• 검색 결과가 없습니다.

carboxylic Acid Ethyl Ester through X-ray Crystallography

N/A
N/A
Protected

Academic year: 2022

Share "carboxylic Acid Ethyl Ester through X-ray Crystallography"

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Vol. 8, No. 3 (2015) pp. 192− 203 http://dx.doi.org/10.13160/ricns.2015.8.3.192

Structural Analysis of 2-Benzyl-3-[3-(4-bromo-phenyl)-1-phenyl-1H- pyrazol-4yl]-4,6-dioxo-5-phenyl-octahydro-pyrrolo[3,4-C]pyrrole-1-

carboxylic Acid Ethyl Ester through X-ray Crystallography

Jagadeesan Ganapathy1, M. Pramesh2, P. T. Perumal2, and Aravindhan Sanmargam1†

Abstract

In view of the growing medicinal importance of pyrazole and its derivatives, the single crystal X-ray diffraction study was carried out for the potential active 2-Benzyl-3-[3-(4-bromo-phenyl)-1-phenyl-1H-pyrazol-4yl]-4,6-dioxo-5-phenyl- octahydro-pyrrolo[3,4-C]pyrrole-1-carboxylic acid ethyl ester (C37H31BrN4O4, H2O). In the title compound are two molecules exist in the asymmetric unit. It crystallizes in the monoclinic space group Pî with unit cell dimension a=13.361 (18) Å, b=13.424 (17) Å and c=21.649 (2) Å [α=80.745 (9)o, β=79.770 (10)o and γ=60.788 (6)o]. The pyrazole ring adopts planar conformation. The sum of the bond angles at nitrogen atom of the pyrazole ring indicates the Sp2 hybridized state.

The crystal structure is stabilized by intramolecular C-H...O hydrogen bond interaction.

Keywords: Pyrazole, Envelop Conformation; Single Crystal Structure; X-ray Diffraction (XRD)

1. Introduction

Pyrazole and its derivatives, a class of well known nitrogen containing heterocyclic compounds, occupy an important position in medicinal and pesticide chemistry with having a wide range of bioactivities [1] such as anti- microbial[2], anticancer[3], anti-inflammatory, antidepres- sant, anticonvulsant, antihyperglycemic[4], antipyretic, antifungal activities[5], CNS regulants[6] and selective enzyme inhibitory activities. It has been found that these compounds have hypoglycemic activity, and are also known as inhibitors and deactivators of liver alcohol dehydrogenase and oxidoreductases[7]. It has been shown in vivo that some of the pyrazole derivatives have appreciable antihypertensive activity.

The 1-phenylpyrazole motif is present in several drug candidates for treatment of various diseases such as cyclooxygenase-2 (Cox-2) inhibitors, IL-1 synthesis inhibitors, and protein kinase inhibitors etc. Similarly, some of the 1,5-diarylpyrazole derivatives have been shown to exhibit non-nucleoside HIV-1 reverse tran-

scriptase inhibitor activities along with Cox-2 inhibitor activity[8].

Literature survey revealed that pyrazole derivatives possess diverse pharmacological activities. Pyrazole derivatives have a long history of application in agro- chemicals and pharmaceutical industry as herbicides and active pharmaceuticals. The recent success of a pyrazole COX-2 inhibitor has further highlighted the importance of these heterocyclic rings in medicinal chemistry. The prevalence of pyrazole cores in biolog- ically active molecules has stimulated the need for ele-

1Department of Physics, Presidency College, Chennai 600005, India

2Organic Chemistry Laboratory, CLRI, Chennai 600 020, India

Corresponding author : jaganbiophysics@gmail.com (Received: June 26, 2015, Revised: September 18, 2015,

Accepted: September 25, 2015)

Fig. 1. Chemical structure of 2-benzyl-3-[3-(4-bromo- phenyl)-1-phenyl-1H-pyrazol-4yl]-4,6-dioxo-5-phenyl- octahydro-pyrrolo[3,4-C]pyrrole-1-carboxylic acid ethyl ester.

(2)

gant and efficient ways to make these heterocyclic leads.

Based on the above facts, the X-ray crystal structures of pyrazole derivatives have been elucidated. X-ray crystallographic studies of the following one such com- pound have been carried out to obtain detailed informa- tion on the molecular conformation in the solid state.

The IUPAC name and chemical diagram of the com- pounds are given in Figure 1.

2. Material and Methods

With the collaboration of Organic Chemistry Depart- ment at Central Leather Research Instutite-chennai, we obtained the title compound and crystallized by simple solvent slow evaporation method. Three rounds of crys- tallization trials to obtain a qualified crystal were achieved.

The diffraction quality crystals after screening its size and stability, X-ray diffraction data collection was done at Oxford diffractometer-Pondicherry University. The data was reduced with appropriate corrections at the facility and the error free data was taken for structure determination.

Using WinGx suite, structure determination was done using SHELXS97 with Direct Methods protocols. After manual inspections and corrections, Isotropic refine- ment followed by anisotropic refinements was carried out. With the satisfied model (agreeable R factor, Good- ness of Fit and other) hydrogen atoms were geometri- cally fixed and after the final refinement the R factor is 8.0%.

