kâ Z² >W’² f«(«, 62Z → 5 torr, 62Z → 3 torr, 122Z → 2 torr, 62Z → 1 torr, 122Z → 0.5 torr, 62Z → 0.1 torr, 242Z)®B

¦n®Êr 722Z /ž ÿ‹g¿n§š 2†:. g¿  ² ^ ÏÎ  BR² :¢, g¿ÿ·š 50 mL k² ãë² ú 500 mL Ý5â Ê)² Žï² ú 50 ×® Kzf&r 242Z /ž šZ

®~² :. ², SCA V6& APA– SBAÒ ÿ²  Z

– /Ò² 뒲 g¿n§š nß®V:.

ÊÎ&, g¿~Ò 170, 190, Bê 220 ײ ª2úÊr g¿2 r ÚæÂÆV 2¯W’² †Jr J&ú¢Ê– Šr®â † Jr J&ú¢ÊÒ rÆ®V:. B² BGD V6& HGD, CHGD,

– CHMGDÒ ÿ²  WW Z– /Ò² g¿~ Æʒ

² 3 Û®® jÊK:R g¿2r 36V® ² Ç J

&ú¢ÊÒ :.

2.5 ` '£ g»

rƲ ² Ç J&ú¢Ê 2.0 gš 20 mL® ʲ²BÚ ÿ:& ÏÎ  teflon sheetV ž Ê& ïÞê v(7Ý7 cm)

& y6 482Z /ž ~&r æFW’² ór2þ  Kzf&

(3)

r 242Z ÊÆ2r ÿ:V šZÞ rÆr šÚ(180» P š r Æ®V:.

2.6 KcϿ /

Òk² ¦.® 6Úæ šÚš Wk †(10Ý10 mm)² æÎ :¢ pH 7® phosphate šÿÿ·š ÿ®B Î(in-vitro) VnÚÊ :.š :2®V:. ß šÚ ÆW® ŠâÒ   25 mL® vial& y 6 15 mL® šÿÿ·š V² :¢ 37 ×® Ã~Æ ž&r Òk2Z /ž VnÚÊ :.š nß®V:. ÚÊn§  šÿÿ·š BR

² BR®V:. ÚÊr k 2"Ò ó®n² ÿÚÞ Žï®B ² Ê& þšÞê šÿÿ·š rƲ :¢, 482Z /ž K ÊƲ

 ŠâÒ wk®V:. gfâ~(%)– šÚ® ^†Šâ– VnÚ Êr 2"® ÊƊ⮠~²Ö† ®V:.14

3. ûG Z ë«

3.1 §ÿ t¼  _w£ ´|

>Î GLš ÊVû‡ r2rÎ BD, HD, CHD, Bê CHDM’

² r®n§2r r2r® ç &>& GLÊ 1 Ûr 4Û®®

² Ç &ú¢Ê j‚Î BGD, HGD, CHGD, CHMGDš

¿‡®V:(Scheme 1). N:® ÂÆê 1H-NMR e IR úïR:² r «Î®V:.

Figure 1ê V²WÊ j‚Î BGD® 1H-NMR úïR’²r 6

k >Î GL® &ú¢Ê†: Ê® ªNb(-CH2-)†® nâV 5.0&r 4.8 ppm ÖR’² Ê/®V:. ÊF :– 6k® GLÊ r®n¢š q¾²:. ², ² BGD(Bê HGD)® &ú¢Ê

†: Ê& Ê®ê ªNb(-CH2-)†® nâê 4.85(Ha)R 4.75 ppm (Ha)&r WW Ún î:. ÊÎ& CHGD&rê Þ2³2†

\® ªNb†– &ú¢Ê†: Ê® ªNb†V 4.15R 4.3, 4.75–

4.85 ppm&r WW r² :Î ¦ Û®® n⠒² î:. B² CHMGD® 2ʲ;:R &ú¢Ê†: Ê® ªNb†ê 4.0R 4.1 ppm&r, Þ2³2†® \& Þê ªNb†ê 4.15– 4.3 ppm&

r, &ú¢Ê†: Ê® ªNb†ê 4.75– 4.85 ppm&r WW î

:. B² Ê: ‡’® nâWښV ^Þ® ÂƖ î Ò®®V:. ÊF Z– CHGD– CHMGD j‚:Ê 2ʲ;:†

Ò Ê& ¦6 cis-trans ʇ® ’¿’² Ê®† ¢ŽÊ:.

