• 검색 결과가 없습니다.

 1.  The Effect of End Temperature on Coke Qualities   

N/A
N/A
Protected

Academic year: 2022

Share " 1.  The Effect of End Temperature on Coke Qualities    "

Copied!
4
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

889 HWAHAK KONGHAK Vol. 38, No. 6, December, 2000, pp. 889-892

(Journal of the Korean Institute of Chemical Engineers)

    



 

(2000 4 18 , 2000 9 4 )

The Effect of End Temperature on Coke Qualities

Kyong-Ho Yoon, Ki-Hong Kim and Yong-Kuk Lee

Energy & Chemical Process Research Team, Research Institute of Industrial Science & Technology (Received 18 April 2000; accepted 4 September 2000)

 

 !"# $%&'( )*+,. -.  / 01  # 23,)  45 67 8 9: ;< =>?) @- 78  45 ABC DEF: ; G H I?,. 7;< JKLM< NO

P   QRS5 TU VW XYO ZS/ Y['( 3\  ]^ _`7 aF: b8 cd 2<

5 mno,  5 6 FW  5 p5qHr  4: s=F),  45

t5 u:    5 v 2<  w'( 7x: ; y H I?,. 7z/ b8<  e.

 {|( }~q H I?,.

Abstract−This study was performed to investigate the relationship between the coke end-temperature and coke quality by blending 20 kg low cost coal in the range of 15-40 wt%. Increasing the coke end temperature did not necessarily improve the coke quality at constant mixing ratios of low cost coal. Both inner pore of coke, produced by rapid evaporation of volatile matter caused by fast coking rate, and the thermal stress in high temperature resulted in deterioration in coke quality. There was the coke end-temperature for coke quality to be the most qualified within studied temperatures. As portion of low cost coal in the mixture increased, coke quality decreased and the range of coke end-temperature in which coke quality became maximum transferred to higher temperature. These observations could be explained in terms of coke heat quantity and coal mid-temperature.

Key words: Coke Oven, Low Cost Coal, Coke End Temperature, Coke Quality

E-mail: khyoon@rist.re.kr

1.  

     1,200-1,300oC 18-19

%& '( )*+, -. /0 %&+  -. 1 23 4. /0 &5  678 9:; <=

E FGH" IH JK L @. IH   FGH

 ' F( B FGM N%  IH OPM

RB UV WXYZ /0 -. [ F()*\ ]V

. 8 ^_`a bc [  d9 /0 FGH QRB ? eIf, C5 V. FGH QRB eIfg hi j+ F(  k eIl m FGH QRB nA

' QR o pqr st j\ eIl.

* C )*+ 8 6uJ,, 6u <

R  + d. v]dJ w8  )*7?x -.

J y? z, {R |8  %&. }~ v]dJ w8

8 }€ ‚J |g pƒ v]dJ „ …  C

 `†r ‡8 ˆ (J ^_) v]dJ w8 

^ ‰†A )*#a '(EB Š‹ ? @. }~ J ?

DE CMCP(Coal Moisture Control System)S CDQ(Coke Dry Quen- ching)

@. }~ J~  DE  ’“ i ”•

 “–R ^_ )*\ —˜" b '

{RB ™‘7 ? @ š›J œ=. J  Fž

^_ )*\ — /Ÿ {R Œ  GI š›a

£#a '(E [ ¤r ¥¦ gA“ §.

(2)

890 

 38 6 2000 12

 )*+ 8 6ua ¨©, ª«, ¬ Ž

­r6 © ®¯+ @. /0 “« %&+r ‡ 

 ? °A C )* ±y &r ­d" ²³E

* Ž ´A ­ r6 € )*r ‡ A~ r6

%&+  ‰†A )*. /0 ? ° «

‘ -., }X ˆ  )*#a 'B ¥¦´

µ¶ g·J @a, “« *  “j 

« ƒ +r ‡” J  Fž ªª. ­;

 +´ d. v]dJ „ …  C )*

´ FžH`8 „ … HJ.

^_`a  v]d 23 ª¸  ­d8  #

¹ ºN(volatile matter)" ¹bR(fluidity)0 ‘+ @[1]. º N8  < #¹+ @ “\J »8 ¼.J I "

< i+ %d+ g–9½ ‰†¼J.   @ 

`*+ ºN8 ¾(B 900¿5oC 7 § p N

%+ ¼. < ? À ÁrB Âc Ã. Thijssen Ž

‘“( /Ä ºN" {RS WsB ºN kJ

—7?x {R Å r Æa ‘+ @[2]. J~

Ç98 -.J “ FI, *ÈtR i  %dt RS ÉÊ JK 26 EË` » É^ g r g

 ÌJ Íβ  %d+g pƒJ.