3. Experimental Section

3.1. Synthesis of the Title Compound

A mixture of bromophenyl comprising pyrazole alde- hyde (0.3 g), benzylethylglycinate (0.177 g) and male- imide (0.158 g) was refluxed in toluene (15 mL) until completion of the reaction as evidenced by TLC anal- ysis. The solvent was evaporated under reduced pres- sure. The crude was purified by column chromatography on silica gel (Merck, 100-200 mesh, ethylacetate–petro- leum ether (10:90) to afford pure product. Crystals, suit- able for X-ray analysis, where obtained by slow evaporation of a solution in ethylacetate.

3.2. X-Ray Crystallography

For the crystal structure determination, the single crystal of the compound C37H31BrN4O4, H2O was used for data collection on OXFORD diffractometer[9]. The MoKá radiation of wavelength, (# = 0.71073 Å) and multi-scan technique for absorption correction were used for data collection. The lattice parameters were determined by the least-squares methods on the basis of all reflections with F2>2$ (F2). The structures were solved by direct methods using SHELXS-97 and refined by a full-matrix least-squares procedure using the program SHELXL-97[10]. H atoms were positioned geometrically and refined using a riding model, fixing

Table 1. Crystal data and structure refinement

Parameters II

Empirical formula Formula weight Temperature Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z, Calculated density Absorption coefficient F(000)

Crystal size (mm) θ range for data collection Limiting indices

Reflections collected/unique Completeness to theta Refinement method Data/restraints/

parameters

Goodness-of-fit on F2 Final R indices [I>2σ(I)]

R indices (all data) Largest diff. peak and hole

C37H31BrN4O4, O1W 682.55

293(2) K 0.71073 Å Triclinic Pí

a = 13.361(18) Å b = 13.424(17) Å c = 21.649(2) Å α = 80.745 (9)o β = 79.770 (10)o γ = 60.788 (6)o 3322.8(7) Å3 2, 1.364 Mg/m3 1.284 mm-1 1404

0.20×0.35×0.25 2.70 to 29.38º -17 ≤ h ≤ 17 -17 ≤ k ≤ 17 -29 ≤ l ≤ 29

36042 / 15437 [Rint = 0.0942]

84%

Full-matrix least-squares on F2 15437/3/833

0.844 R1 = 0.087 wR2 = 0.219 R1 = 0.224 wR2 = 0.239 0.995 and -0.715 e.Å-3

(3)

the aromatic C-H distances at 0.93 Å [Uiso(H) = 1.2 Ueq (C)]. The softwares used for Molecular graphics are ORTEP-3 for Windows[11] and PLATON[12]. The software used to prepare material for publication is WinGX publication routines[13]. In the title compound consists of two molecules (A and B) present in the

asymmetric unit. Experimental data are listed in Table 1. Fig. 1 shows schematic diagram of the molecule and molecular structure of the title compound along with the atom numbering scheme is depicted in Fig. 2 and a packing diagram is shown in Fig. 3. Table 2a & 2b gives the atomic coordinates of the Molecule A & Mol- Fig. 2. The ORTEP plot of compound II shown two molecules are separated for clarity with the atom numbering scheme.

Displacement ellipsoids are drawn at 30% probability level.

Fig. 3. Crystal packing of the title compound, H atoms have been omitted for clarity. The intra molecular conduct mentioned in the dashed line.

(4)

Table 2a. Atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2×103) for non- hydrogen atoms of Molecule A of the compound

Atom x y z *U(eq)

C1 3937(5) 7086(4) 1573(3) 46(1)

C2 4592(5) 6218(4) 1063(2) 42(1)

C3 3813(4) 6675(4) 541(2) 46(1)

C4 2602(5) 7612(4) 825(2) 44(1)

C5 4634(5) 5073(5) 1300(3) 48(1)

C6 3761(5) 5646(5) 383(3) 50(2)

C7 1859(5) 8368(5) 1877(3) 60(2)

C8 2122(5) 8159(5) 2545(3) 52(2)

C9 2053(6) 7265(5) 2942(3) 71(2)

C10 2384(6) 6999(6) 3542(3) 80(2)

C11 2766(6) 7660(7) 3752(3) 81(2)

C12 2836(6) 8553(6) 3376(3) 74(2)

C13 2503(5) 8788(5) 2775(3) 61(2)

C14 4103(5) 3741(4) 935(2) 46(1)

C15 5088(5) 2709(5) 1052(2) 56(2)

C16 5025(7) 1707(5) 1086(3) 73(2)

C17 4029(8) 1728(6) 996(3) 84(2)

C18 3056(7) 2763(6) 883(3) 79(2)

C19 3097(6) 3753(5) 852(3) 64(2)

C20 1607(5) 7486(4) 708(3) 45(1)

C21 1107(5) 7808(4) 130(3) 51(2)

C22 1115(5) 6881(4) 1074(3) 49(2)

C23 1366(5) 8415(5) -454(3) 56(2)

C24 1324(5) 9461(5) -445(3) 62(2)

C25 1516(5) 10047(5) -1012(4) 77(2) C26 1785(6) 9569(7) -1583(4) 80(2) C27 1833(7) 8565(8) -1584(3) 94(2) C28 1656(5) 7943(6) -1032(3) 70(2)

C29 -304(5) 6283(5) 927(3) 62(2)

C30 -385(7) 5785(7) 1516(4) 108(3) C31 -1010(9) 5217(8) 1682(5) 127(3) C32 -1596(8) 5129(7) 1280(5) 101(3) C33 -1499(10) 5576(10) 697(5) 154(4)

C34 -873(9) 6162(9) 499(4) 138(4)