†Òr ¿‡r j‚:– Ûr ÚæÂÆV 2¯W’² †Jr

² Ç &ú¢Ê j‚:ښ ¢®:.15

², BGDÒ IR úïRš wk² R > GL® &ú¢Ê

†&r îîê 1764 cm-1ÖR® k² ·n ¶V n§  1751 cm-1

² Ê/®V6, B GL&rê R n ® Þ2³2 NOÊ 3481 cm-1

&r C iâ î:. ÊF :– 6k GL® &ú¢Ê†V r 2r² ÿr BD® Þ2³2 NO& ®Ê r®n vk® BGD  Ʋ Z®n:ê ٚ ®N²:. ÊÎ& HGD e CHGD– CHMGD

®  BGD– o– ûš JV:.

3.2 §ÿ ?÷£ ´|

´r ¿‡r 4Û®® ² Ç &ú¢Ê j‚R SCA, APA, Bê SBA– o– †Ê® Ç jÊK:R ÿ: Ê 170 ×&

r ë¿g¿2†:. N R ² j‚R Ç jÊK:& Ê

®ê ÚæÂÆ® †JÊ 6Úæ  & 2¯W’² Ûr 

² Ç J&ú¢Ò :(Scheme 2).

², rÆr ² J&ú¢Ê:® JW‡R 3ÚÊ ‡&

N®ê ÚæÂÆ® †J® Wûš Æ®† Z®B, ~Ò 170&

r 190R 220 ײ ‚z ÿ‹g¿ n§š Ғ†:. N R ‡û r 6Úæ : & Ê®ê &ú¢Ê NOR ÊK:(Bê ¢

²) NO: Ê& šî® n§†Â– o– &ú¢Ê¦® n§(trans- esterification)Ê16,17 Òò:ê :š V†®V:. †Òr 170 ×&

r rÆr g¿– B ÚæÂÆV Šr®â †Jr Ç J

&ú¢ÊV ¢:.

Figure 1. 1H-NMR spectrum of the BGD.

# :# 9# 8# 7# 6# 5# 4# ssp#

Scheme 1. Synthesis of the sequentially ordered aliphatic ester diols.

O O O

O O O

O O

O O O

O O

O

HO OH

O O

BGD / HGD / CHGD / CHMGD

+

n

O O O

O O

O O

O O

O O

O

O O

O O O

O O

O O

O O

O O

O

O O

if n=1, Succinic acid if n=2, Adipic acid if n=3, Suberic acid

n n

n n

m m

If n=1, HGSC if n=2, HGAP if n=3, HGSB If n=1, BGSC if n=2, BGAP if n=3, BGSB TIP Melt polymerization (170 ])

n n

If m=0, n=1, CHGSC m=0, n=2, CHGAP m=0, n=3, CHGSB If m=1, n=1, CHMGSC m=1, n=2, CHMGAP m=0, n=3, CHMGSB

Scheme 2. Synthesis of the new sequentially ordered aliphatic polyesters.

(4)

Table 1– ² Ç J&ú¢Ê® g¿ÆÊR RÊ:.

g¿Z®~– g¿~V 170, 190 ×Ò ¢ê Ó 70»90%Ê6, 220 ×Ò¢ê ^R B 35»80%² ®:. Êٖ  g¿

nn:ê :š ¢ n Þ:. ² >² ÿr j‚& Ê

®ê ªNb†® nV óV¶n³(BGD → HGD) ¿‡r g¿®

6vfê óV®V:. Êٖ g¿ : Ê® nâ¿Ê ó Vn† ¢Ž’² 3Wr:. ², 170 ×&r HGD– SB² rÆr g¿(HGSB-170)® Úæš GPC² wk² R MnhÊ 18000Ê

:. NBî 220 ×&r g¿r HGSB-220®  g¿Z®~– f â®V", Úæ– 29000’² óVn:.

