• 검색 결과가 없습니다.

MCMC Inferenceof Bayesian Network:

N/A
N/A
Protected

Academic year: 2022

Share "MCMC Inferenceof Bayesian Network:"

Copied!
50
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Inference of Bayesian Network:

MCMC

Jin Young Choi

1

(2)

Outline

 Latent Dirichlet Allocation (LDA) model(Topic Modelling)

 Inference of LDA Model

 Markov Chain Monte Carlo (MCMC)

 Gibbs Sampling

 Collapsed Gibbs Sampling for LDA

 Estimation of Multinomial Parameters via Dirichlet Prior

(3)

LDA Model (Topic Modelling)

(4)

LDA Model

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑: 𝑝(𝑤|𝑧, 𝜃, ∅, 𝛼, 𝛽) 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖: 𝑝(𝑧, 𝜃, ∅|𝑤, 𝛼, 𝛽)

Dir(K, α): 𝑝(𝜇1, … , 𝜇𝐾|𝛼1, … , 𝛼𝐾)=Γ(σ𝑖=1

𝐾 (𝛼𝑖))

ς𝑖=1𝐾 Γ(𝛼𝑖) 𝜇1𝛼1−1 … 𝜇𝐾𝛼𝐾−1

Mul(K, 𝜇): 𝑝(𝑥1, … , 𝑥𝐾|𝜇1, … , 𝜇𝐾)=𝑥 𝑛!

1!…𝑥𝐾!𝜇1𝑥1 … 𝜇𝐾𝑥𝐾

(5)

LDA Model

Dir(K, α): 𝑝(𝜇1, … , 𝜇𝐾|𝛼1, … , 𝛼𝐾)=Γ(σ𝑖=1

𝐾 (𝛼𝑖))

ς𝑖=1𝐾 Γ(𝛼𝑖) 𝜇1𝛼1−1 … 𝜇𝐾𝛼𝐾−1

Mul(K, 𝜇): 𝑝(𝑥1, … , 𝑥𝐾|𝜇1, … , 𝜇𝐾)=𝑥 𝑛!

1!…𝑥𝐾!𝜇1𝑥1 … 𝜇𝐾𝑥𝐾

(6)

Inference of LDA Model

 Maximum A posteriori Probability (MAP) given observation 𝑤, 𝛼, 𝛽

Not Convex

Closed-form solution is not available 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑: 𝑝(𝑤|𝑧, 𝜃, ∅, 𝛼, 𝛽) 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖: 𝑝(𝑧, 𝜃, ∅|𝑤, 𝛼, 𝛽)

Likelihoods

(7)

Discrete Variables, Dirichlet

 Parameters: 𝛼

1

, … , 𝛼

𝐾

> 0 (concentration hyper-parameter)

 Support: 𝜇

1

, … , 𝜇

𝐾

∈ (0,1) where σ

𝑖=1𝐾

𝜇

𝑖

= 1

 Dir(K, α): 𝑝(𝜇

1

, … , 𝜇

𝐾

|𝛼

1

, … , 𝛼

𝐾

)=

Γ(σ𝑖=1𝐾 (𝛼𝑖))

ς𝑖=1𝐾 Γ(𝛼𝑖)

𝜇

1𝛼1−1

… 𝜇

𝐾𝛼𝐾−1

 Mul(K, 𝜇): 𝑝(𝑥

1

, … , 𝑥

𝐾

|𝜇

1

, … , 𝜇

𝐾

)=

𝑛!

𝑥1!…𝑥𝐾!