C35 4284(6) 8033(6) 1437(3) 63(2)

C36 5686(8) 8535(6) 1593(5) 106(3) C37A 6253(2) 8526(2) 1013(8) 137(5) C37 6439(2) 8175(2) 2017(9) 137(5)

N1 2745(4) 7429(3) 1507(2) 48(1)

N2 4132(4) 4813(3) 884(2) 44(1)

N3 363(4) 6854(4) 738(2) 51(1)

N4 359(4) 7411(4) 161(2) 56(1)

O1 5245(4) 7695(3) 1682(2) 86(1)

O2 3764(4) 8947(4) 1157(2) 96(2)

O3 3456(3) 5535(3) -84(2) 60(1)

O4 5046(4) 4488(3) 1764(2) 69(1)

OW 1736(2) 1147(2) 664(9) 408(9)

Br1 2025(1) 10382(1) -2327(1) 143(1)

*Ueq= (1/3)ΣiΣjUij ai* aj* ai.aj

Table 2b. Atomic coordinates (×104) and equivalent iso- tropic displacement parameters (Å2×103) for non-hydrogen atoms of Molecule B of the compound

Atom x y z *U(eq)

C1' 3999(5) 3526(4) 3285(3) 48(1) C2' 3900(5) 3030(4) 2725(2) 46(1) C3' 4419(5) 1735(4) 2910(2) 48(1) C4' 4556(4) 1578(4) 3624(2) 44(1) C5' 2672(5) 3407(5) 2650(2) 45(1) C6' 3562(5) 1431(5) 2766(3) 51(2) C7' 4087(5) 2915(4) 4417(3) 59(2) C8' 3216(6) 4046(5) 4676(3) 58(2) C9' 3597(7) 4648(6) 4942(3) 82(2) C10' 2819(10) 5644(7) 5203(4) 101(3) C11' 1679(11) 6061(7) 5212(3) 111(3) C12' 1283(7) 5482(6) 4944(4) 99(3) C13' 2044(6) 4479(5) 4668(3) 76(2) C14' 1438(5) 2475(5) 2667(3) 52(2)

C15' 541(6) 3024(5) 3105(3) 68(2)

C16' -491(7) 3022(6) 3102(3) 80(2) C17' -591(7) 2463(7) 2658(4) 80(2)

C18' 307(7) 1917(6) 2216(4) 81(2)

C19' 1339(6) 1928(5) 2218(3) 72(2)

C20' 4140(5) 810(4) 4026(2) 42(1)

C21' 4721(4) -385(4) 4168(2) 41(1) C22' 3057(5) 1098(4) 4322(2) 50(2) C23' 5957(5) -1230(4) 3976(2) 37(1) C24' 6840(6) -1006(4) 3956(3) 63(2) C25' 7986(5) -1804(5) 3789(3) 68(2) C26' 8206(5) -2825(5) 3623(3) 58(2) C27' 7358(6) -3081(5) 3639(4) 90(2) C28' 6229(6) -2269(5) 3823(4) 87(2)

C29' 2133(5) 51(5) 5031(3) 52(2)

C30' 2366(6) -875(5) 5460(3) 71(2) C31' 1523(6) -929(6) 5892(4) 89(2)

C32' 411(7) -54(7) 5910(4) 92(2)

C33' 137(6) 861(6) 5469(4) 93(2)

C34' 1000(6) 931(5) 5023(3) 78(2)

C35' 5136(6) 3529(5) 3208(3) 60(2) C36A 6071(2) 4540(1) 3050(8) 99(4) C37B 6254(2) 5379(1) 2717(8) 109(4)

C37' 5811(2) 5811(1) 3124(9) 109(4) C36' 5903(2) 4739(1) 3347(9) 99(4)

N1' 3843(4) 2773(3) 3808(2) 44(1) N2' 2523(4) 2453(4) 2687(2) 47(1)

N3' 3025(4) 151(3) 4607(2) 47(1)

N4' 4071(4) -791(3) 4519(2) 45(1) O1' 5004(4) 4546(4) 3261(2) 82(1) O2' 6066(4) 2697(4) 3099(3) 100(2)

O3' 3689(4) 483(3) 2744(2) 75(1)

O4' 1923(3) 4378(3) 2568(2) 66(1) Br1' 9751(1) -3904(1) 3344(1) 95(1)

*Ueq= (1/3)ΣiΣjUij ai* aj* ai.aj

(5)

Fig. 4a. Bond length for molecule A of the compound.

Fig. 4b. Bond length for molecule B of the compound.

(6)

Fig. 5a. Bond angle for molecule A of the compound.

Fig. 5b. Bond angle for molecule B of the compound.