rÆr g¿:® ª¯W NŽÂÆ® †Jš 1H-NMR e 13C- NMR úïR’²Ö† ZgW’² «Î®V:. Figure 2ê CHGD–

SCA²Ö† ¿‡² V²WÎ ² Ç J&ú¢ÊÎ CHGSC

® g¿~& †Î 1H-NMR úïRÊ:. 170 ×&r rÆr g¿

® , ‡ ’Â:® nâWښV ^Þ® ÂƖ î Ò®²

:²Ö† &®ê ÚæÂÆV 2¯W’² †Jr CHGSCV ¿‡n ¢š ¢®:(Figure 2(a)). NBî g¿~V 170&r 190 ×, Bê 220 ײ óV¾& †Ò ÚæÂÆV 2¯WÎ g¿&rê R n

® ² n⠒Â:Ê 3.4»3.7R 5.5»5.7 ppm Ê&r î

’Æ, B² ‡ ’Â:® nâWښV ®ê ûš JV:

(Figure 2(b)). ß g¿~V ¾& †Ò &ú¢Ê¦® n§Ê f

~ óVn6 à 6Úæ ÂÆ® 2¯‡Ê bŠn† ¢ŽÊ:. ÊF

– î Ò®²:.

², Figure 3– HGD– APA²Ö†  ÚæÂÆV 2¯W’

² †Jr ² Ç J&ú¢ÊÎ HGAP-170® 13C-NMR Ê:. g¿n§š ®B >Î HGD® OH \® ⠒ Z®

V 61&r 65 ppm’² Ê/n¢š «Î®V:. Êٖ g¿n§

& ®Ê j‚® ç &>& Ê®ê OHV &ú¢Ê†² Z®n

:ê ٚ ®N²:. B >Î HGD– APA® â Z®V g ÂÆV g¿ & Òk®â †Jn¢š ‘²:.

Ê® RÒ RƲ, g¿n§ g &ú¢Ê¦® n§š r®

6 ÚæÂÆV 2¯W’² †Jr Ç J&ú¢ÊÒ rÆ®†

ZÊrê g¿~Ò V_W â vÊÒ ²:.

3.3 §ÿ t¼ ?÷£ ?L|

DSC– TGAÒ Êÿ®B ¿‡r ² Ç J&ú¢Ê:®

JWÆ/ e JWžk‡š «Î®V:. Table 1& êÓr R&r Jê j– oÊ j‚²r HGD– jÊK:’²r SCA, APA, B ê SBAÒ WW g¿2r – g¿:® , ÿr jÊK:

® ªNb† ŽÊV Žn³ TgV -15, -26, -32 ײ ff fâ

®ê ûš JV:. B SCA– BGD, HGD, CHGD, CHMGDÒ W W 170 ×&r g¿2r – g¿:®  ÿr j‚® ª Nb† ŽÊV BGD&r HGD² Žn³ TgV 1.0&r -15 ×

² fâ®V:. Êٖ ªNb†® óVV 6Úæ ® vF‡š

óV2†† ¢ŽÊÒ 3Wr:.13nÊ& 2ʲ;:R o– 6k NOÊ Ûr CHGD– CHMGD® &ê vkÂÆÎ BGD B ê HGD j‚J: 6Úæ® kV óV®B rÆr g¿® Tg V èâ î:. ², CHGD– SCA Bê SBA²Ö† rÆr g¿:® Tgê g¿~V 170&r 190 ×, Bê 220 ײ ¾

& †Ò fâ®ê ûš JV:. ÊF Z– Zv² &ú¢Ê¦®

Figure 2. 1H-NMR spectra of the CHGSC polyesters prepared at different polymerization temperature: (a) 170 × and (b) 190 ×.

# :# 9# 8# 7# 6# 5# 4# 3# ssp#

# ;# :# 9# 8# 7# 6# 5# 4# 3# ssp#

Table 1. Polymerization Conditions and Results of the New Aliphatic Polyesters

C onversion(% ) ηinha

Polym er D iol D iacid

170b 190b 220b 170b 190b 220b B G SB B G D Suberic A cid 72 76 36 0.16 0.24 0.30 H G SB H G D Suberic A cid 83 82 68 0.44 0.61 0.86 C H G SB C H G D Suberic A cid 90 83 73 0.26 0.29 0.20 C H M G SB C H M G D Suberic A cid 84 80 82 0.35 0.36 0.42 B G A P B G D A dipic A cid 72 70 77 0.22 0.18 0.26 H G A P H G D A dipic A cid 78 78 62 0.33 0.55 0.82 C H G A P C H G D A dipic A cid 90 82 c 0.19 0.29 c C H M G A P C H M G D A dipic A cid 84 78 71 0.20 0.21 0.15

