• 검색 결과가 없습니다.

Kinetic Approach of Plasmas

N/A
N/A
Protected

Academic year: 2022

Share "Kinetic Approach of Plasmas "

Copied!
25
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

I ntroduction to Nuclear Fusion

Prof. Dr. Yong-Su Na

(2)

2

How to describe a plasma?

(3)

3

Thermonuclear fusion with high energy particles of 10-20 keV energy → plasma

Three approaches to describe a plasma

- Single particle approach - Kinetic theory

- Fluid theory

Description of a Plasma

http://http://dz-dev.net/blog/tag/eruption-solaire

(4)

4

Kinetic Approach of Plasmas

3

1020

~ m ne

18 3

~ m

Volume

1021

# of electrons: ~

3 GHz of personal computer:

3x109 #/s ~ 1017 #/year

→ 104 years

(5)

5

• Boltzmann equation

dt du u

f dt

du u

f dt

du u

f dt

dz z f dt

dy y f dt

dx x f t

f dt

df z

z y

y x

x

 

 

 

 

 

 

 

Kinetic Approach of Plasmas

u f a f

t f

u

  

 

 

E u B f

m f q

t u f

u

 

     

 

  ( )

t c

f 

 

 

t x y z ux uy uz

f

f , , , , , , Distribution function: number density of particles found ‘near’

a point in the 6-D space (x, u)

(6)

6

• Boltzmann equation

Ludwig Boltzmann (1844-1906)

t E J c

B

t E B

B E

 

 

 

 

0 2 0

1 0

James Clerk Maxwell (1831-1879)

c u

u t

f f B

u m E

f q t u

f f a

f t u

f dt

df

 

 

 

 

 

 

     

) (

Kinetic Approach of Plasmas

 

 

i e

i e

u d f q

u d f u q J

, ,

 

current density

charge density

(7)

7

• Boltzmann equation

Kinetic Approach of Plasmas

t x y z ux uy uz

f

f , , , , , , Distribution function: number density of particles found ‘near’

a point in the 6-D space (x, u)

Qf du

Q n

1

f du t

r

n  

( , ) number density of particles in physical space

uf du t n

r

v   

) 1 ,

( Mean (fluid) velocity of particles in physical space

m u f du t

r

p   

2

) 3 ,

( Scalar pressure of particles in physical space

(8)

8

• Boltzmann equation

Kinetic Approach of Plasmas

Maxwellian velocity distribution in thermal equilibrium

Scalar pressure of particles in physical space



 





 

 

T u m T

n m u

fM

exp 2 ) 2

(

2 2 /

3

f du t

r

n  

( , ) number density of particles in physical space

uf du t n

r

v   

) 1 ,

( Mean (fluid) velocity of particles in physical space

m u f du t

r

p   

2

) 3 ,

( Scalar pressure of particles in physical space

nT p

m u T

d t u r f n u

v v

vx2y2z21

x2 M (, , ) Mean square velocity

http://www.maisondelasimulation.fr/smilei/collisions.html

(9)

9

• Plasmas as fluids

- The single particle approach gets to be complicated.

- A more statistical approach can be used because we cannot follow each particle separately.

- Introduce the concept of an electrically charged current-carrying fluid.

Fluid Approach of Plasmas

http://www.tower.com/music-label/gulan-music-studio Album art of music OST “Plasma Pong”

(10)

• Two fluid equations

 

 



C

t f

c

0

, )

,

(  

v r t w w u    

 0

 

 

 

 

 

Q df dt f t d u

c i

2 / 1

2 3

2 1

u m Q

u m Q

Q

  mass

momentum energy

Plasmas as Fluids

25

c

u t

f f B

u m E

f q t u

f dt

df

 

 

 

 

   

) (

f du t

r

n  

( , )

uf du t n

r

v   

) 1 , (

Qf du

Q n

1

(11)

• Continuity equation

 

0

 

nv

t

n

 

 



C

t f

c

0

, )

,

(  

v r t w w u    

0

1  

 

 

 

 

  df dt f t d u

c

Plasmas as Fluids

25

c

u t

f f B

u m E

f q t u

f dt

df

 

 

 

 

   

) (

f du t

r

n  

( , )

uf du t n

r

v   

) 1 , (

Qf du

Q n

1

 

0

  

ft du u f du mq E u B fu du ft du

c

t u n

d t f

u t d f

 

 

du uf du f udu uf du nv

f

u

mass

1 1 Q

(12)

• Two fluid equations

 0

n v

dt

dn

q n E v B P R

dt v m d

n      

 ( )

P v h Q

dt

n dT        2 :

3

w2

m n P

w d C w m

Q



2

2

1

w d C w m

R  



w w m n

h 2

2 1

 

 



C

t f

c

0

, )

,

(  

v r t w w u    

 0

 

 

 

 

 

Q df dt f t d u

c i

2 / 1

2 3

2 1

u m Q

u m Q

Q

  mass

momentum energy

Plasmas as Fluids

25

c

u t

f f B

u m E

f q t u

f dt

df

 

 

 

 

   

) (

f du t

r

n  

( , )

uf du t n

r

v   

) 1 , (

Qf du

Q n

1

(13)

• Two fluid equations

 0

n v

dt

dn

q n E v B P R

dt v m d

n      

 ( )

P v h Q

dt

n dT        2 :

3

w2

m n P

w d C w m

Q



2

2

1

w d C w m

R  



w w m n

h 2

2 1

Plasmas as Fluids

25

...