(7)

Table 3a. Anisotropic displacement parameters (Å2×103) for non-hydrogen atoms of Molecule A of the compound

Atom U11 U22 U33 U23 U13 U12

C1 50(4) 44(3) 44(3) -6(3) -5(3) -21(3)

C2 48(4) 43(3) 33(3) 1(3) -3(3) -22(3)

C3 48(4) 43(3) 41(3) -4(3) 6(3) -21(3)

C4 46(4) 38(3) 42(3) -3(3) -2(3) -16(3)

C5 47(4) 52(4) 33(3) -6(3) -6(3) -13(3)

C6 41(4) 57(4) 43(4) -5(3) 6(3) -20(3)

C7 62(4) 54(3) 52(4) -19(3) 1(3) -17(3)

C8 56(4) 53(3) 52(4) -27(3) 16(3) -30(3)

C9 83(5) 74(4) 64(5) -36(4) 29(4) -48(4)

C10 104(6) 74(5) 59(5) -17(4) 22(4) -47(4)

C11 84(5) 89(5) 47(4) -19(4) 2(4) -24(4)

C12 80(5) 81(5) 65(5) -24(4) -5(4) -36(4)

C13 80(5) 53(4) 56(4) -10(3) -1(4) -38(3)

C14 52(4) 50(3) 36(3) -9(3) 5(3) -25(3)

C15 59(4) 53(4) 48(4) -5(3) -6(3) -22(3)

C16 83(6) 45(4) 83(5) 1(3) -17(4) -24(4)

C17 102(7) 60(5) 95(6) 0(4) -16(5) -43(5)

C18 82(6) 75(5) 100(6) -8(4) -18(4) -50(5)

C19 54(4) 58(4) 83(5) -3(3) -17(4) -29(3)

C20 40(4) 43(3) 50(4) -4(3) -13(3) -14(3)

C21 44(4) 46(3) 59(4) -10(3) 0(3) -20(3)

C22 38(4) 46(3) 52(4) -6(3) -10(3) -8(3)

C23 49(4) 60(4) 59(4) 7(3) -16(3) -26(3)

C24 56(4) 58(4) 65(4) 5(4) -4(3) -24(3)

C25 58(5) 63(4) 108(6) 10(5) -10(4) -32(3)

C26 67(5) 101(6) 73(6) -8(5) -5(4) -41(4)

C27 122(7) 133(7) 52(5) -2(5) -21(4) -78(6)

C28 74(5) 85(5) 54(4) -15(4) -9(4) -37(4)

C29 58(4) 55(4) 66(5) -2(4) -7(4) -23(3)

C30 127(8) 153(7) 80(6) 32(5) -25(5) -103(7)

C31 158(10) 173(9) 101(7) 43(6) -34(7) -126(8)

C32 107(7) 99(6) 110(7) 0(6) -5(6) -62(5)

C33 228(13) 245(12) 101(8) -15(8) -16(8) -99(12)

C34 195(11) 244(11) 76(6) 24(6) -28(6) -89(10)

C35 62(5) 59(4) 66(4) -21(4) -5(4) -24(4)

C36 121(7) 86(5) 146(8) 18(5) -53(6) -71(5)

N1 41(3) 51(3) 45(3) -16(2) -4(2) -13(2)

N2 51(3) 48(3) 33(3) -2(2) -10(2) -22(2)

N3 54(3) 48(3) 49(3) -4(2) -2(3) -24(3)

N4 64(4) 49(3) 45(3) -3(2) -5(3) -20(3)

O1 75(3) 63(3) 130(4) 6(3) -38(3) -37(3)

O2 99(4) 65(3) 127(4) 29(3) -44(3) -43(3)

O3 64(3) 65(2) 40(2) -16(2) -13(2) -18(2)

O4 89(3) 61(3) 58(3) 4(2) -30(3) -33(2)

OW 360(2) 460(2) 370(2) -101(2) -78(2) -40(2)

Br1 139(1) 168(1) 88(1) 48(1) -4(1) -66(1)

The anisotropic displacement factor takes the form: exp{-2π2 [h2a*2U11+...+2hk a* b* U12]}

(8)

Table 3b. Anisotropic displacement parameters (Å2×103) for non-hydrogen atoms of Molecule B of the compound

Atom U11 U22 U33 U23 U13 U12

C1' 44(4) 33(3) 58(4) -4(3) -2(3) -12(2)

C2' 52(4) 38(3) 38(3) -5(3) 7(3) -17(3)

C3' 43(4) 40(3) 48(4) -9(3) 7(3) -12(3)

C4' 30(3) 41(3) 47(3) -2(3) -5(3) -6(2)

C5' 44(4) 39(3) 39(3) 2(3) -10(3) -10(3)

C6' 62(4) 48(4) 45(3) -5(3) 7(3) -30(3)

C7' 64(4) 54(4) 50(4) -5(3) -22(3) -17(3)

C8' 77(5) 50(3) 37(3) 1(3) -18(3) -20(3)

C9' 91(6) 72(5) 77(5) -20(4) -23(4) -26(4)

C10' 131(8) 87(6) 81(6) -23(5) -35(6) -37(6)

C11' 172(1) 78(6) 47(5) -19(4) -6(6) -30(7)

C12' 79(6) 89(5) 85(6) -23(5) 19(5) -10(5)

C13' 56(5) 69(4) 80(5) -17(4) -1(4) -12(4)

C14' 54(4) 53(3) 55(4) -10(3) -8(3) -29(3)

C15' 66(5) 89(5) 57(4) -15(4) 3(4) -44(4)

C16' 70(6) 99(5) 74(5) -21(4) 10(4) -45(4)

C17' 78(6) 101(5) 75(5) 5(5) -16(5) -54(5)

C18' 66(5) 83(5) 100(6) -28(4) -16(5) -32(4)

C19' 80(6) 74(4) 65(5) -15(4) -12(4) -35(4)

C20' 44(4) 34(3) 39(3) -1(3) -3(3) -13(3)

C21' 46(4) 33(3) 30(3) -1(2) -3(3) -10(3)

C22' 46(4) 40(3) 45(3) -5(3) 5(3) -9(3)

C23' 38(3) 31(3) 42(3) -7(2) 0(3) -16(2)

