• 검색 결과가 없습니다.

Electrosorption of Cobalt Ions by Chemically Treated ACF Discs

N/A
N/A
Protected

Academic year: 2022

Share "Electrosorption of Cobalt Ions by Chemically Treated ACF Discs"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

      

 * **

 

305-764   220

*    

305-353  ! 150

**     "

305-380  #$ 103-16 (2003% 8& 11' (), 2003% 10& 20' *+)

Electrosorption of Cobalt Ions by Chemically Treated ACF Discs

Han Sang Kim, Seung Kon Ryu, Chong Hun Jung* and Kwang Kyu Park**

Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea

*Nuclear Chemical Engineering Research Team, Korea Atomic Energy Research Institute, 150, Duckjin-dong, Yuseong-gu, Daejeon 305-353, Korea

**Nuclear Power Laboratoty, Korea Electric Power Research Institute, 103-16, Munji-dong, Yuseong-gu, Daejeon 305-380, Korea (Received 11 August 2003; accepted 20 October 2003)

 

   NaOH  HNO3      ! " #$%&

'() *+,-./ 01234 %&5678.  NaOH  9:'; <=&> ?

@A B C-D EFGB HIJ HNO3  9:'; <=& B C-D ?@A K 20% H

 EFG LBM N carboxyl OP3 Q3 RIJ8. KS! ; ; T%UA pH 3.1!) pH 2.6, pH 2.2 VV WXY zeta %ZG H[\ 3]A ! ^34 %_GB LB[& `a38. NaOH 

b   ! ;c 01234; 56dG Ie fA ! ;c 56dGg8 2h LB[- D HNO3  1/5 H[8. 012 34; %&56ijA 0.2 N NaClke %lm; nG! ?o

[-D %lm; nGB p LB q34; rs- 012 34; 56dG H[8.

Abstract−ACF discs were surface treated using NaOH, HNO3 and connected to a graphite bar, for the electrosorption of cobalt ions from an aqueous solution. The total acidity of ACF decreased by NaOH treatment which maintaining the same average pore size and specific surface area. The total acidity, specially carboxyl groups, increased by HNO3 treatment, although the specific surface area was reduced by co. 20%. The Point of Zero Charge (PZC) of ACF decreased from pH 3.1 to 2.6 and 2.2 by HNO3 and NaOH treatment, as a result of increases in anode ion density on ACF disc surface. Therefore, the adsorption rate of cabalt ion by NaOH treated ACF disc was twice larger than that of non-treated ACF disc, while that of HNO3 treated ACF disc was only one fifth of the non-treated ACF disc in electrosorption. The electrosorption rate increased with the elec- trolyte concentration, however, it slowly decreased above 0.2 N NaCl because of competition between Co2+ and Na+. Key words: Activated Carbon Fiber, Electrosorption, Acidity, Co(II)

1.  

      

         !

 " #$, %& '( ()* + ',, - . / 01.&  ·2 3  4 56 7$ 48[1].

 9:  ;< +=5 >, ? 

@ A B !  7C"D E, F:G H I J 5 K L3 MK NOP *Q / *RS' TU V) WX( 

:+ Y(Z" [8. <\, ]^ Y(Z" , _F:` ab

1H'` -cHd ef' g\$, B ! ' Bh " ij

 kl m1 8n F:' 9oZ$ 48.

w x ()* gyz 3  4 ! ' { MK NOP

|}n~' ! € r‚Z" 4" ƒ „…8[2]. †

To whom correspondence should be addressed.

E-mail: skryu@cnu.ac.kr

(2)

<  _F:‡8 ˆ‰ T$, Š‹` Š‹ Œ

Ž n3  4"  _‘  ·2   ’T “

” € •d –—s8.

˜ , _F:t0 ™& š”›œ d s ž',

~  d Ÿ › ‡$Z 8[3, 4]. ]¡` _F:

t0& '(< b  ' ›¢ —£'¤ †< _F:t0

 F:G'U ž', “”  ¥ !WX ¦

'8. 5w, nfs § ! € ‚Z F: ¨ B3 ¦9 48.

©.r:` ªY z« ef¬ Vz  ­®Ÿ

 ¯' '°"J$ 48. ±n²³ r´ i‘ V) Co(II), V(III), Fe(II) v' +<8. '~ µƒ', › ¶ "ŸT U ·¸ d ¶$ 48. 5w, Co(II) ªY' ¹U '

& º­ ·¸ d ¶Ÿ ¯' Z d`[5] '& »¼ “

” d 3  4  qr' ¦98.