B G SC B G D Succinic A cid 75 74 55 0.35 0.42 0.76 H G SC H G D Succinic A cid 77 71 37 0.34 0.36 0.49 C H G SC C H G D Succinic A cid 76 73 58 0.20 0.23 0.17 C H M G SC C H M G D Succinic A cid 64 67 c 0.23 0.31 c

aInherent viscosity was measured in CHCl3(0.5g/dL) at 25 ×. bMelt polymerization was caried out at 170, 190, or 220 ×. cDecomposed during melt polymerization.

Figure 3. 13C-NMR spectrum of the HGAP polyester prepared at 170 ×.

453# 433# ;3# 93# 73# 53# 3# ssp

(5)

n§’² β g¿ ÂÆ® †JÊ Šrʆ ¢ŽÊ:.

ÊÎ&, Table 2&r g¿:® JWžk‡š š¦Ê JÊ, j‚š

BGD&r HGD², jÊK:š SCA&r APA Bê SBA² ÿ¾

& †Ò ß j‚R jÊK:® ªNb†® nV óV¶n³ 10%

Šâfâ ~V óV®ê ûš JV:. Êٖ 6Úæ 

& Ê®ê ªNb†® ŽÊV Žn³, Úæ: Ê& nâ¿Ê óV®† ¢ŽÊ:. B g¿~V 170, 190, 220 ײ èšn³ g

¿® ÚæÊ óV¶ " šÒ JWžk‡ ûnê û

š JV:.

3.4 §ÿ t¼ ?÷£ (Ï¿| /

ÒnW’² Ç J&ú¢Ê 6Úæ® 3’¯W ÚÊê &

ú¢Ê†® VnÚÊ n§& ®Ê Òò:. VnÚÊ® ã& W ûš N®ê Îæ²ê 6Úæ® k‡, Tg, Úæ e ²Ê2 G Ê Þ:. ÊÎ& ÿr VnÚÊ ÿ·® pH– šÿÿ·® ã G

 ÚÊã& Wûš V:.18

N FÂ&rê ÚÊã– n§†Â& N®ê 6Úæ &  Ûr NŽÂÆ †J® Wûš Æ®† Z®B, 3– v² Æ ÊÎ pH 7® ÎR šÿÿ·š ÿ®B 37 ×&r rÆr šÚ

š VnÚÊ2r 2Z& †Î Šâ® fâÒ wk®V:.

Figure 4– ² j‚R APAÒ 170 ×&r g¿2r rƲ J

&ú¢Ê:® 2Z& †Î VnÚÊ ãÒ JBV:. ß j‚² r CHGD Bê HGD²Ö† rÆr J&ú¢Ê(CHGAP e HGAP) :® VnÚÊ ãV >‚ æŽ:. Êٖ g¿ Ê k®6 ÚæZ nâ¿Ê Ên³ 6Úæ® k‡Ê óVn VnÚÊ n

§&r Ûr Î ¢Ê~R ’Úæ:Ê 6Úæ  ʲ ¾‚

®† ‹† ¢ŽÊ:. ÊÎ& B :Î k‡ 6ÚæÎ CHGAP

BGAP, HGAP, CHMAP– š¦¶ ¢ ÚÊ ãV Vû æâ Ò þš V†®V:. ÊF Rê ¿‡r CHGSC e CHGAP® g¿

® TmÊ WW 40– 30 ײ V†r R– î Ò®²:(Table 2). n Ê& J: vF² j‚:Î CHMGD– BGD²Ö† rÆr g¿

:® , ÚÊãV 1RÒ¢ : ¾ ßn:V N  ÚÊ V Æ® ßn  ®:. ÊF û– Ç J&ú¢Ê® Vn ÚÊ n§– ÒnW’² Škk WC&r ’V Òò :¢ k WC&r ÚÊV ßr:ê :² zÛv n Þ:.19 ß 2ʲ;

: NO® ç & ªNb†V ®î Ûr vF² CHMGD(Bê BGD)

ê HGAP)J: VnÚÊ ãV ^†& : ¾ ßn† ¢

ŽÊ:.