C24' 61(5) 38(3) 78(5) -14(3) -12(4) -11(3)

C25' 43(4) 62(4) 96(5) -5(4) -14(4) -22(3)

C26' 54(4) 46(4) 62(4) -10(3) 7(3) -18(3)

C27' 63(5) 51(4) 147(7) -47(4) 22(5) -20(4)

C28' 56(5) 53(4) 137(7) -22(4) 17(4) -18(3)

C29' 57(4) 51(3) 47(4) -6(3) 3(3) -27(3)

C30' 74(5) 62(4) 67(4) 13(4) 5(4) -34(4)

C31' 64(5) 87(5) 94(6) 36(4) -6(5) -32(4)

C32' 87(6) 102(6) 77(5) -10(5) 32(5) -50(5)

C33' 57(5) 89(5) 98(6) -22(5) 28(5) -15(4)

C34' 53(4) 70(4) 73(5) 13(4) 2(4) -10(4)

C35' 61(5) 54(4) 71(4) 14(3) -19(4) -35(4)

N1' 45(3) 34(2) 40(3) -2(2) -1(2) -10(2)

N2' 46(3) 44(3) 48(3) -4(2) -9(2) -18(2)

N3' 46(3) 41(3) 43(3) 5(2) -3(2) -15(2)

N4' 41(3) 31(2) 45(3) -2(2) 0(2) -5(2)

O1' 63(3) 78(3) 128(4) -5(3) -18(3) -50(3)

O2' 46(3) 76(3) 154(5) 2(3) -12(3) -15(3)

O3' 88(3) 52(3) 85(3) -14(2) -11(3) -31(2)

O4' 48(3) 48(2) 86(3) -7(2) -9(2) -9(2)

Br1' 53(1) 79(1) 114(1) -20(1) 11(1) -4(1)

The anisotropic displacement factor takes the form: exp{-2π2 [h2a*2U11+...+2hk a* b* U12]}

(9)

ecule B, Fig. 4a & 4b describes the bond lengths of molecule (A&B) and Fig. 5a & 5b describes Bond angles of the compound; Table 3a and 3b shows aniso- tropic displacement parameters for Molecule (A&B), Table 4(a&b) shows the hydrogen coordinates for Mol- ecule (A&B) and Table 5a & 5b shows the torsion angles for molecule (A&B) of the compound.

4. Results and Discussion

In the molecular structure of the title compound has two molecules present in the asymmetric unit. In the title compound, the pyrazole ring adopts planarity. The Table 4a. Atomic coordinates (×104) and their isotropic

displacement parameters (Å2×103) for hydrogen atoms of Molecule A of the compound

Atom x y z U(iso)

H1 4124 6694 1992 55

H2 5360 6142 912 50

H3 4131 7004 174 55

H4 2497 8376 659 53

H7A 1109 8425 1869 72

H7B 1832 9086 1690 72

H9 1777 6837 2800 85

H10 2350 6387 3799 96

H11 2980 7495 4157 97

H12 3100 8990 3520 89

H13 2541 9399 2519 73

H15 5769 2697 1105 67

H16 5668 1009 1172 88

H17 4003 1045 1011 101

H18 2376 2774 828 95

H19 2444 4447 775 76

H22 1266 6546 1480 59

H24 1169 9775 -65 75

H25 1463 10762 -1008 93

H27 1990 8259 -1967 112

H28 1729 7222 -1048 84

H30 2 5834 1818 129

H31 -1029 4879 2091 153

H32 -2053 4770 1401 121

H33 -1874 5492 402 185

H34 -839 6468 84 166

H37G 6530 9076 964 206

H37H 5739 8720 704 206

H37I 6893 7777 958 206

H37J 6757 8690 1983 206

H37K 7050 7420 1938 206

H37L 6050 8159 2434 206

Table 4b. Atomic coordinates (×104) and their isotropic displacement parameters (Å2×103) for hydrogen atoms of Molecule B of the compound

Atom x y z U(iso)

H1' 3367 4309 3321 57

H2' 4311 3199 2336 55

H3' 5168 1316 2663 57

H4' 5365 1308 3676 53

H7'1 4849 2859 4364 71

H7'2 4096 2296 4720 71

H9' 4384 4376 4943 98

H10' 3088 6042 5380 121

H11' 1163 6735 5398 133

H12' 492 5767 4947 119

H13' 1770 4099 4478 91

H15' 620 3397 3405 81

H16' -1115 3398 3398 96

H17' -1284 2457 2659 96

H18' 230 1542 1916 97

H19' 1959 1566 1917 86

H22' 2439 1835 4326 60

H24' 6681 -292 4057 75

H25' 8583 -1636 3792 81

H27' 7515 -3790 3530 108

H28' 5640 -2456 3840 105

H30' 3115 -1479 5456 85

H31' 1700 -1568 6181 107

H32' -153 -83 6221 110

H33' -624 1436 5464 112

H34' 821 1557 4725 93

H36A 6451 4358 3426 118

H36B 6516 3881 2806 118

H36C 5973 4625 3795 118

H36D 6615 4161 3144 118

H37A 7068 5130 2642 163

H37B 5879 6045 2949 163

H37C 5946 5562 2322 163

H37D 6474 5846 3209 163

H37E 5125 6396 3330 163

H37F 5772 5929 2677 163

(10)

average C-N bond length of the pyrazole ring in both the structures are shorter than a C-N single bond length of 1.424 Å, but longer than a double bond of 1.350[14], indicating the possibility of electron delocalization. The sum of the bond angles at (N4 and N4') of the pyrazole ring is 359.98o and 359.75o for molecule A and mole- cule B of compounds I in accordance with sp2 hybrid- ized state[15].