]¡U, ½ b   ¾($. _F:t0& -G

¿À8 § ‚' €¥JÁ 8› ÂÃÄ Œ Œ 

 K~$ '  ž', # ÅH›Æ  4Á 

RSWX! WXÇ ÈÉ B ! ” |}n, !¢( ]

-Í$ RSd !WXs _F:t0 ÂÃÄ <  () * ÎrÏ',  “”& ›$. Ð8.

2.  

˜Ñ Y(s _F:t0 ÒÓã Š‹(KF-1500, Toyobo Co.) zÔ Շ Ö 0.01-0.2 g/cc, ×}n Ä 14 Å' 8. '• ØÙªÚd 0.1-0.5 nm Û' -Ü 8› ÂÃÄ(ŠÝ 2.5 cm, IÞ 0.5 cm)Œ ßnŒ< ³ RSWX d

Y(Ð8. ÂÃÄ  !WX Yoon[6] / Chang[7] ªÚ ÈP ›=& 1 M NaOH, 1 M HNO3 ()' àá4 Bx â$ 20oC, 40oC, 60oC ãã 24›ä^ hå! Ð8. !WX

 ^ ACF RS æ< ^² Y  40oC, 800

›ä ^ hå! () pHˏ, ›= çèˏ& é²Ð8.

!WX ê=s ³ ë§ ¡ ì }í$ 110oC 24›ä ÇÐ8. Fig. 1 s ŒÂÃÄ Yß ›Ð8. 4 nm Š Ý abî' š” ï& ð$ < q disc ˜ ž 0.5 g '¤ Շ Ö 0.21 g/cc'8.

ÎrÏ ',  .G ¢< 3  ·2¬Ô

& Y( Ð8.   ·2 ¬Ô Fig. 2 ‡ ñ@ ò ' potentiostat(EG&G 273)@ ( 1 l óPÃÄ  Z  8.  ôG Y(s abî(EG&G PARC M-G0091)'

potentiostat@ bõZ" 4$ ' abî Nö- _F:t0 Â ÃÄ 4q& 0.5 cm ä÷d bõ ¢ø(working electrode)d

Y(Ð8, Hæd Ãr´ BÙ ùµ·(0.2 nmΦ)

 nÄ 40 Å Vycor úû(No 7930)* `·Œd üÔ ¢ ø” -X›ý8. ¨ ‹ þÿ(saturated calomel electrode) Y(Ð8. ¥« ()d 0.05 N, 0.1 N, 0.2 N, 0.5 N NaCl(Junsei Chemical Co.)() ë§ Ðd¤ ' ¥«

() CoCl2()  Co++  30 ppm' ZÁ Ð 8. ()' € ;ZÁ .ÍÙ hå& Y( 100 rpm

ƒ w () hå›ý8. 2˜Ñ ¥«() k 1

< ³ pH 5  ˜ÑÐd¤,  () pH 0.1 N NaOH

† 0.1 N HCl  Ð8.

RSWXs _F:t0 ŒG !  5 BET B ! 鲬Ô& Y( -ÍÐ$ ! Boehm ·¸ç

Ú[8]d é²Ð8. WXs _F:t0 ÂÃÄ ()

 pHˏ ÈÉ zeta @ vÌ Ë zeta  é²(ELS-

6000) Y( é²Ðd¤ ¥« ()* ÎrÏ ', 

©. -£(Perkin Elmer, 1100B) é²Ð8.

3. 

3-1.     · 

Fig. 3 _F:t0 ÂÃÄ HNO3, NaOH () *RS

 é²< õ”& `m* 8. 40oC pH 1.6 ¹, pH 6.75 ç

 / pH 12.25 ¹± () €€^ G§Ð" _F:

t0 ÂÃÄ ~"4 () pH ˏ ž›3 K Ð$ çèˏ

†<  8. ÈP _F:t0 40oC Bh ^²  4 8.

!WX& < _F:t0 ÂÃÄ }n Ä -‹& Y3 ¦ 9 48. Fig. 4 €å _F:t0 ÂÃÄ@  ·±WXs _

Fig. 1. Photographs of ACF-discs.

Fig. 2. Schematic view of electrosorption apparatus.

(3)

 41 6 2003 12

F:t0 ÂÃÄ 77 K «: v, · ›< •'8. ]

d  · type I ‡'$ 4E '• _F:t0

4 '¤, '~ ÂÃÄ Œ Œ$  ·± WX!

«:è ®:JK |}n Ä A ˏ ™ |<

8. «:è ®: ! # r‚ ' # |}

n  d –—s8. Pittman v[9] F:t0& ß< HNO3

 !WX! õ²  s -' «” å¾ ! ¢

'` á' r´<8$ ‡$Ð$, Manocha[10] !