𝜇

1𝑥1

… 𝜇

𝐾𝑥𝐾

 Dir(K, c + α): 𝑝(𝜇|𝑥, 𝛼) ∝ 𝑝 𝑥 𝜇 𝑝(𝜇|𝛼)

where 𝑐 = (𝑐

1

, … , 𝑐

𝐾

) is number of occurrences

 𝐸[𝜇

𝑘

] =

𝑐𝑘+𝛼𝑘

σ𝑖=1𝐾 (𝑐𝑖+𝛼𝑖)

1 3

5

0 0.02 0.04 0.06 0.08 0.1

1 2 3 4 5

(8)

Markov Chain Monte Carlo (MCMC)

 Markov Chain Monte Carlo (MCMC) framework

Posteriors

Markov Blanket

i: 1, 2, 3, 4, 5, 6, 7, 8, 9 w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜙(1,3): 1

𝜙(2,3): 2

i: 1, 2, 3, 4, 5, 6, 7, 8, 9 w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜃(d,2): 5

(9)

Markov Chain Monte Carlo (MCMC)

 Markov Chain Monte Carlo (MCMC) framework

Posteriors

Markov Blanket

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜙(1,3): 1

𝜙(2,3): 2

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜃(d,2): 2

𝑝(𝑧|𝑤, 𝜙𝑘, 𝛼) Gibbs sampling

𝑝(𝑧|𝑤, 𝜙𝑘, 𝛼)

(10)

Gibbs Sampling (Review)

1

2

(11)

Collapsed Gibbs Sampling for LDA

 Latent Variables

• 𝜃 ∶ topic distribution in a document

• ∅ : word distribution in a topic

• 𝑧 : topic assignment to a word 𝑤

• 𝑝(𝜃, ∅, 𝑧|𝑤, 𝛼, 𝛽)

 Collapsed Gibbs Sampling

• 𝜃 and ∅ are induced by the association between 𝑧 and 𝑤

• 𝑧 is sufficient statistic to estimate 𝜃 and ∅

• Simpler algorithm can be used by sampling only 𝑧 after marginalizing 𝜃 and ∅.

• 𝑝 𝑧 𝑤, 𝛼, 𝛽 = ׭ 𝑝(𝜃, ∅, 𝑧|𝑤, 𝛼, 𝛽) 𝑑𝜃𝑑𝜙

𝑝(𝑧|𝑤, 𝛼, 𝛽) 𝑝(𝑧|𝑤, 𝜙𝑘, 𝛼) Collapsed Gibbs Sampling

(12)

Collapsed Gibbs Sampling for LDA

 The Gibbs sampling equation for LDA (Topic Labelling, Unsupervised Learning)

Not related with 𝑧−𝑑𝑖

𝑝(𝑧|𝑤, 𝛼, 𝛽)

(13)

Collapsed Gibbs Sampling for LDA

 Dirichlet and multinomial probability into 𝑝 𝜙 𝛽 and 𝑝(𝑤|𝑧, 𝜙)

where

Dir(K, α): 𝑝(𝜇1, … , 𝜇𝐾|𝛼1, … , 𝛼𝐾)=Γ(σ𝑖=1𝐾 (𝛼𝑖))

ς𝑖=1𝐾 Γ(𝛼𝑖) 𝜇1𝛼1−1 … 𝜇𝐾𝛼𝐾−1

Mul(K, 𝜇): 𝑝(𝑥1, … , 𝑥𝐾|𝜇1, … , 𝜇𝐾)= 𝑛!

𝑥1!…𝑥𝐾!𝜇1𝑥1 … 𝜇𝐾𝑥𝐾

𝛽 𝑣 − 1

(14)

Collapsed Gibbs Sampling for LDA

 The number of times that the word 𝑤𝑑𝑖 = 𝑣 is assigned to the topic 𝑧𝑑𝑖 = 𝑘

where ℎ𝜙(𝑘, 𝑣) ∈ 𝑁𝐾×𝑉 denotes the histogram matrix which counts the number of times given by

w: 1, 2, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 1, 1, 1, 2, 1, 2 h(2,3): 0

h(1,3): 2

(15)

Collapsed Gibbs Sampling for LDA

 In consequence

𝛽 𝑣 − 1

𝛽 𝑣 − 1 𝛽 𝑣 − 1

Dir(K, α): 𝑝(𝜇1, … , 𝜇𝐾|𝛼1, … , 𝛼𝐾)=Γ(σ𝑖=1𝐾 (𝛼𝑖))

ς𝑖=1𝐾 Γ(𝛼𝑖) 𝜇1𝛼1−1 … 𝜇𝐾𝛼𝐾−1

Mul(K, 𝜇): 𝑝(𝑥1, … , 𝑥𝐾|𝜇1, … , 𝜇𝐾)= 𝑛!

