• 검색 결과가 없습니다.

resistant to permanent deformation?

N/A
N/A
Protected

Academic year: 2022

Share " resistant to permanent deformation? "

Copied!
37
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Chapter 6 - 1

ISSUES TO ADDRESS...

• Stress and strain: What are they and why are they used instead of load and deformation?

• Elastic behavior: When loads are small, how much deformation occurs? What materials deform least?

• Plastic behavior: At what point does permanent deformation occur? What materials are most

resistant to permanent deformation?

• Toughness and ductility: What are they and how do we measure them?

Chapter 6:

기계적 성질(Mechanical Properties)

(2)

Chapter 6 -

학습목표

• 공칭 응력과 공칭 변형률의 정의

• 훅의 법칙과 이의 적용 조건

• 푸아송비의 정의

• 공칭 응력-변형률 선도를 이용한 (a) 탄성 계수, (b) 항복 강도(0.02 변형률-수평이동), (c) 인장 강도, (d) 길이 신장률 등의 결정

• 실린더형 연성 재료 시편의 변형에 따른 시편 형상의 변화

• 파손된 인장 시편에 대한 길이 신장률과 단면적 감소율의 산출

• 탄력 계수 및 인성(정적)의 정의와 단위

• 작용 하중과 시편의 순간 단위 면적, 초기 길이와 순간 길이를 알고 있는 인장 시편에 대한 진응력과 진변형률 산출

• 가장 일반적인 두 가지의 경도 시험법 및 이들의 두 가지 차이점

• (a) 미세 경도 시험 두 종류, (b) 이들의 일반적인 사용 조건 및 범위

• 연성 재료의 사용 응력 산출

2

(3)

Chapter 6 - 3

Elastic means reversible!

탄성변형(Elastic Deformation)

2. Small load

F d

bonds stretch

1. Initial 3. Unload

return to initial

F

d

Linear- elastic

Non-Linear-

elastic

(4)

Chapter 6 - 4

Plastic means permanent!

소성변형[Plastic Deformation (Metals)]

F

d

linear elastic

linear elastic

d plastic

1. Initial 2. Small load 3. Unload planes still

sheared

F

d elastic + plastic bonds

stretch

& planes shear

d plastic

(5)

Chapter 6 - 5

 응력의 단위: N/m 2 or lb f /in 2

공칭 응력(Engineering Stress)

• Shear stress, t:

Area, A o

F t F t

F s F

F F s t = F s

A o

• Tensile stress, s:

응력이 가해지기 전의 초기 단면적

s = F t

A o 2

f

m 2

or N in

= lb

Area, A o

F t

F t

(6)

Chapter 6 - 6

• Simple tension: cable

응력의 일반적인 형태

o

s = F A

o

t = F s A s

s

M

M A o

2R

F s A c

• Torsion (a form of shear): 회전 축 Ski lift

(photo courtesy P.M. Anderson)

A o = cross sectional area (when unloaded)

F

F

(7)

Chapter 6 - 7 (photo courtesy P.M. Anderson)

Canyon Bridge, Los Alamos, NM

o

s = F A

• Simple compression:

Note: compressive structure member (s < 0 here).

(photo courtesy P.M. Anderson)

응력의 일반적인 형태 (i)

A o

Balanced Rock, Arches

National Park

(8)

Chapter 6 - 8

• Bi-axial tension: • Hydrostatic compression:

Pressurized tank

s h < 0

(photo courtesy P.M. Anderson)

(photo courtesy P.M. Anderson)

응력의 일반적인 형태 (ii)

Fish under water

s z > 0

s q > 0

(9)

Chapter 6 - 9

• Tensile strain: • Lateral strain:

변형률은 단위가 없음

(Strain is always dimensionless.)

공칭 변형률(Engineering Strain)

• Shear strain:

q

90º

90º - q

y

x g = x/y = tan q e = d

L o

Adapted from Fig. 6.1(a) and (c), Callister & Rethwisch 8e.

d /2

L o w o

- d e L = L

w o

d L /2

(10)

Chapter 6 - 10

응력-변형률 시험(Stress-Strain Testing)

• 전형적 인장 시험기

Adapted from Fig. 6.3, Callister & Rethwisch 8e. (Fig. 6.3 is taken from H.W.

Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, p. 2, John Wiley and Sons, New York, 1965.)

specimen extensometer

• 일반적인 인장 시편

Adapted from Fig. 6.2, Callister &

Rethwisch 8e.

gauge

length

(11)

Chapter 6 - 11

선형 탄성 특성(Linear Elastic Properties)

• 탄성 계수(Modulus of Elasticity, E):

(also known as Young's modulus)

• 훅의 법칙(Hooke's Law):

s = E e s

Linear- elastic

E

e

F

F

simple

tension

test

(12)

Chapter 6 - 12

푸아송비(Poisson's ratio, n)

• 푸아송비(Poisson's ratio, n): 축방향 변형률에 대한 횡방향 변형률의 비

Units:

E: [GPa] or [psi]

n: 단위 무

n > 0.50 밀도 증가(density increases) n < 0.50 밀도 감소(density decreases) 공공의 형성(voids form)

e L

e -n

n = - e e L

metals: n ~ 0.33

ceramics: n ~ 0.25

polymers: n ~ 0.40

(13)

Chapter 6 - 13

기계적 특성(Mechanical Properties)

• 응력-변형률에서 직선의 기울기( 탄성 계수와 비례): 금속의 원자 간 결합력에 비례

Adapted from Fig. 6.7, Callister & Rethwisch 8e.

(14)

Chapter 6 - 14

• 탄성 전단 계수, G: t

G g t = G g

기타 탄성 특성

simple torsion test

M

M

• 등방성 재료의 특수 관계:

2(1 + n) G = E

3(1 - 2n) K = E

• 탄성 체적 계수, K:

pressure test: Init.

vol =V

o

. Vol chg.

= V

P

P P

P = - K V V o

P

V

K V o

(15)

Chapter 6 - 15

Metals Alloys

Graphite Ceramics Semicond

Polymers Composites /fibers

E(GPa)

Based on data in Table B.2, Callister & Rethwisch 8e.

Composite data based on reinforced epoxy with 60 vol%

of aligned

carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers.

Young’s Moduli: 비교

10 9 Pa

0.2 8

0.6 1

Magnesium, Aluminum Platinum Silver, Gold Tantalum Zinc, Ti Steel, Ni Molybdenum

G raphite Si crystal

Glass - soda

Concrete Si nitride Al oxide

PC

Wood( grain) AFRE( fibers) * CFRE *

GFRE*

Glass fibers only Carbon fibers only

A ramid fibers only

Epoxy only

0.4 0.8 2 4 6 10 2 0 4 0 6 0 10 0 8 0 2 00 6 00 8 00 10 00 1200

4 00

Tin Cu alloys Tungsten

<100>

<111>

Si carbide Diamond

PTF E HDP E

LDPE PP Polyester

PET PS

C FRE( fibers) * G FRE( fibers)*

G FRE(|| fibers)*

A FRE(|| fibers)*

C FRE(|| fibers)*

(16)

Chapter 6 - 16

• 단순 인장:

d = FL o E A o

d L = - n Fw o E A o

• 재료, 형상, 하중의 형태 모두 변형에 기여

• 큰 탄성 계수는 변형이 작음

유용한 선형 탄성 관계

F

A o

d /2

d L /2

L o

w o

• 단순 비틀림:

a = 2 ML o

 r o 4 G

M = moment

a = angle of twist

2r o

L o

(17)

Chapter 6 - 17

(at lower temperatures, i.e. T < T melt /3)

소성 변형[Plastic (Permanent) Deformation]

• 단순 인장 시험:

engineering stress, s

engineering strain, e Elastic+Plastic

at larger stress

e p

plastic strain

Elastic initially

Adapted from Fig. 6.10(a), Callister & Rethwisch 8e.

permanent (plastic)

after load is removed

(18)

Chapter 6 - 18

• 소성 변형이 시작되는 응력

금속의 항복 강도: 소성 가공에 대한 저항성

e p = 0.002 일때

항복 강도(Yield Strength, s y )

s y = yield strength

Note: for 2 inch sample e = 0.002 = z/z

 z = 0.004 in

Adapted from Fig. 6.10(a), Callister & Rethwisch 8e.

tensile stress, s

engineering strain, e

s y

e p = 0.002

(19)

Chapter 6 - 19

(20)

Chapter 6 - 20

Room temperature values

Based on data in Table B.4, Callister & Rethwisch 8e.

a = annealed hr = hot rolled ag = aged

cd = cold drawn cw = cold worked

qt = quenched & tempered

항복 강도 비교(Yield Strength : Comparison)

Graphite/

Ceramics/

Semicond Metals/

Alloys

Composites/

fibers Polymers

Y ie ld s tre ng th, s y (M Pa)

PVC

H ard to m eas ure

, since in tension, fracture usually occurs before yield.