Figure 5ê g¿~ 170, 190, Bê 220 ×&r rƲ HGSC(a)–

Table 2. Thermal Transitions and Stabilities of the New Aliphatic Polyesters

Tg (×) Tem p. of 10% w t. loss(×) Polym er

170b 190b 220b 170b 190b 220b

B G SB -30 -22 -32 312 307 354

H G SB -32 -34 -38 328 342 346

C H G SB 5 1 -2 309 314 310

C H M G SB -5 -8 -10 341 335 345

B G A P -16 -13 -17 303 291 368

H G A P -26 -27 -29 322 318 365

C H G A Pa 12 13 c 303 343 c

C H M G A P -5 -8 -7 321 304 335

B G SC 1 3 -2 286 289 377

H G SC -15 -17 -13 305 312 342

C H G SCa 29 20 23 298 305 326

C H M G SC 18 18 c 315 318 c

aCHGSC and CHGAP polyesters prepared at 170 × showed. Tm at 30 and 40×, respectively. bMelt polymerization was caried out at 170, 190, or 220 ×. cDecomposed during melt polymerization.

Figure 5. Effect of the polymerization temperature on the mass loss of the HGSC and HGAP at pH 7 and 37 ×: (a) 0, HGSC-170; 5, HGSC- 190; ;, HGSC-220; (b) 0, HGAP-170; 5, HGAP-190; ;, HGAP-220.

433

<3

;3 :3 93 83 73

%Mass remaining

4#zhhn# 5#zhhn# 6#zhhn# Time(week)

(a) 433

;3 93 73 53 3

%Mass remaining

4#zhhn# 5#zhhn# 6#zhhn# Time(week)

(b) 433

<3

;3 :3 93 83 73 63 53

%Mass remaining

4#zhhn# 5#zhhn# 6#zhhn# Time(week)

Figure 4. Effect of the different diol on the mass loss of the polyesters at pH 7 and 37 ×: 0, BGAP-170; 5, HGAP-170; ;, CHGAP-170; í, CHMGAP-170.

(6)

HGAP(b) g¿:® 2Z& †Î VnÚÊ ã® ªÒ JBV :. ß g¿~V óV¾& †Ò ¿‡r g¿® ÚæÊ è¢

& Þ®6, VnÚÊ ãV ¾Ò&š R n Þ:.

Figure 6– ² Ç J&ú¢ÊÎ CHGAP® šÚš Ò k2Z VnÚʲ  šÚ ²Ê® ªÒ SEM’² V†² ÙÊ:.

Figure 6(a), (b), (c)ê 170 ×&r rÆr ÚæÂÆV 2¯W’² †J r CHGAP-170 šÚ® ²Ê’²r VnÚÊ 2ZÊ óV¾&

†Ò šÚ ²Ê& ç– 6J:Ê ff óVnê ٚ R n Þ:.

², VnÚÊ 2ZÊ 2RÒ² /Ò®V¢& Þ®6 220 ×&

r rÆr šÚ® ²ÊÊ 170 ×J: 6JÊ >‚ Ââ Òþš

Figure 6(d)&r R n Þ:. ÊF Z– g¿~V ¾& †Ò

&ú¢Ê¦® n§Ê f~ óVn k‡ ÂÆ® 6ÚæV Ã

Škk® ÂƲ Z®n† ¢ŽÊ:. Ê: Rê g¿~V 

¶n³ ¿‡r g¿® TgV fâ²:ê Table 1® R– î Ò®

²:.

4. û«

š g¿~Ò 2úÊr ë¿g¿ n§š Ғr ÚæÂÆ

V 2¯W’² †Jr ² Ç J&ú¢Ê– Šr®â

†Jr g¿Ò rÆ®V:. ², g¿~V 170&r 220 ײ è

šÊ 6Úæ : Ê& &ú¢Ê¦® n§Ê Òî J&ú

¢Ê® NŽÂÆV Šr®â †J~š «Î®V:. N R Úæ ÂÆV 2¯W’² †Jr g¿® Tg J: f⾖ ’¶ šÿÿ

· ã&r VnÚÊ® ãV ¾Òê Zš JV:. ÊÎ& rÆ r Ç J&ú¢Ê & Ê®ê ªNb†® ŽÊV óV

¶n³ Tgê fâ®V", JWžk‡– nV² óV®V:. ÊF

R:š RƲ 6Úæ  & Ûr ª¯W NŽÂÆ® †J Ê g¿® JW‡R VnÚÊ ã& Æ Wûš N²:ê :

š «Î®V:.