𝑥1!…𝑥𝐾!𝜇1𝑥1 … 𝜇𝐾𝑥𝐾

(16)

Collapsed Gibbs Sampling for LDA

 Integrating PDF

𝛽 𝑣 − 1

𝛽 𝑣 − 1

(17)

Collapsed Gibbs Sampling for LDA

 In a similar manner Topic portion corresponding to a word

w: 1, 2, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 1, 1, 1, 2, 1, 2 h(d,2): 4

𝛼 𝑘 − 1

(18)

Collapsed Gibbs Sampling for LDA

 In a similar manner

𝛼 𝑘 − 1

𝛼 𝑘 − 1

𝛼 𝑘 − 1 𝛼 𝑘 − 1

(19)

Collapsed Gibbs Sampling for LDA

 The joint distribution of words 𝑤 and topic assignments 𝑧 becomes

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜙(1,3): 1

𝜙(2,3): 2

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜃(d,2): 5

(20)

Collapsed Gibbs Sampling for LDA

 The Gibbs sampling equation for LDA

Not related with 𝑧−𝑑𝑖

𝑝(𝑧|𝑤, 𝛼, 𝛽)

(21)

Collapsed Gibbs Sampling for LDA

 The Gibbs sampling equation for LDA

(22)

Collapsed Gibbs Sampling for LDA

 The Gibbs sampling equation for LDA

∝ ෑ

𝑘=1 𝐾

𝑣=1 𝑉

(23)

Collapsed Gibbs Sampling for LDA

 The Gibbs sampling equation for LDA

𝑘 depends on the sampled 𝑧𝑑𝑖

∝ ෑ

𝑑=1 𝐷

𝑘=1 𝐾

= ෑ

𝑑=1 𝐷

𝑘=1 𝐾

constant

(24)

Collapsed Gibbs Sampling for LDA

 The Gibbs sampling equation for LDA

 Sampling

𝑝(𝑧𝑑𝑖)

1 2 3 4 5

෍ 𝑝(𝑧𝑑𝑖)

1 2 3 4 5

𝑣=1 𝑉

𝑝(𝑧𝑑𝑖|𝑧−𝑑𝑖, 𝑤, 𝛼, 𝛽) ∝

Tractable

∝ ෑ

𝑘=1 𝐾

𝑣=1 𝑉

=

𝑑=1 𝐷

𝑘=1 𝐾

What is the inferred label of 𝑤𝑑𝑖 ?

(25)

Collapsed Gibbs Sampling for LDA

 Estimation of the multinomial parameters 𝜃 and 𝜙

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜙(1,3): 1

𝜙(2,3): 2

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜃(d,2): 5

w: 1, 2, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 1, 1, 1, 2, 1, 2 𝜃(d,2): 4

← 2

← 1

(26)

Interim Summary

 LDA Model (Topic Modelling)

 Inference of LDA Model

 Markov Chain Monte Carlo (MCMC)

 Gibbs Sampling

 Collapsed Gibbs Sampling for LDA

 Estimation of Multinomial Parameters via Dirichlet Prior

(27)

Inference of Bayesian Network:

Variational Inference

Jin Young Choi

1

(28)

Outline

 What is variational inference ?