Nylon 6,6

LDPE

70

20 40 60 50 100

10 30 200 300 400 500 600 700 1000 2000

Tin (pure) Al (6061) a Al (6061) ag

Cu (71500) hr Ta (pure) Ti (pure) a Steel (1020) hr Steel (1020) cd Steel (4140) a Steel (4140) qt

Ti (5Al-2.5Sn) a W (pure) Mo (pure) Cu (71500) cw

H ard to m eas ure,

in ceramic matrix and epoxy matrix composites, since in tension, fracture usually occurs before yield.

H DPE PP

humid dry

PC PET

¨

(21)

Chapter 6 -

VMSE: Virtual Tensile Testing

21

(22)

Chapter 6 - 22

인장 강도(Tensile Strength, TS)

• Metals: occurs when noticeable necking starts.

• Polymers: occurs when polymer backbone chains are aligned and about to break.

Adapted from Fig. 6.11, Callister & Rethwisch 8e.

s

y

strain

Typical response of a metal

F = fracture

Neck – acts as stress concentrator

eng ineering

TS

stre ss

engineering strain

• 공칭 응력-변형률 곡선에서의 최대 응력점

(23)

Chapter 6 - 23

인장 강도 비교(Tensile Strength: Comparison)

Si crystal

<100>

Graphite/

Ceramics/

Semicond Metals/

Alloys

Composites/

fibers Polymers

T en s ile

(MPa ) s tr en gt h, TS

PVC Nylon 6,6

10 100 200 300 1000

Al (6061) a Al (6061) ag Cu (71500) hr

Ta (pure) Ti (pure) a Steel (1020)

Steel (4140) a Steel (4140) qt Ti (5Al-2.5Sn) a W (pure) Cu (71500) cw

L DPE PP

PC PET

20 30 40 2000 3000 5000

Graphite Al oxide

Concrete Diamond

Glass-soda Si nitride

H DPE

wood ( fiber) wood(|| fiber)

1

GFRE (|| fiber)

GFRE ( fiber) C FRE (|| fiber)

C FRE ( fiber) A FRE (|| fiber)

A FRE( fiber) E-glass fib

C fibers Aramid fib

Based on data in Table B.4, Callister & Rethwisch 8e.

a = annealed hr = hot rolled ag = aged

cd = cold drawn cw = cold worked

qt = quenched & tempered AFRE, GFRE, & CFRE = aramid, glass, & carbon fiber-reinforced epoxy composites, with 60 vol%

fibers.

Room temperature

values

(24)

Chapter 6 - 24

• 파괴까지의 소성 변형의 정도

연성(Ductility)

• 단면적 감소율: x 100

A A RA A

%

o f o -

=

x 100 L

L EL L

%

o o f -

=

L f A o

A f L o

Adapted from Fig. 6.13, Callister & Rethwisch 8e.

Engineering tensile strain, e E ngineering

tensile stress, s

smaller %EL

larger %EL

• 길이 신장률:

(25)

Chapter 6 - 25

(26)

Chapter 6 - 26

• 파괴에 대한 일정 체적을 갖는 재료의 저항 정도

• 응력-변형률 곡선에서 파괴까지의 밑면적

인성(Toughness)

취성 파괴(brittle fracture): elastic energy

연성 파괴(ductile fracture): elastic + plastic energy

Adapted from Fig. 6.13, Callister & Rethwisch 8e.

very small toughness (unreinforced polymers)

Engineering tensile strain, e E ngineering

tensile stress, s

small toughness (ceramics)

large toughness (metals)

(27)

Chapter 6 - 27

탄력(Resilience, U r )

• 탄성변형에 따른 에너지 흡수력과 하중 제거에 따른 에너지의 회복력

선형 탄성을 가정하면,

Adapted from Fig. 6.15, Callister & Rethwisch 8e.

y y

r 2

U @ 1 s e

e s e

= y d U r

0

(28)

Chapter 6 - 28

탄성 변형 회복(Elastic Strain Recovery)

Adapted from Fig. 6.17, Callister & Rethwisch 8e.