Both molecule A and molecule B, the bromophenyl and phenyl ring attached to the pyrazole rings are

inclined by the dihedral angle of 51.77 (2)o, 8.49 (3)o, 39.16 (2)o and 21.75 (2)o respectively. The torsion angle H2-C2-C3-H3 in molecule A and H2'-C2'-C3'-H3' of molecule B of compound is -14.87 (7)o and 12.63 (7)o respectively. The above angle defines the ring fusion in the pyrrole-pyrrole moieties as cis configuration.

The pyrrole ring of molecule A (N1/C1-C4) and mol- ecule B (N1'/C1'-C4') adopts envelope conformations with atoms N1 and N1' at the flap. From the least- square planes analysis, the atoms (N1 and N1') are Table 5a. Torsion angles (°) of Molecule A of the compound

Atoms Angle (°) Atoms Angle (°)

C1-C2-C3-C4 C1-C2-C3-C6 C1-C2-C5-N2 C1-C2-C5-O4 C1-C35-O1-C36 C2-C1-C35-O1 C2-C1-C35-O2 C2-C1-N1-C4 C2-C1-N1-C7 C2-C3-C4-C20 C2-C3-C4-N1 C2-C3-C6-N2 C2-C3-C6-O3 C2-C5-N2-C14 C2-C5-N2-C6 C3-C2-C5-N2 C3-C2-C5-O4 C3-C4-C20-C21 C3-C4-C20-C22 C3-C4-N1-C1 C3-C4-N1-C7 C3-C6-N2-C14 C3-C6-N2-C5 C4-C20-C21-C23 C4-C20-C21-N4 C4-C20-C22-N3 C4-C3-C6-N2 C4-C3-C6-O3 C5-C2-C3-C4 C5-C2-C3-C6 C6-C3-C4-C20 C6-C3-C4-N1 C7-C8-C13-C12 C7-C8-C9-C10 C8-C7-N1-C1 C8-C7-N1-C4 C8-C9-C10-C11 C9-C10-C11-C12

-13.7(5) -132.8(4) 122.6(5) -58.4(7) -179.4(6) -84.5(6) 96.1(7) -42.8(5) -173.0(4) -131.6(5) -10.7(5) 17.6(5) -162.7(5) 175.0(4) 0.6(6) 10.5(5) -170.6(5) -77.4(6) 90.3(6) 34.0(5) 165.5(4) 174.0(4) -11.7(6) -6.0(9) 170.1(5) -170.2(5) -97.7(5) 82.1(7) 102.5(4) -16.6(5) -17.4(6) 103.5(5) -174.9(6) 174.5(6) -47.6(6) -175.4(5) 1.5(10) -0.9(10)

C9-C8-C13-C12 C10-C11-C12-C13 C11-C12-C13-C8 C13-C8-C9-C10 C14-C15-C16-C17 C15-C14-C19-C18 C15-C14-N2-C5 C15-C14-N2-C6 C15-C16-C17-C18 C16-C17-C18-C19 C17-C18-C19-C14 C19-C14-C15-C16 C19-C14-N2-C5 C19-C14-N2-C6 C20-C21-C23-C24 C20-C21-C23-C28 C20-C21-N4-N3 C20-C22-N3-C29 C20-C22-N3-N4 C20-C4-N1-C1 C20-C4-N1-C7 C21-C20-C22-N3 C21-C23-C24-C25 C21-C23-C28-C27 C22-C20-C21-C23 C22-C20-C21-N4 C22-N3-N4-C21 C23-C21-N4-N3 C23-C24-C25-C26 C24-C23-C28-C27 C24-C25-C26-Br1 C24-C25-C26-C27 C25-C26-C27-C28 C26-C27-C28-C23 C28-C23-C24-C25 C29-C30-C31-C32 C29-N3-N4-C21 C30-C29-C34-C33

1.2(9) 0.5(10) -0.7(10) -1.7(9) 1.2(9) -0.2(9) -45.0(7) 128.7(5) -1.5(11) 0.9(11) -0.1(10) -0.4(8) 136.4(6) -49.9(7) -54.4(8) 125.9(6) 0.2(6) 177.6(5) 0.7(6) 156.3(4) -72.3(5) -0.5(6) -176.7(5) 176.4(6) -175.9(5) 0.2(6) -0.6(6) 176.8(5) -2.1(9) -3.4(9) 179.6(5) 1.4(10) -1.8(11) 2.9(11) 3.0(8) -1.0(16) -177.6(5) 1.5(14)

(11)

found to be deviated by maximum deviation of -0.244 (2) Å and -0.239 (2) Å from other atoms indicates the atoms N1 and N1' at the flap in molecules A and B, respectively.

The partial double bond character of bonds C5-N2 [1.387 (3) Å], C5'-N2' [1.392 (3) Å], N2-C6 [1.394 (3) Å] and C6'-N2' [1.395 (3) Å] of compound shows a high degree of electron delocalization. Moreover the terminal methyl group ((C42C & C42D)) in molecule A and ethyl group (C41', C41A, C42', C42B) in mole- cule B which is attached to carboxylate group is disor- dered over two positions with site occupancy factors 0.494:0.506 respectively. The SUMP, SADI, DFIX and

EADP commands in SHELXL were used to model the disorder.