 Kullback–Leibler divergence (KL-divergence) formulation

 Dual of KL-divergence

 Variational Inference for LDA

 Estimating variational parameters

 Estimating LDA parameters

 Application of VI to Generative Image Modeling (VAE)

 Application of LDA toTraffic Pattern Analysis

(29)

LDA Model (Topic Modelling)

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑: 𝑝(𝑤|𝑧, 𝜃, ∅, 𝛼, 𝛽) 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖: 𝑝(𝑧, 𝜃, ∅|𝑤, 𝛼, 𝛽)

(30)

Markov Chain Monte Carlo (MCMC)

 Markov Chain Monte Carlo (MCMC) framework

Posteriors

Markov Blanket

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜙(1,3): 1

𝜙(2,3): 2

w: 1, 3, 2, 3, 3, 5, 4, 1, 6 z : 1, 2, 2, 2, 1, 1, 2, 1, 2 𝜃(d,2): 5

𝑝(𝑧|𝑤, 𝜙𝑘, 𝜃𝑘)

(31)

Collapsed Gibbs Sampling for LDA

 The Gibbs sampling equation for LDA

 Sampling

𝑝(𝑧𝑑𝑖)

1 2 3 4 5

෍ 𝑝(𝑧𝑑𝑖)

1 2 3 4 5

𝑣=1 𝑉

𝑝(𝑧𝑑𝑖|𝑧−𝑑𝑖, 𝑤, 𝛼, 𝛽) ∝

Tractable

∝ ෑ

𝑘=1 𝐾

𝑣=1 𝑉

=

𝑑=1 𝐷

𝑘=1 𝐾

What is the inferred label of 𝑤𝑑𝑖 ?

(32)

Variational Inference (VI)

 Approximating posteriors in an tractable probabilistic model

 MCMC: stochastic inference

 VI: deterministic inference

 The posterior distribution 𝑝 𝑧 𝑥 can be approximated by a variational distribution 𝑞(𝑧)

where 𝑞(𝑧) should belong to a family of simpler form than 𝑝 𝑧 𝑥

 Minimizing Kullback–Leibler divergence (KL-divergence)

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑: 𝑝(𝑤|𝑧, 𝜃, ∅, 𝛼, 𝛽) 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖: 𝑝(𝑧, 𝜃, ∅|𝑤, 𝛼, 𝛽) 𝑝 𝜙 𝑤, 𝑧 ∝ 𝑝 𝑤 𝜙, 𝑧 𝑝(𝜙|𝛼) ≈ 𝑞 𝜙|𝛾

𝐶𝜙1ℎ 1 +𝛼1𝜙2ℎ(2)+𝛼2 …𝜙𝑣ℎ(𝑣)+𝛼𝑣 ≈ 𝐶𝜙1𝛾1𝜙2𝛾2 …𝜙𝑣𝛾𝑣

(33)

Variational Inference (VI)

 Kullback–Leibler divergence (KL-divergence)

constant Minimize −

(34)

Variational Inference (VI)

 Dual of KL-divergence

entropy of 𝑞 𝑧

(35)

Variational Inference (VI)

 Choose a variational distribution 𝑞 𝑧

 An approximation (Parisi, 1988) was proposed

where 𝜆𝑖 is a variational parameter for each hidden variable 𝑧𝑖

 Estimation of 𝜆 መ𝜆 = max

𝜆 ℒ 𝜆ҧ

𝛻𝜆ℒ 𝜆 = 0ҧ

where 𝑞 . would be designed for ҧℒ 𝜆 to be convex.

𝑝 𝜙 𝑤, 𝑧 ∝ 𝑝 𝑤 𝜙, 𝑧 𝑝(𝜙|𝛼) ≈ 𝑞 𝜙|𝛾

𝐶𝜙1ℎ 1 +𝛼1𝜙2ℎ(2)+𝛼2 …𝜙𝑉ℎ(𝑉)+𝛼𝑣 ≈ 𝐶𝜙1𝛾1𝜙2𝛾2 …𝜙𝑉𝛾𝑉 𝑝 𝜃 𝑧 ∝ 𝑝 𝑧 𝜃 𝑝(𝜃|𝛼) ≈ 𝑞 𝜃|𝜇

𝐶𝜃1ℎ 1 +𝛼1𝜃2ℎ(2)+𝛼2 …𝜃𝐾ℎ(𝐾)+𝛼𝑣 ≈ 𝐶𝜃1𝜇1𝜃2𝜇2 …𝜃𝐾𝜇𝐾

ҧℒ 𝛾 ҧℒ 𝜇 𝑧 → 𝜙

𝑥 → 𝑤 𝑧 → θ 𝑥 → 𝑧

(36)

