• 검색 결과가 없습니다.

Chapter 3. Classical Theory of Absorption

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 3. Classical Theory of Absorption"

Copied!
18
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab . Hanyang Univ.

Chapter 3. Classical Theory of Absorption

3.1 Introduction

Visible color of an object : Selective absorption, Scattering, Transmission

1) Absorption in gases : line spectrum - Electronic resonance : UV region

ex) white daylight : N2 or O2 does not absorb at visible frequency - Molecular vibration : IR region

- Molecular rotation : Microwave region

2) Absorption in liquids or sold : broad band spectrum ex) Green water : absorption in the red portion

ex) Red dye : strong absorption in the blue or UV ex) Metal (free electron, plasma freq. : UV region)

- Shine <= Visible frequencies are completely reflected - Characteristic color <= absorption of bound electrons

ex) Most good insulators : usually transparent in the visible, but opaque in the UV ex) Semiconductors : usually absorbs visible, transparent in the IR

=> defects or impurities : modify the absortion spectra

(2)

Nonlinear Optics Lab . Hanyang Univ.

3.2 Absorption and the Lorentz model

Absorption (?) => Frictional force that damps out dipole oscillations

2 fric 2

F x )

, R (

x  e E tk

s

dt

m d

=> Equation of motion ;

3.3 Complex Polarization and Index of Refraction

) (

E

0

E   ˆ e

i tkz

02 0 ( )

2 2

ˆ E dt x

2 dx x

d

i t kz

m e e dt

   

sol) x(t)  a e

i(tkz)

where,



i 2 (e/m)E - ˆ

a

2

0 2

0

 

where,

dt b d

bv x

Ffric

Origin of friction : collision

(Section 3.9, 3.10)

(3)

Nonlinear Optics Lab . Hanyang Univ.

x p  e - Dipole moment,

2 2 2

2 2 0

2 2 0 2

2 2 0

2

4 )

(

2 2

) /

(    





 

  

 

  i

m e i

m e

In case of many electrons ;

2 2 2

2 2 0

2 2 0 0

2 2 2

0

0 2

2

4 )

( 1 2

2 1 /

)

(    



 

 

 

 

 

i

m Ne i

m n Ne

Complex refractive index E p

; 

  - Polarizability,

Polarizability

 

z

j j j

j

j i

m e

1

2 2 2

2 2 0

2 2 0 2

4 )

( ) 2

(    

 

) ) (

1 ( 2 2

2

0 2

2

2  

n

c N

k c 



)]

2

( )

(

[ n

R

  in

I

(2.3.13)

(4)

Nonlinear Optics Lab . Hanyang Univ.

) (

E

0

εˆ ) , (

E z te

i tkz

i) Intensity

where,

 

z

j j j

j

I

mc

c Ne n

a

1

2 2 2

2 2 0

2

0 2

4 )

( / 2

)]

( [ 2 )

(    

 

Electric field in the medium

} / )]

( [ { /

)]

( [ 0 )

/ ) ( [

0

εˆ E

εˆ E e

i tn z c

e

nI z c

e

i t nR z c

z c a

z

n

I e

e I

z

I

( ) 

( 0 ) (

[ I()] /

)

2

0 ()

: absorption coefficient

ii) Refractive Index

 

 

z

j j j

j

R

m

n Ne

1

2 2 2

2 2 0

2 2 0 0

2 2

4 )

1 ( )

(    

 

(5)

Nonlinear Optics Lab . Hanyang Univ.

3.4 Polarizability and Index of Refraction near a Resonance

Most gain media of lasers are composed of a background material and a small amount of resonant material.

ex) gas : background gas + active gas medium ex) solid (ruby) : Al2O3 + Cr+3

ex) liquid (dye) : ethanol + dye

Thus we can write,

) ( )

( )

(     

 

b

r

 

 

 

 

 

 

 

b r r b

b r r b

r r bi

i

bi

N

n n n N

N n N

 

 

 

 ( ) 1 ( )

1 )

( )

( 1

)

(

2

0 2 2

0 0

2

2

n

b

(nearly const.)

b b

r r b

b r r

b

n

n N n N

n

 

2

) ( )

1 ( )

(

2 / 1

 

 

 

(6)

Nonlinear Optics Lab . Hanyang Univ.

Near the resonance ( ),   

0

  |  , , |  | 

|

o 0 o

 

o2

 

2

 ( 

o

  )( 

o

  )  2  ( 

o

  )

 

i

m e

o

r

  

 / 2

) (

2

2 2

0 0 0

2

) (

) 4

(   

 

 

n m

n Ne n

bR bR

R

2 2

0 0

2

) (

) 4

(   

 

 

n m

n Ne n

bR bI

I

(7)

Nonlinear Optics Lab . Hanyang Univ.