The phenyl ring (C14-C19) which is attached to pyr- role-dione in molecule A and molecule B of compound are inclined with the dihedral angle of 17.83 (2)o and 61.69 (2)o respectively. Whereas the benzyl group (C8- C13/C7) which is attached to the pyrrole ring in mole- cule A and molecule B of compound are tilted with the dihedral angle of 72.94 (2)o and 79.18 (3)o respectively.

5. Conclusion

The title compound is crystallized from ethyl acetate Table 5b. Torsion angle of Molecule B of the Compound

Atoms Angle (°) Atoms Angle (°)

C1'-C2'-C5'-N2' C1'-C2'-C5'-O4' C1'-C2'-C3'-C4' C1'-C2'-C3'-C6' C1'-C35'-O1'-C36A C1'-C35'-O1'-C36' C2'-C5'-N2'-C14' C2'-C5'-N2'-C6' C2'-C1'-N1'-C4' C2'-C1'-N1'-C7' C2'-C1'-C35'-O1' C2'-C1'-C35'-O2' C2'-C3'-C6'-N2' C2'-C3'-C6'-O3' C2'-C3'-C4'-C20' C2'-C3'-C4'-N1' C3'-C6'-N2'-C14' C3'-C6'-N2'-C5' C3'-C4'-N1'-C7' C3'-C4'-N1'-C1' C3'-C4'-C20'-C21' C3'-C4'-C20'-C22' C3'-C2'-C5'-N2' C3'-C2'-C5'-O4' C4'-C20'-C22'-N3' C4'-C20'-C21'-C23' C4'-C20'-C21'-N4' C4'-C3'-C6'-N2' C4'-C3'-C6'-O3' C5'-C2'-C3'-C4' C5'-C2'-C3'-C6' C6'-C3'-C4'-C20' C6'-C3'-C4'-N1' C7'-C8'-C13'-C12' C7'-C8'-C9'-C10'

-121.3 (4) 58.9 (7) 11.6 (6) 132.2 (5) -167.4 (9) 165.5 (10) 176.7 (5) -1.6 (6) 44.6 (5) 170.2 (4) 126.8 (5) -52.2 (8) -15.5 (5) 167.6 (5) 133.5 (4) 14.0 (5) -167.1 (5) 11.2 (6) -163.8 (4) -36.9 (5) 87.4 (6) -88.5 (6) -8.2 (5) 172.0 (5) 176.8 (5) 3.1 (9) -177.2 (5) 99.2 (5) -77.7 (7) -106.4 (5) 14.2 (5) 19.5 (6) -100.0 (5) 176.3 (6) -177.1 (6)

C8'-C7'-N1'-C4' C8'-C7'-N1'-C1' C8'-C9'-C10'-C11' C9'-C8'-C13'-C12' C9'-C10'-C11'-C12' C10'-C11'-C12'-C13' C11'-C12'-C13'-C8' C13'-C8'-C9'-C10' C14'-C15'-C16'-C17' C15'-C14'-N2'-C6' C15'-C14'-N2'-C5' C15'-C14'-C19'-C18' C15'-C16'-C17'-C18' C16'-C17'-C18'-C19' C17'-C18'-C19'-C14' C19'-C14'-N2'-C6' C19'-C14'-N2'-C5' C19'-C14'-C15'-C16' C20'-C21'-N4'-N3' C20'-C22'-N3'-C29' C20'-C22'-N3'-N4' C20'-C4'-N1'-C7' C20'-C4'-N1'-C1' C20'-C21'-C23'-C24' C20'-C21'-C23'-C28' C21'-C23'-C28'-C27' C21'-C23'-C24'-C25' C21'-C20'-C22'-N3' C22'-N3'-N4'-C21' C22'-C20'-C21'-C23' C22'-C20'-C21'-N4' C23'-C21'-N4'-N3' C23'-C24'-C25'-C26' C24'-C23'-C28'-C27' C24'-C25'-C26'-Br1'

-168.3 (5) 68.7 (6) 0.2 (12) -2.1 (9) -0.9 (13) 0.1 (12) 1.4 (11) 1.4 (10) 0.3 (10) 119.8 (6) -58.3 (7) -1.0 (9) -0.6 (10) 0.2 (11) 0.7 (10) -58.9 (7) 123.0 (6) 0.5 (9) 0.8 (6) 171.5 (5) 0.5 (6) 72.7 (5) -160.4 (4) 39.2 (8) -141.8 (6) 179.7 (6) 178.7 (5) 0.0 (6) -0.8 (5) 179.8 (5) -0.5 (6) -179.4 (4) 2.1 (9) -1.2 (1) 176.3 (5)

(12)

solution by slow evaporation technique. The structure is determined using Direct Methods Protocol and refined using Least-squares Fit methods. The final R factor is 8%. There are two in- depended molecule present in the asymmetric unit. In general the pyrazole derivatives are well characterized in terms of medicinal and biological applications. The pyrazole ring adopts planar conforma- tion. The title structure may be important from a medic- inal point of view as well as their widespread biological significance. The structure may be useful for further investigation on the mechanism, potential activity, opti- mal reaction condition etc which will be further char- acterized as a future prospective of our project. As 3D structure is determined now, with the biological impor- tance of such derivatives, the usefulness of the present derivative can be established using Bioinformatics tools.