8 QR 9Ï# /0 FI, *È, I ÐsB „¸  S B %dV +Ñ J " *È “ 9

` vRB ¹bR Ã  v]d ÒT r? 

 )*[3].  ¹bR © Gieseler Plastometer n

Ñ J *È  “ <Ó stirrerB D¸A ^ Ô

7 p stirrer ÕOtRB Dial Gauge rÖ : ÕOtR(DDPM:

Dial Division Per Minute) Ã, JB ¹bR0 . ^_`a

 DDPM ?× LMF(Logarithm Maximum Fluidity)B )*

. Chen Ž[4]8 ºN"  ¹bR {R ª¸ 2 3 Ž{R ØÙa à ¹bR Š8 26   ¹b R eI {R eI V 23 ª¸ @a,, ¹bR

 |8 26 ¹bR eI /Ÿ 238 „ … Ðr ºN

 eI i€ Úy+ Æ ‘ @.

2.  

”‘g hA Ý Þß H௸B Fig. 1" áJ »§. 

¯* box h J âš 5 mm Í$ SUS ã. 200ä400 ä400 mm g )å boxÊ typea  20 kg(? æ#)

ç ? @V »§. *  6 )å box ʽ ”è 

J âš ʽJ. ké SiC ;êB 6âë ì 12âB í§

a, ké R-Type Oî íA QRB C¥7 ? @Rx

§. ï ;êB ‘¨g hA ;ê ð SiC plateB í

§. µ QRB ' QR 9Ï ¹rl m ¯* box 

 20 kg wet g4 ¯ñR 715 kg/m3(dry g4 625 kg/m3)a  8 m Ï{gB )*i  › ¯fò. ¯ óm µ 9

3â K-Type T/CB ¯ box Ì é,  <ô é, }X } <

åå õA 3â T/C öÉQRB  ¡QR ©§.

Þß < N%+   ³÷gB )*A N%+  \ R

 /0 ; ø”ù m úå?S  ËûM ÒÄ [ ? 

 m À š‹fò. Þß ü( m Ï{gB { [ Jb

M .G úå ý þ 18 R úåfò. úå

 R 15 mm J9 10 kg ÙÿA JIS ¢‚   150

(DI150)B n§[5].

^_ †E —7?x  ºN" ¹bR eI

±yB ´§. ˆ Table 1 Òù S áJ ì 8â ¡ß

 ‰†A )*§a,, CW, FR Ž  ¡ß &r ï

j) J / þ  Ã. ^_ KWS MW k

15-40%B †#a ^_ †EB C¥§. †› 

­d8 Fig. 2 Òù S áJ ^_ †E —7?x ºN

 kJ — ±3 ‘J, ¹bR ¦G ±3 ‘JRx

§.

3. 

3-1.      Table 1

{RS WsB Fig. 3 ÒTò.  ¡QR 900oC

 —A 900oC J9J + {R |V Ò @.

1,000oC J9^ ±y {R ;´ v Å r Æ >

? @. J~ Ç9 ´7 p ^\ ^_ † ±y 

‘ . 900oC J {R 9:; Š 900oC  

 jt; {R — Æ8 900oC J üO 

 ‘J,, ÞßJ  Æa ‘J 900oC „ Þß Fig. 1. Schematic diagram of test coke oven.

1. Control panel 5. Heating furnace 8. Motor

2. R-type T/C 6. Coal 9. Tar

3. Gas outlet pipe 7. Coal bucket 10. Blower 4. Heater

Table 1. Mixing ratios of coal for test

Coal Mixing ratios(%)

CW FR LC GC GY GP KW MW

15 15 18 17 20 10 15 10

15 13 17 17 18 10 10 10

12 13 17 17 17 19 10 15

10 13 17 15 16 19 15 15

18 13 16 14 15 19 15 20

16 13 15 14 14 18 20 20 Mixing ratios of

low cost coal(%)

15 20 25 30 35 40

(3)

     891

HWAHAK KONGHAK Vol. 38, No. 6, December, 2000 a ‘ . 1,000oC J9 {R ;´ Å r Æ8

Þß8   I tR ¤ 0 ºN

jt N%a i T gJ r Ç9" #$ |8 Q R   ‚  Ç9 ' J @ Æa ‘ [6].

/0 ^_ 15% †7 ±y J 1,000oC J9a Þß œ

= …J  ¡QRB 950oC Om WX ÆJ ¤r¥¦

" {R™‘  ÝÍ c`^ Æa Ð.

3-2.      