:¢(~' F:  1 ` ז ' v  Œs 8$ ‡$Ð8. Table 1 20oC, 40oC / 60oC HNO3/ NaOH

 24›ä^ !WXs _F:t0 ÂÃÄ  5 ²X

Ð8.  }nï ®: |}nï ®:@ €Ô< Y

˜ !WX  r‚s ¢(~ |}n' 1 & À

™  4d¤ '¡< õ” Park v[11] ‡$@ €Ô<8. ÈP

 «:è” B ! ' ®:ÐJK ×}n Ä ¶ Ë

 8. B !  20oC WX 10-18% ®:JK WX,

 † : £ 4 •d ´ãs8.

Table 2  !WXs _F:t0 ÂÃÄ !&

²XÐ8. Shim” Ryu[12], Donnet” Bansal[13] õ”@ ò' ! WX _F:t0 ÂÃÄ   0.850 meq/g E 20oC HNO3d WX< ÝT 2.230 meq/g  `m*" WX‡8 2.6 ëÐ8. Lactone@ phenol R 2 ëÐ$ carboxyl

 0.044 meq/g 0.785 meq/gd R 17.8` ëÐ8. WX,

& 40oC, 60oC H› ÈP carboxyl@ phenol ®:d`

lactone ®:8 8› ëÐ8. å!, NaOH WX< ÝT

 ' 0.680 meq/gd ®:Ð8. ¢( ®:!  4!

|}n~' qªZ" B ! ' ë"  4 •d #HÐJK,

˜Ñõ” B ! ' $wŸ ®:Ð8. '¡< õ” ¢(@ õ

;Z" 4! !F:©. ¢( 2Xs ³ '% F:©.`

'% #@ õ; |}n 1 & À d –—s8.

Fig. 5 20oC RSWX< _F:t0 ÂÃÄ Zeta-

 ˏ& é²< •'8. RSWX& J & ÂÃÄ vpH(PPZC)

 3.1' 8. >, pH 3.1() _F:t0 ! ', 

Fig. 3. pH monitoring of ACF-disc contained NaOH and HCl solution at 40oC, 100 rpm.

Fig. 4. Adsorption isotherms of chemically treated ACF-discs.

Table 1. Structural characteristics of chemically treated ACF-discs ACF SBET(m2/g)Vt(cc/g)Vm(cc/g) Aver.pore dia.(Å)

KF-1500 1,614 1.06 0.83 14

KF-1500-HNO3(20oC) 1,315 0.80 0.57 17 KF-1500-HNO3(40oC) 1,560 0.70 0.64 18 KF-1500-HNO3(60oC) 1,576 0.72 0.67 18 KF-1500-NaOH(20oC) 1,460 0.82 0.59 15 KF-1500-NaOH(40oC) 1,557 0.71 0.66 18 KF-1500-NaOH(60oC) 1,568 0.71 0.67 18 Table 2. Surface acidity of chemically treated ACF-discs

ACF Functional group(meq/g) Total acidity (meq/g) Carboxyl Lactone Phenol

KF-1500 0.044 0.487 0.314 0.850

KF-1500-HNO3(20oC) 0.785 0.861 0.633 2.230 KF-1500-HNO3(40oC) 0.668 0.614 0.344 1.626 KF-1500-HNO3(60oC) 0.640 1.164 0.112 1.916 KF-1500-NaOH(20oC) 0.012 0.542 0.125 0.680 KF-1500-NaOH(40oC) 0.086 0.072 0.456 0.610 KF-1500-NaOH(60oC) 0.060 0.128 0.392 0.580

Fig. 5. Zeta potentials of chemically treated ACF-discs.

(4)

Ö ™',  Ö@ òN  48. ]¡` HNO3/ NaOH ! WXÐ ÝT v pH ãã 2.6, 2.2 ' N(8. !WX  v pH 'NJ$ Zeta  » A ™

  7 •  ! ',  Ö ®:$ ™',

 Ö ë™ |¤ '¡< õ” Blum” Henderson[14]

 ü)” €Ô<8. ÈP ()* ',d s žµƒ',

 ' ˆ‰ ('¥« •d –—s8.

3-2.      