References

[1] J. Ganapathy, Jayarajan. R, Vasuki. G, and A. San- margam, “Synthesis and structural analysis of 2- amino-4-(4-hydroxy-3-methoxyphenyl)-7,9-dimethyl- 5-oxo-4, 5, 6, 7-tetrahydropyrano [2, 3-d] pyrazolo [3, 4-b] pyridine-3-carbonitrile through X-ray crystallography”, J. Chosun Natural Sci., Vol. 8, pp.

30-39, 2015.

[2] T. J. Sullivan., J. J. Truglio., M. E. Boyne., P. Nov- ichenok, X. Zhang, and C. F. Stratton, “High affin- ity InhA inhibitors with activity against drug- resistant strains of Mycobacterium tuberculosis”, ACS Chem. Biol., Vol. 1, pp. 43-53, 2006.

[3] I. V. Magedov, M. Manpadi, S. V. Slambrouck, W.

F. Steelant, E. Rozhkova, and N. M. Przheval’skii,

“Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocy- clic podophyllotoxin analogues accessible by a one- step multicomponent synthesis”, J. Med. Chem., Vol. 50, pp. 5183-5192, 2007.

[4] K. L. Kees, J. J. Fitzgerald, K. E. Steiner, J. F.

Mattes, B. Mihan, and T. Tosi, “New potent anti- hyperglycemic agents in db/db mice: synthesis and structure-activity relationship studies of (4-substi- tuted benzyl) (trifluoromethyl)pyrazoles and -pyra- zolones”, J. Med. Chem., Vol. 39, pp. 3920-3928, 1996.

[5] E. Akbas and I. Berber, “Antibacterial and antifun- gal activities of new pyrazolo[3,4-d]pyridazin deriv- atives”, Eur. J. Med. Chem., Vol 40, pp. 401-405, 2005.

[6] P. Schmidt, K. Eichenberger, and M. Wilhelm,

“Strukturanaloga der natürlichen purin-derivate”, Angew. Chem., Vol. 73, pp. 15-22, 1961.

[7] M. E. Camacho, J. León, A. Entrena, G. Velasco, M.

D. Carrión, and G. Escames, “4,5-dihydro-1H-pyra- zole derivatives with inhibitory nNOS activity in rat brain: synthesis and structure-activity relationships”, J. Med. Chem., Vol. 47, pp. 5641-5650, 2004.

[8] S. K. Meegalla, D. Doller, R. Liu, D. Sha, R. M.

Soll, and D. S. Dhanoa, “Efficient syntheses of 2- (2,6-dichloro-4-trifluoromethyl-phenyl)tetrahydro- cyclopenta, tetrahydrothiopyrano, hexahydrocyclo- heptapyrazoles and tetrahydroindazoles”, Tetrahedron Lett., Vol. 43, pp. 8639-8642, 2002.

[9] Oxford Diffraction, CrysAlis PRO,. Oxford Diffrac- tion Ltd, Yarnton, England. 2009.

[10] G. M. Sheldrick, SHELXS-97 and SHELXL-97,

“Program for crystal structure solution and refinement”, University of Gottingen, Gottingen, 1997.

[11] L. J. Farrugia, “ORTEP-3 for Windows—A version of ORTEP-III with a graphical user interface (GUI)”, J. Appl. Crystallogr., Vol. 30, p. 565, 1997.

[12] A. L. Spek, “Structure validation in chemical crystallography”, Acta Crystallogr. D, Vol. 65, pp.

48-155, 2009.

[13] L. J. Farrugia, “WinGX suite for small-molecule single-crystal crystallography”, J. Appl. Crystal- logr., Vol. 32, pp. 837-838, 1999.

[14] Z. M. Jin, L. Li., M. C. Li., M. L. Hu, and L. Shen,

“Diethyl 3,8-dimethyl-4,7-diazadeca-2,8-dienedio- ate”, Acta Crystallogr. C, Vol. 60, pp. o642-o643, 2004.

[15] R. L. Beddos, L. Dalton, T. A. Joule, O. S. Mills, J. D. Street, and C. I. F. Watt, “The geometry at nitrogen in N-phenylsulphonyl-pyrroles and-indoles.

The geometry of sulphonamides”, Journal of the chemiscal society, perkin transations 2, Vol. 6, pp.

787-797, 1986.

참조

관련 문서

Bacterial communities of endosphere and episphere in healthy trees from orchard C clearly confirmed the difference between fruit & twig and fruit & leaf.. Through a

Table 2 shows the students who indicated participating and meeting the recommended levels of vigorous physical activity.. Less than a quarter (18.8%) of

Even though the test is performed in the ground, opening forces of parachute can be estimated when the aircraft fell into a spin mode.. Table 4 shows the opening

Table 4 shows the number of concepts generated as a function of number of images present in the concept lattice for the four different orders of insertion.. As one can

• 대부분의 치료법은 환자의 이명 청력 및 소리의 편안함에 대한 보 고를 토대로

Likewise, the ripple effect of M&A on the value of the acquiring company -- which could not be determined using existing M&A theoretical

The cost of such an item of PP&E is measured at fair value unless (a) the exchange transaction lacks commercial substance ( 상업적실질 ) or (b) the fair value of

Knockdown of AMPK␤ reduced CLK levels in pacemaker neurons, and thereby reduced pre-mRNA and protein levels of CLK downstream core clock genes, such as period and