Variational Inference for LDA

 Objective function and joint probability of LDA

Maximization is intractable

→ Variational Inference

(37)

Variational Inference for LDA

 A simpler variational distribution

where 𝜆, 𝛾, 𝜑 are the variational parameters used for approximate inference of 𝜙, 𝜃, 𝑧 , respectively.

𝑝 𝜙 𝑤, 𝑧 ∝ 𝑝 𝑤 𝜙, 𝑧 𝑝(𝜙|𝛽) ≈ 𝑞 𝜙|𝜆

𝐶𝜙1ℎ 1 +𝛽1𝜙2ℎ(2)+𝛽2 …𝜙𝑉ℎ(𝑉)+𝛽𝑉 ≈ 𝐶𝜙1𝜆1𝜙2𝜆2 …𝜙𝑉𝜆𝑉 𝑝 𝜃 𝑧 ∝ 𝑝 𝑧 𝜃 𝑝(𝜃|𝛼) ≈ 𝑞 𝜃|𝛾

𝐶𝜃1ℎ 1 +𝛼1𝜃2ℎ(2)+𝛼2 …𝜃𝐾ℎ(𝐾)+𝛼𝐾 ≈ 𝐶𝜃1𝛾1𝜃2𝛾2 …𝜃𝐾𝛾𝐾

, 𝑤𝑑𝑖)

(38)

Variational Inference for LDA

 Optimal values of the variational parameters

𝑝 𝜙 𝑤, 𝑧 ∝ 𝑝 𝑤 𝜙, 𝑧 𝑝(𝜙|𝛽) ≈ 𝑞 𝜙|𝜆

𝐶𝜙1ℎ 1 +𝛽1𝜙2ℎ(2)+𝛽2 …𝜙𝑉ℎ(𝑉)+𝛽𝑉 ≈ 𝐶𝜙1𝜆1𝜙2𝜆2 …𝜙𝑉𝜆𝑉 𝑝 𝜃 𝑧 ∝ 𝑝 𝑧 𝜃 𝑝(𝜃|𝛼) ≈ 𝑞 𝜃|𝛾

𝐶𝜃1ℎ 1 +𝛼1𝜃2ℎ(2)+𝛼2 …𝜃𝐾ℎ(𝐾)+𝛼𝐾 ≈ 𝐶𝜃1𝛾1𝜃2𝛾2 …𝜃𝐾𝛾𝐾

(39)

Variational Inference for LDA

 Optimal values of the variational parameters

𝑝 𝜙, 𝜃, 𝑧 𝑤, 𝛼, 𝛽 = 𝑝 𝜙, 𝜃, 𝑧, 𝑤 𝛼, 𝛽 /𝑝(𝑤)

(40)

Variational Inference for LDA

 Dual of KL divergence

ℒ 𝑞 = log 𝑝 𝑤 𝛼, 𝛽 − 𝐷[𝑞(𝜙, 𝜃, 𝑧|𝜆, 𝛾, 𝜑)||𝑝( 𝜙, 𝜃, 𝑧|𝑤, 𝛼, 𝛽)]

 Yielding the optimal value of each variational parameter

𝑓(𝛾𝑑) 𝑓(𝜆𝑘)

, 𝑤𝑑𝑖 )

(41)

Variational Inference for LDA

 Expectation

where Ψ(. ) is the digamma function (Blei et al. 2003) given by

 The iterative updates of the variational parameters are guaranteed to converge into a stationary point

 For the iteration, 𝜑 are updated with λ and 𝛾 fixed, and λ and 𝛾 are updated given the fixed 𝜑

(42)

Variational Inference for LDA

 The final distribution results 𝜙 𝑎𝑛𝑑 𝜃

𝑝(𝑧𝑑𝑖|𝜑𝑑𝑖)

1 2 3 4 5

, 𝑤𝑑𝑖 )

(43)

References for LDA and VI

 Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.