 A Å |*8. ()d ÎrÏ ', 

< < ¥« () & Y ¥ < õ”& Fig. 6

Ï ', è' ā ëÐ8. è ¥«  ë

ÈP ë8 0.2 N 'H' Z! 8› ®:Ð8. '• Na+

 ë Co+  - < •d –—ZE '¡< õ”

Lee@ Jung[15]' ‡$< õ”@ òÀ8. †<, Graham[16]' 

 Ä& ˏ›.!  £! Na+/ Cl  b  ã ',‘ æ< i (  / ›< ñ 48. ÈP 

d –—s8.

Fig. 7 ¥« @ & €² 0J$ RSWX

& ‚X < _F:t0 ÂÃÄ < ÎrÏ ', 

# é²< õ”'8. ]d NaOH !WX< Âà Ä # ā ë 0 +,›ä æ- ÎrÏ ' , Ð8. å! HNO3d WX< ÂÃÄ WXJ &  Ãć8  “1' ®:Ð8. '¡< õ” _F:t 0 ž', # B ! ë@ »g"  ! r

‚< # < ™',  Ö ë †< ç9< Å |Ô

 •d –—s8.

Fig. 8 NaOH WXs _F:t0 ÂÃÄ (& ‚X!

 pH 5.0, 0.05 N NaCl ¥«() ÎrÏ ', # é²

< õ”'8. ]d & J &À  #' iæ 16% J`J &Àd` ™ ( ë3Á ÎrÏ ' , #' ë$ −0.2 V

' '°"(8. '¡< õ” 0  ;z Œ

 ¶< b [5]‡8 ˆ‰ T< # ‡'$ 48. <\, −0.3 V

 ÝT 2 ƒ −0.2 V ( ÄJK ›ä' Ý

',  'E   « 2& ë›.! 

# ( B3 ë3 •d –—s8.

Fig. 9 ÎrÏ ', < _F:t0 ÂÃÄ  

&  ÎrÏ ', 2 ˜Ñõ”& ‡ •'8. >, Fig. 8 ›< −0.2 V  24›ä^ ÎrÏ ', < ÂÃÄ

& ÎrÏ ','  1 l 0.05 N NaCl() â$  & 

! 2 ˜›< õ” ]” ò' 2 2ƒ ’T 4d¤

+0.7 V  4›ä^ R 85% 21 ‡Ð8. €å d

 2 ›  ›‡8 ˆ‰ ? & nf¥D <8 b [17]@ €Ô¤, ' & 3 ÝT ׌ '… ›ä' ’T Û

"  48. '¡< b õ”~ !WX _F:t0

 5< $²6 ž', () bƒd š”›.!

™”  & ·2 ! ()d ¡ J ž

', “” d ¶3  4 •d –—s8.

Fig. 6. Electrosorption of Co(II) on non-treated ACF-discs at various concentration of electrolyte solution.

Fig. 7. Electrosorption of Co(II) on chemically treated ACF-discs at −−−−0.2 V, 0.05 N NaCl, Co=30 ppm.

Fig. 8. Electrosorption of Co(II) on NaOH treated ACF-discs at 0.05 N NaCl, Co=30 ppm.

(5)

 41 6 2003 12

4.  

_F:t0& ¿N ז ÂÃÄ& K~$ '• NaOH †

HNO3 !WX< ³ abî bõ$ §& nf! () d ÎrÏ ', ›7 õ” NaOH WX ÂÃÄ

893K< ”& : 8. >, HNO3 WX! F:  B ! ' ®:$ ÎrÏ ',  ;' ^ Z carboxyl ]Ê'

<' ´Z d`, NaOH WX! B !  ˏ $ carboxyl

 ë s8. ' ™',  Ö ë v̔ zeta 

& 'C" ', +j Ž U  (' <8.

NaOH !WXs _F:t0 ÂÃÄ < ÎrÏ ', 

 B  B ƒ 2 'H ëÐ8.

 # ¥¨ §è ·Œd ëÐ$, 0.2 N NaCl

=J ¥«  B3Ðd` ¥«  ”! ',

 Ý>d ÎrÏ ', ƒ ®:Z ÝÅ' 48.

½ b  21} ?@A"b qrYø .© Jƒ B‡

qrYø— b BJ©(#4-4-1) ¥ Z ØO8.



1. Woodard, F. E., McMackins, D. E. and Jansson, R. E. W., “Electrosorp- tion of Organic on Three Dimensional Carbon Fiber Electrode,” J.

Electronal. Chem., 214, 303-330(1986).

2. Ryu, S. K., “Porosity of Activated Carbon Fiber,” High Temperature- High Pressure, 22, 345-354(1990).

3. Kim, J. S., Jung, C. H., Oh, W. Z. and Ryu, S. K., “Electrosorption and Separation of Co2+ and Sr2+ Ions from Decontaminated Liquid Wastes,” Carbon Science, 3(1), 6-12(2002).