1 3

2

2 4 2

z y x

z y x

y x

Closure?

(14)

14

Single-fluid magnetohydrodynamics (MHDs)

A single-fluid model of a fully ionised plasma, in which the

plasma is treated as a single hydrodynamic fluid acted upon by electric and magnetic forces.

e i

e i

e e i

iMv n mv n Mv mv nM v m M v

n

v      

) / ( /

) (

/ )

(     

 

nM m

M n m n M

nie   

 ( )

e n ni e) ( 

 

) (

)

(nivi neve ne vi ve e

J    

ne v J

ne v J M v m

vi e

 

 

   ,  

Hydrogen plasma, charge neutrality assumed

mass density charge density

mass velocity electron inertia neglected:

electrons have an infinitely fast response time because of their small mass

• The magnetohydrodynamic (MHD) equation

Plasmas as Fluids

(15)

15

Plasmas as Fluids

 

0

 

i i

i n v

t

n

 

0

 

e e

e n v

t

n

 

0

 

i i

i Mnv

t

M n

 

0

 

e e

e mn v

t

m n

 

0

e e i

i e

i Mnv mn v

t mn

Mn  

 / ) (niMvi nemve v    

m n M

nie

 

 0

 

v

t

 

(16)

16

Plasmas as Fluids

i

i ie

i i

i en E v B p R

dt v

Mn d    

v  (niMvinemve)/ 

m n M

nie

 

e

e ei

e e

e en E v B p R

dt v

mn d    

ne v J

ne v J M v m

vi e

 

 

   ,  

ie i

i i i

i

i en E env B p R

ne J dt mn d dt

v

Mn d     

 

 

 

ei e

e e e

e

e en E en v B p R

ne J dt mn d dt

v

mn d     

 

 

 

p B

dt J v

d       

) (

)

(nivi neve ne vi ve e

J    

(17)

17

Plasmas as Fluids

 / ) (niMvi nemve v    

m n M

nie

 

e

e ei

e e

e en E v B p R

dt v

mn d    

ne v J

ne v J M v m

vi e

 

 

   ,  

) (

)

(nivi neve ne vi ve e

J    

Neglect electron inertia entirely

e

e ei

e E v B p R

en    

 0

e e

e en

J p B

v

E        

v v

n e

v v

neJ

mn

Rei eiieie

    

2 2

en

p B

J J B

v

E   

e

 

 

 

(18)

18

Mass continuity equation (continuously flowing fluid)

Single-fluid equation of motion

Maxwell equations

Ohm’s law: perfect conductor → “ideal” MHD Energy equation (equation of state):

adiabatic evolution

• Ideal MHD model

0 → 0 assumed

(Full → low-frequency Maxwell’s equations) Displacement current, net charge neglected

 0

 

v

t



p B

dt J v

d    

 0



 

p dt

d

0

v B E  

0

0

 

B

J B

t E B

 

F. F. Chen, Ch. 5.7

Plasmas as Fluids

en p B

J J B

v

E   e

 

 

 

(19)

19

q n E v B P R

dt v m d

n      

 ( )

 0

n v

dt

dn

P v h Q

dt

n dT       2 :

3

 

 

0

1

0 0 2

 

 

B

n e n

E

t E v c

n v n e B

t E B

e i

e e i

i

 

 

 

 0

 

v

t



p B

dt J v

d    

 0



 

p dt

d

0

v B E  

0

0

 

B

J B

t E B

 

Plasmas as Fluids

(20)

20

• Magnetohydrodynamics (MHD): 1946 by H. Alfvén

Hannes Alfvén (1908-1995)

“Nobel prize in Physics (1970)”

Plasmas as Fluids

(21)

21

Plasmas as Fluids

• Magnetohydrodynamics (MHD): 1946 by H. Alfvén

(22)

22

• Ideal MHD

- MHD:

Magnetohydrodynamic (magnetic fluid dynamic) - Assumptions:

Low-frequency, long-wavelength collision-dominated plasma

- Single-fluid model

Plasmas as Fluids

Equilibrium and stability in fusion plasmas - Applications:

- Ideal:

Perfect conductor with zero resistivity

(23)

23

• Ideal MHD:

= 0 • Resistive MHD:

 0

What is Ideal MHD?

(24)

24

• Ideal MHD:

= 0 • Resistive MHD:

 0

What is Ideal MHD?

(25)

25

Applications

Plasma Eqauilibrium and Stability

https://fusion.gat.com/theory/File:Theory1.gif

참조

관련 문서

Forces exerted by a flowing fluid on a pipe bend, enlargement, or contraction in a pipeline may be computed by a application of the impulse-momentum principle...

Ejectors is a fluid transportation device for which a principle is used that high-pressure fluid are spouted through driving pipe and the pressure

A jet pump is a fluid carrying device which spouts fluid of high pressure from a driving engine pipe and absorbs fluid of high pressure whose pressure

Field : Spatial distribution of scalar and vector quantity Electric field and magnetic field.. 3-1

• reversible conversion of kinetic energy into internal energy. • work done by viscous forces

n The magnitude of the buoyant force acting on a floating body in the fluid is equal to the weight of the fluid which is displaced by

The governing equations are based on the total Kinetic energy of a system and the generalized forces derived by the method of virtual work.. Only generalized

- The magnetic pressure and plasma pressure each produce positive (outward forces) near the outside of the plasma...