3.5 Lorentzian Atoms and Radiation in Cavities

Electric field in a cavity is not the form of a traveling wave but a standing wave,

t i n

n

k ze

t

z , )  εˆ E sin

(

E

where, knn / L, n 1, 2, 3, ...

Similarly as previous sections, z k e

i t

sin

n

a

x(t) 

where,



i 2 (e/m)E - ˆ

a

2

0 2

n

 

Maxwell wave equation for a cavity including cavity loss, ) , ( 1 P

t) 1 E(z,

2 2 2 0 2

2 2 2

0 2

2

t t z

c t

c t

c

z

 

 

 

 

 

where,

: conductivity

E

J  

(8)

Nonlinear Optics Lab . Hanyang Univ.

   



i m Ne

c c

i c k

n

2 /

2 2 0

0 2 2

2 2

0 2

 

 

 

 

 

 

 

 

 

Near resonance approxiamtion ; 

o2

 

2

 2  ( 

o

  ) , 

2

 

n2

 2  (   

n

) c

i ig m

i Ne

n

( )

2 1 )

( 4

2

0 2 2

0 0

2

0

 

 

 

 

g c

0

)

2 

 

) 2 (

) 2

1 

0

 

   cgc

n

: cavity pulling )

2 ( 2

/ ) 2 / (

0 0

n n

n

gc

gc

gc  

 

    

 

: threshold gain (*)

 

 

o

n

n

 

(9)

Nonlinear Optics Lab . Hanyang Univ.

(*) Relations 1), 2) are correct except the sign of g

g c

0

 

If , then field amplification is possible,

But, from (3.5.9),

) 0 (

2

0 0 2 2

2

 

   

mc

g Ne

: negative

This means that g c

0

  cannot be satisfied.

That is, a classical laser theory based on the linear electron oscillator model is not possible.

And, it requires a quantum mechanical treatment of light-matter interaction to understand how can be made positive.

g

(10)

Nonlinear Optics Lab . Hanyang Univ.

3.6 The Absorption Coefficient

[Lorentzian Lineshape]

(3.3.25) => ( when 1 )

4 )

( ) 2

(

2 2 2 2

0

2

0

2

  j

mc a Ne





 

Near the resonance,

2 2

0 0

2

) (

) 2

(   

 

 

mc a Ne

 2

v

2

0 2

0 0 0

2

) 4 (

)

( v

v mc

a Ne

 

 

where,



0

  / 2  ,

0

|

| 

o

    

(11)

Nonlinear Optics Lab . Hanyang Univ.

Lineshape Function ;

2 0 2

0 0

) (

) /

( v

L v

 

  : Lorentzian lineshape 1 ) ( 

dL

max 0

0

0

( )

2 1 2

) 1

( 

 

L

L    

20: FWHM

0 0

2

0

) 4

(    

mc a   Ne

 In general, a (  )  a

t

S (  )

where, is the integrated absorption coefficientat Normalization :

t

t

d S a

a a

d   

0

 (  )

0

 (  )

(12)

Nonlinear Optics Lab . Hanyang Univ.

3.7 Oscillator Strength

Absorption Cross section :

N a ( ) )

(  

 

 

t

a

t

/ N

From (3.6.17) and (3.6.23),

2 . 65 10 cm /s 4

2 2

0

2

 

mc e

t

: universal value

Oscillator strength,

As can be seen in Table 3.1 for the integrated cross section of hydrogen atom, actual values of do not agree with the calculated values by classical theory. This problem of classical theory could be patched by introducing oscillator strengtht assigned empirically.

mc f e mc

e

t t

0 2

0 2

4

4  

    

f

* Quantum theory removes this defect of Lorentz’s model.

(13)

Nonlinear Optics Lab . Hanyang Univ.

3.11 Doppler Broadening

- 1842, C. J. Doppler, Predicted

- 1854, C.H.D. Buys Ballot, Demonstrated (trumpet in a moving train)

To an atom moving with velocity away from a source of radiation of frequency , the frequency of the radiation appears to be shifted :

c

v  

v

 '

) 1

(

' c

v

 

Atomic velocity distribution :

dv kT e

v m

df

x mxv /2kT

2 / 1

2

) 2

( 

 

 

: Maxwell-Boltzman distribution

Thus, the atom with resonance frequency will absorb radiation near to the frequency :

0

) 1

0

(

c

v

 

 

 

  d

dv c v c

0 0

0

, )

(  

(14)

Nonlinear Optics Lab . Hanyang Univ.