4. Xu, Y., Zondlo, J. W., Finklea, H. O. and Brennsteiner, A., “Electrosorp- tion of Uranium on Carbon Fibers as a Means of Environmental Remediation,” Fuel Processing Technology, 68(3), 189-208 (2000).

5. Lee, S. M., Jung, C. H., Moon, J. K., Oh, W. Z. and Ryu, S. K., “The Adsorption of Cu(II), Co(II), Ni(II) from Aqueous Solution onto Activated Carbon Fibers and the effect of Picolinic Acid,” HWAHAK KONGHAK, 37(1), 34-40(1999).

6. Yoon, Y. Y., “A Study on the Treatment of Chromiun(VI) by Acti- vated Carbon and Surface Treated Activated Carbon,” J. Kor. Soc.

Env. Engs., 9(2), 2001-2005(1987).

7. Chang, G. H., “The Adsorption Characteristics of Phenol by Surface -modified Activated Carbon Fibers,” Engineering Reserch, 22, 311- 322(1991).

8. Boehm H. P., “Chemistry of Heteroatoms on the Surface of Carbon (Plenary Lecture),” Carbon, 7(6), 715(1969).

9. Jr Pittman, C. U., He, G. R., Wu, B. and Gardner, S. D., “Chemical Modification of Carbon Fiber Surfaces by Nitric Acid Oxidation Followed by Reaction with Tetraethylenepentamine,” Carbon, 35(3), 317-331(1997).

10. Manocha, L. M., Bahl, O. P. and Singh, Y. K., “Mechanical Behav- iour of Carbon-carbon Composites Made with Surface Treated Car- bon Fibers,” Carbon, 27(3), 381-387(1989).

11. Park, S. J., Kim, Y. M. and Shim, J. S., “Studies on Anodic Oxidation Treatvent of Surface and Heavy Metal Adsorption Properties of Acti- vated Carbon Fibers,” J. Kor. Soc. Env. Engs., 14(1), 41-47(2003).

12. Shim, J. W. and Ryu. S. K., “Effect of Surface Modificatin of Activated Carbon Fiber for Adsorption on Copper and Nickel Ions,” HWAHAK KONGHAK, 36(6), 903-907(1998).

13. Donnet, J. B. and Bansal, R. C., Carbon Fibers, 2nd ed., Marcel Dekker inc, New York, USA(1990).

14. Blum, L. and Henderson, D., “Mixtures of Hard Ions and Dipoles Against a Charged Wall: The Ornstein-Zernike Equation, Some Exact Results, and the Mean Spherical Approximation,” J. Chem. Phys., 74(3), 1902-1910(1981).

15. Lee, S. M. and Jung, C. H., “The Effect of Electric Potential on the Desorption of Co(II) Ions,” Applied Chemistry, 3(1), 237-240(1999).

16. Grahame, D. C., “The Electrical Double Layer and the Theory of Electrocapillarity,” Chemical Rev., 41(3), 441-501(1947).

17. Jung, C. H., Lee, S. M., Oh, W. Z. and Park, H. S., “The Electrical Regeneration of Carbon Based Electrode,” Applied Chemistry, 3(1), 281-284(1999).

Fig. 9. Electrodesorption of Co(II) from NaOH treated ACF-discs at 0.05 N NaCl.

참조

관련 문서

The prodrug nature of KW02 and KW06 was also revealed by findings that they did not exhibit inhibitory action on IL-1β- treated IL-6 production in A549 cells, although they

For different parts of PN, BT of mice treated with PN rhizome was signi ficantly shorter than those treated with the same dose of root (p &lt; 0.05), and mice treated with

In contrast, there was an apparent decrease in the levels of CyclinA and cdk2 protein in SW480 cells treated with crocetin for 48h, compared with treated with PBS or

My delegation shares the concerns of the international community regarding the massive and systematic human rights violations and violations of international

To identify genes that are specifically or predomi- nantly expressed in the MG treated HepG2 cells, we compared the mRNA expression profiles of vehicle treated cells

Abstract: To improve the curing method of anisotropic conductive film (ACF) at low temperature, it was studied to replace the thermal latent curing agent of imidazole compounds

RT-PCR analysis of tumor homogenates revealed that sPD-1 mRNA was expressed in situ in rAAV/sPD-1 treated mice (Figure 2a), whereas, control homogenates from saline treated

In order to investigate the possibility of effective use of the neutralized urea-treated rice straw to the dairy cattle, nutrient digestibility and energy content of