Fig. 4 ^_ †E 15, 20, 25, 30, 35, 40% ±y  ¡ QRS {RS WsB Òù }J. h D£ ^_

 15% † ±yS r Ý † {R  

 ár0R ^_ †E —7?x {R Š”

Ü ? @. ï ^_ †E —7?x {R  

+  ¡QR h  |8 QR éa Jb Æ Ü

? @. J~ Ç98 I \"  <ôQR eI D£o

­QR(, 1,000oC)qr RPfÑ j \ ,, I \8  #¹ ? kJ ^7 ±y © ºN k

i ][7].  Þß < N% ºN8 FGH OP+

 \ #¹ 9½ IH L¦a  ï 

 OP šiA Þß tRB !" »* g pƒJ.

/0 ^_ †E —7?x ºN kJ —g pƒ ­

 QR RPg hi œ= I \ —f„,  #  Þßi$ 7 Æa Ð. JÆ ™ g hi ^_

 †E eI /Ÿ I \ n ]"B Table 2 Ò Tò ^_ †E —7?x I \J — Æ Ü

? @ò. Fig. 5 heating QRB 1,050oC, Þß 4.0a

^V ¹r% p ^_ †E eI /Ÿ  <ôQR e IB Òù }J. ^_ kJ w?x ^ \ ^ Þ ß b› j RP  ¡QR Š” Ü ? @.

/0 ^_ †EB —fg hi  ¡QRB g°‘

 |V  ÆJ {RB ™‘Ñ `† Æa Ð.

Fig. 2. Characteristics of volatile matter and fluidity of coal as a func- tion of mixing ratio(see text).

Fig. 3. The effect of coke end temperature on coke quality for 15% low cost coal.

Fig. 4. The effect of coke end temperature on coke quality for 15-40%

low cost coal.

Table 2. The effect of mixing ratios of low cost coal on coke heat quan- tities

Mixing ratios of low cost coal(%) Coke heat quantities(kcal/kg) 15

20 25 30 35 40

369 374 376 380 382 385

Fig. 5. The effect of ratios of low cost coal on coal mid-temperature.

(4)

892 

 38 6 2000 12

4.  

^_ †E 15-40% h ^_ )*\J —7?x º NJ —, ¹bR ¦G † ­d  8â ¡ß 

 20 kg )*§. ^\ ^_ † ±y  ¡Q RB |  {R b_A 9Ï Æ8 ”&ò, ­

QR J9 {R ;´ Å r Æ > ? @ò. J Æ8 Þß8   I tR ¤ 0 º N jt N%a i T gJ r Ç9" #$

|8 QR   ‚  Ç9 ' J @ Æa

°ã,,  ¡QR ár0R ^_ †E —7?x

  +  ¡QR h  |8 QR éa Jb

Æ Ü ? @ò. J~ Ç98 I \"  <ôQR e I D£7 ? @ò.



1. Kazuma, A.: Fuel, 76, 17(1997).

2. Thijssen, N. J. W and Vander, T.: I&SM, April, 20(1984).

3. Ranajit, C.: Journal of Mines, Metals & Fuels, February-March, 52 (1987).

4. Chen, C. W., Shen, J. F., Hong, M. T., Chung, K. A. and Yen, H. J.:

3rd International Cokemaking Congress, September 16-18, 69(1996).

5. Sacher, J., Panzer, H. and Kandler, W.: 3rd International Cokemak- ing Congress, September 16-18, 77(1996).

6. Palmu, P., and Swanljung, J.: 3rd International Cokemaking Con- gress, September 16-18, 64(1996).

7. Yoon, K. H., Kim, K. H. and Lee, Y. K.: HWAHAK KONGHAK, 35, 585(1997).

참조

관련 문서

In this paper we report the reactivity and mechanism of the reactions involving carbonyl ylide intermediate from the photolytic kinetic results of non-catalytic decompositions

Current Tokyo is rich in green compared to other metro cities. In some parts, the greenery has been contributed by the many inherited gardens from the Edo era to today which

In this work, CrZrN films were deposited on steel substrates by closed field unbalanced magnetron sputtering, and their high-temperature oxidation property was investigated..

The transition velocity from bub- bling to fast fluidization was determined by means of emptying time method in the high temperature circulating fluidized bed (0.02 m i.d..

AFM microphotography of PC films: (a) PC film made by 1,3-dioxolane and (b) PC film made by methylene chloride at 40 ℃. Effect of evaporation temperature on surface roughness

developed a method involving the extraction of the complex at high temperature followed by the solid-liquid separation at room temperature.. In recent years, Jin-zhang Gao did

(2000) 32) ADHD, attention deficit hyperactivity disorder; VR, virtual reality; CPT, continuous performance test; VC, virtual classroom; TOVA, Test of Variables of Attention;

At each time step, the stress tensor is updated by integrating the rate of strain term and its effect on the fluid is included in order to complete the update of the