 

 

 

 

 

c dv

kT e v m

df

x mxc kT

0 2

/ ) ( 2

/ 1

2 0 2

0 2

) 2

(  

Since the absorption rate must be proportional to , we may write the Doppler line shape function as

) (v df

2 0 2

0

2( ) /2

2 / 1 2 0 2

) 2

(

kT c

x

e

mx

kT c v m

S  

 

  : Doppler line shape function

2 ln 0 0

0 ( ) ( )

2 ) 1 2

(  1  SS e

S  D  

: FWHM

1/2

0 2

/ 1

0 2 2 ln 2

2 2 ln

2 







x x

D M

RT m

kT

c

 

2 / 1 0

2 ln 4 ) 1

(



D

S

(15)

Nonlinear Optics Lab . Hanyang Univ.

3.12 The Voigt Profile

Collisional broadening : Homogeneous => Lorentzian Doppler Broadening : Inhomogeneous => Gaussian

In general, we cannot characterize an absorption lineshape of a gas as a pure Lorentzian or a pure Gaussian.

Voigt profile : Described the absorption lineshape when both collision broadening and Doppler broadening must be taken into account.

RT v

x

e

Mx

RT v M

S dv v

S

/2

2 / 1

2

) 2 , ( )

(

 

 

where,

2 0 0 2

0

0

) (

) / 1 ) (

,

(    



 

v c v

S

(16)

Nonlinear Optics Lab . Hanyang Univ.

 

 

 

2

0 2

0 0

2 / 0

2 / 1

) / 2 (

) (

2



 



v c

e dv RT

v M S

RT v

M x

x

 

2 2

0 2 2 /

3

( )

1

2

b x

y

e dy

b

y



: Voigt profile

where,

( 4 ln 2 ) ,

0 2 0

/ 1



 

x

D

b 



0

2 /

)

1

2 ln 4

 (

 ( )

2

erfc ( )

0 2 / 3

2

0

e b

b

S b

b



  

where,

 2

1/2 2

erfc du e

u

: complementary error function

(17)

Nonlinear Optics Lab . Hanyang Univ.

Limit case of Voigt profile

0

 

D

b  1

 e

b

b

1

1

/2

b

) (

2

erfc

 

0 0

) 1

(   

S

: nearly pure Lorentzian

0

 

D

b  1

 

2 / 1 0

2 ln 4 ) 1

( 

 

 

   

D

S

: nearly pure Gaussian

ii) e

b2

erfc ( b )  1

General case : numerical calculation i)

) (

Re ) Re

(

2 2

2

2 w x ib

b ib

y x

e dy i

b b

x y

e

dy y y

 



 

where, w : error function of complex argument

(18)

Nonlinear Optics Lab . Hanyang Univ.

Example) Na vapor

K 300 T

, line) - (D A

5890

MHz

 1300



D

MHz P

0

 1700

 b 2 . 2 P ( torr )

: If P < 0.1 torr => Doppler regime Absorption coefficient,

2 / 1

0 2 0

0 2 0

2 ln 4 1

) 4 4 (

)

( 

 

 

   

 

D

mc N f S e

mc N f a e

A 5890 ,

1 

f

N P(torrT ) 10

65 .

9 18

a(

0)2.2105 P(torr) cm-1

참조

관련 문서

12) Maestu I, Gómez-Aldaraví L, Torregrosa MD, Camps C, Llorca C, Bosch C, Gómez J, Giner V, Oltra A, Albert A. Gemcitabine and low dose carboplatin in the treatment of

We measured the refractive index and absorption coefficient of human articular cartilage, and quantitatively characterized the water distribution in cartilage matrix using

Irradiation product(l) formed is insoluble in CH2C12, therefore, the absorption due to pro- duct(l) won't effect net absorption spectrum, but the sectral features in

The ligand exhibited the remarkable increment in the fluorescence emission and UV-visible absorption signal intensities at 587 and 547 nm, respectively,

Optical parameters such as the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity were studied in order to

The 2-hydroxy Nile Red exhibited a selective UV-vis absorption and fluorescent signaling behavior towards Hg 2+ ions over common coexisting physiologically important metal

 The complex exhibits broad band absorption in the visible region of the EMR spectrum.  The wavelength of maximum absorption (λ max

 IR color (Yellow filter used to eliminate blue and create IR color (or false-color infrared) of 05-1.0 m, or green, red, and IR).  4 bands (blue, green,