[÷£ KÜN FÂê KAIST †û‡6Úæ6âF’®  kWÎ &R ²çV¯¦® 2001š ¦Fš® ÒÖ &’² Ê>¢’Æ, Ê& f2:.

S+S

1. M. Vert and J. Mauduit, Biomaterials, 15, 1209 (1994).

2. J. P. Singhal, H. Singh, and A. R. Ray, Rev. Macromol. Chem., Phys., C28, 475 (1988).

3. D. Satyanarayana and P. R. Chatterji, Rev. Macromol. Chem. Phys., C33, 349 (1993).

4. R. Bhardwaj and J. Blanchard, J. Pharm., 170, 109 (1998).

5. H. Winet and J. Y. Bao, J. Biomed. Mater. Res., 40, 567 (1998).

6. D. L. Wise, T. S. Fellmann, J. E. Sanderson, and R. L. Wentworth, Drug Carriers in Biology and Medicine, Academic Press, New York, p 237 (1979).

7. S. H. Lee, Y. K. Han, Y. H. Kim, and S. H. Kim, J. Polym. Sci.; Part A:

Polym. Chem., 40, 2545 (2002).

8. D. Bendix, Polym. Degrad. Stab., 59, 129 (1998).

9. H. R. Kricheldorf, T. Mang, and J. M. Jonte, Macromolecules, 17, 2173 (1984).

10. P. Mainil-Varlet, R. Curtius, and S. Gogolewski, J. Biomed. Mater. Res., 36, 360 (1997).

11. S. H. Kim, Y. K. Han, H. Y. Kim, K. D.Ahn, and T. Chang, Makromol.

Chem., 194, 3229 (1993).

12. K. J. Zhu, S. Bihai, and Y. Shilin, J. Polym. Sci.; Part A: Polym. Chem., 27, 2151 (1989).

13. M. Okada, Y. Okada, A. Tao, and K. Aoi, J. Appl. Polym. Sci., 62, 2257 (1996).

14. M. Okada, K. Tachikawa, and K. Aoi, J. Polym. Sci.; Part A: Polym.

Chem., 35, 2729 (1997).

15. S. H. Lee, Y. K. Han, E. R. Kim, and S. S. Im, Polymer(Korea), 21, 926 (1997).

16. K. Tomita and H. Ida, Polymer, 14, 55 (1973).

17. S. K. Na, B. G. Kong, C. Y. Choi, J. G. Kim, W. H. Hong, and J. W. Nah, Polyme(Korea), 29, 41 (2005).

18. K. R. Hoffman and D. J. Casey, J. Polym. Sci.; Part A: Polym. Chem., 23, 1939 (1985).

19. C. Shih, J. Controlled Release, 834, 9 (1995).

// /

(a) (b)

// /

(c) (d)

Figure 6. SEM micrographs of the CHGAP prepared at 170 ×. (a) before hydrolysis; (b) after hydrolysis for 2 weeks; (c) after hydrolysis for 3 weeks; and (d) after hydrolysis for 2 weeks(the CHGAP prepared at 220 ×); film thickness, 180 µm.

참조

관련 문서

Allopurinol has been established to efficiently decrease the formation of new uric acid and reduce the frequency of uric acid obstructive uropathy in patients at risk of

Does not use D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate,

Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate,

Does not assimilate glucose, arabinose, mannose, mannitol, maltose, N-acetyl-glucosamine, potassium gluconate, capric acid, adipic acid, malic acid, trisodium

Acid digestion procedures were evaluated using different nitric to perchloric acid ratios and one- or two-step digestion to estimate the concentration of

Does not utilize, D-glucose, L-arabinose, D- mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium

d -Glucose, L -arabinose, d -mannose, d -mannitol, N-acetylglucosamine, d -maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate,

Does not utilize d -glucose, l -arabinose, d -mannose, d -mannitol, N-acetyl-glucosamine, d -maltose, potassium gluconate, capric acid, adipic acid, malic