JML. Res., 3, 993–1022.

 Blei, D. M. (2012). Probabilistic topic models. Commun. ACM, 55(4), 77–84.

 Blei, D. M. (2014). Build, compute, critique, repeat: Data analysis with latent variable models. Annual Review of Statistics and Its Application, 1(1), 203–232.

 Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Mach. Learn., 37(2), 183–233.

URL http://dx.doi.org/10.1023/A:1007665907178

(44)

Perception and Intelligence Lab.

Ex) Image Generation

19

Generative Image Modeling

(45)

Perception and Intelligence Lab.

Goal: Model the distribution p(x)

cf) Discriminative approach

20

Generative Image Modeling

Issue: High Dimensional low resolution (64x64x3 = 12,288)

(46)

Perception and Intelligence Lab.

Goal: Model the distribution p(x)

Using Deep Neural Networks (CNNs)

21

Generative Image Modeling

(47)

Perception and Intelligence Lab.

Two prominent approaches

 Variational Auto-encoder (VAE)

 Generative Adversarial Networks (GAN)

22

Deep Generative Models

(48)

Perception and Intelligence Lab.

23

Variational Auto-encoder (VAE)

Encoder Decoder

x

x

z

𝑳𝒐𝒔𝒔 = −𝒍𝒐𝒈𝑷𝜽 𝒙 𝒛 + 𝑫𝑲𝑳(𝒒𝝋 𝒛 𝒙 ||𝑷𝜽(𝒛))

Reconstruction Loss

𝒑𝜽 𝒙 𝒛 : a multivariate Gaussian (real-valued data) 𝒑𝜽 𝒙 𝒛 : a Bernoulli (binary-valued data)

Variational Inference

(49)

Perception and Intelligence Lab.

24

Variational Auto-encoder (VAE)

Encoder Decoder

x

x

z

𝑳𝒐𝒔𝒔 = −𝒍𝒐𝒈𝑷𝜽 𝒙 𝒛 + 𝑫𝑲𝑳(𝒒𝝋 𝒛 𝒙 ||𝑷𝜽(𝒛))

Variational Inference

𝒑𝜽 𝒛 ~𝑵(𝟎, 𝑰)

Decoder x

z

𝑺𝒂𝒎𝒑𝒍𝒊𝒏𝒈 𝒛 𝒇𝒓𝒐𝒎 𝑵(𝟎, 𝑰)

(50)

Interim Summary

 What is variational inference ?

 Kullback–Leibler divergence (KL-divergence) formulation

 Dual of KL-divergence

 Variational Inference for LDA

 Estimating variational parameters

 Estimating LDA parameters

 Application of VI to Generative Image Modeling

참조

관련 문서

The present study examined the accuracy of cardiac rhythm analysis with an automated external defibrillator during ambulance transfer using human body models

100 lux 조건 하에 동영상 촬영을 진행하 고, 모든 동영상 촬영이 끝난 후 Noldus의 Ethovision(ver. 8.0)으 로 mouse가 open arms에 머문 시간과 mouse가 open

The optimized STL files of the 3D tooth models were imported into the finite element analysis software, CosmosWorks (Structural Research & Analysis

: At a critical point an infinitesimal variation of the independent variable results in no change in the value of the function..

• Connect to information (products: information server; data pub-lisher). • Understand information (data architect,

- It is customary to classify turbulence models according to the number of transport equations used for turbulence parameters.. 27.2 Summary of Turbulence Models

- These models do not involve transport equations for turbulence quantities - These models assume that the turbulence is dissipated by viscous action at the point where it

→ The simulation of turbulence in heat and mass transport models is always important because the scalar transport equation does not contain any pressure gradient