St re ss

Strain

3. Reapply load 2. Unload

D

Elastic strain recovery 1. Load

s y

o

s y

i

(29)

Chapter 6 - 29

경도(Hardness)

• 국부 소성변형(조그만 흠이나 흠집)에 대한 재료의 저항성

• 큰 경도값의 의미:

-- 소성변형 혹은 파괴에 대한 저항성 -- 좋은 마찰저항 특성

e.g.,

10 mm sphere

apply known force measure size of indent after removing load

d

D

Smaller indents mean larger hardness.

increasing hardness

most plastics

brasses Al alloys

easy to machine

steels file hard

cutting tools

nitrided

steels diamond

(30)

Chapter 6 - 30

경도 측정(Hardness: Measurement)

• Rockwell

– 시편의 파괴나 과도한 손상이 없음

– 어떤 스케일이든지 경도를 130까지 측정 가능 – 어떤 하나의 스케일로 20-100 사이의 값 측정 – 미세 하중 10 kg

– 주 하중 60 (A), 100 (B) & 150 (C) kg

• A = diamond, B = 1/16 in. ball, C = diamond

• HB = Brinell Hardness

– TS (psia) = 500 x HB

– TS (MPa) = 3.45 x HB

(31)

Chapter 6 - 31

경도 측정(Hardness: Measurement)

Table 6.5

(32)

Chapter 6 - 32

진응력과 진변형률(True Stress & Strain)

Note: 인장 시 재료의 단면적은 감소

• 진응력(true stress)

• 진변형률(true strain)

i

T = F A

s

i o )

T = ln  

e

 )

+ e )

= e

e + s

= s

1 ln

1

T T

Adapted from Fig. 6.16, Callister & Rethwisch 8e.

(33)

Chapter 6 - 33

경화(Hardening)

• 진응력-진변형률 곡선:

s T = K  e T ) n

“true” stress (F/A) “true” strain: ln(L/L

o

) 변형 경화 지수:

n = 0.15 (some steels) to n = 0.5 (some coppers)

• 소성변형에 의한 항복점의 상승

s

e

large hardening small hardening

s y

0

s y

1

(34)

Chapter 6 - 34

재료 성질의 다양성

(Variability in Material Properties)

• 탄성계수는 재료의 성질

• 재료의 특정 성질은 시편의 불균일성(결함)에 기인 (defects, etc.)

• 확률(statistics)

– 평균값(mean)

– 표준편차(standard deviation)

s =  nx i - x ) 2

n - 1

 

 

1 2

n

x x n

n

=

n: 측정 횟수 또는 관찰 횟수 , X

i

: 개별 측정값

(35)

Chapter 6 - 35

• 예기치 못한 파손 방지를 위한 설계 여유

• 안전 계수(Factor of safety, N)

N

y w orking

= s

s N = 1.2 ~ 4

• Example: 항복이 일어나지 않기 위한 1045 탄소강 봉재의 지름(d)를 구하라. 안전 계수가 5인 경우.

설계/안전계수

(Design or Safety Factors)

220,000N

  ) d 2 / 4 5

N

y w orking

= s

s 1045 plain

carbon steel:

s y = 310 MPa TS = 565 MPa

F = 220,000N

d

L o

d = 0.067 m = 6.7 cm

(36)

Chapter 6 - 36

• Stress and strain: These are size-independent

measures of load and displacement, respectively.

• Elastic behavior: This reversible behavior often

shows a linear relation between stress and strain.

To minimize deformation, select a material with a large elastic modulus (E or G).

• Toughness: The energy needed to break a unit volume of material.

• Ductility: The plastic strain at failure.

Summary

• Plastic behavior: This permanent deformation

behavior occurs when the tensile (or compressive)

uniaxial stress reaches s y .

(37)

Chapter 6 - 37

Core Problems:

Self-help Problems:

ANNOUNCEMENTS

Reading:

참조

관련 문서

Strength and Deformation of Structural Concrete by Kaufmann... Understanding of Concepts in

 Settlement estimation based on realistic deformation characteristics measured from stress path tests which duplicate field stress paths and probable deformation modes of

– Analyze unloading and cyclic loading behavior for both rheological models and for real materials, including cyclic stress-strain curves, irregular variation of strain with

Being firmly based on the meteorological observation and prediction, the KMA is also involved in a wide variety of matters, from research into earthquakes, volcanic

The problems created by welding in industrial site are deformation and residual stress. They not only cause the nonlinear deformation but also have an influence

 Small-diameter rolls are preferable, because the smaller the roll radius the lower the roll force. However, small rolls deflect under roll forces

ƒ Precision forging(정밀단조), flashless forging(밀폐단조) : the part formed is close to the final dimensions, high forging load &amp; capacity equipment needed..

- All single-crystal grains within the aggregate experience the same state of deformation (strain);. experience the same state