• 검색 결과가 없습니다.

TAK1 inhibitor, (5Z)-7-Oxozeaenol inhibited expression level of pim-1 in LPS-mediated inflammatory signal pathway. In addition, kinase domain of Pim-1 play an important role in interaction with TAK1.

Pim-1 siRNA inhibited LPS-induced phosphorylation of JAK1 and STAT3 in THP-1 cells. These result suggested that Pim-1 is closely related to the JAK/STAT pathway to regulate its expression and function. Next, using KMU-11342, which has a novel Pim kinase inhibitor effect, its potential as an RA therapeutic drug and its anti-inflammatory mechanism were confirmed. Taken together, I identified anti-inflammatory effect of KMU-11342 via inhibiting of TLR4/NF-κB/NLRP3 inflammasome signaling in LPS-treated RA-FLS and THP-1 cells. In addition, it was confirmed that the differentiation of osteoclasts was also suppressed by KMU-11342. In this study, KMU-11342 inhibited multinucleated cell differentiation representing osteoclast differentiation and showed an effect of inhibiting the formation of F-actin rings. Additionally, it was shown that KMU-11342 inhibited both Cathepsin K, TRAP, NFATc-1, c-Fos, OSCAR, which are specific indicators of osteoclast. KMU-11342, inhibition of RANKL induced TAK1/MAPKs/NF-κB signal pathway in osteoclast differentiation.

As a result of this study, KMU-11342 has the potential to be developed as a therapeutic drug for RA through inhibition of inflammation and osteoclastogenesis.

Reference

1. Mondello P, Cuzzocrea S, Mian M: Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7: 95.

2. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, et al.:. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004; 24: 6104-15.

3. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, et al.:.

Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 2007; 13: 1467-75.

4. Katakami N, Kaneto H, Hao H, Umayahara Y, Fujitani Y, Sakamoto K, et al.: Role of pim-1 in smooth muscle cell proliferation. J Biol Chem 2004; 279: 54742-9.

5. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J: PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95:

1004-15.

6. Eichmann A, Yuan L, Bréant C, Alitalo K, Koskinen PJ: Developmental expression of pim kinases suggests functions also outside of the hematopoietic system. Oncogene 2000; 19: 1215-24.

7. Bachmann M, Möröy T: The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 2005; 37: 726-30.

8. Narlik-Grassow M, Blanco-Aparicio C, Carnero A: The PIM family of serine/threonine kinases in cancer. Med Res Rev 2014; 34: 136-59.

9. Keane NA, Reidy M, Natoni A, Raab MS, O'Dwyer M: Targeting the Pim kinases in multiple myeloma. Blood Cancer J 2015; 5:

e325-e.

10. Shen YM, Zhao Y, Zeng Y, Yan L, Chen BL, Leng AM, et al.:

Inhibition of Pim-1 kinase ameliorates dextran sodium sulfate-induced colitis in mice. Dig Dis Sci 2012; 57: 1822-31.

11. Baek HS, Min HJ, Hong VS, Kwon TK, Park JW, Lee J, et al.:

Anti-Inflammatory Effects of the Novel PIM Kinase Inhibitor KMU-470 in RAW 264.7 Cells through the TLR4-NF-κB-NLRP3 Pathway. Int J Mol Sci 2020; 2: 5138.

12. De Vries M, Heijink IH, Gras R, den Boef LE, Reinders-Luinge M, Pouwels SD, et al.: Pim1 kinase protects airway epithelial cells from cigarette smoke-induced damage and airway inflammation. Am J Physiol Lung Cell Mol Physiol 2014; 307: L240-51.

13. Shin YS, Takeda K, Shiraishi Y, Jia Y, Wang M, Jackson L, et al.:

Inhibition of Pim1 kinase activation attenuates allergen-induced airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol 2012; 46: 488-97.

14. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al.:.

Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9: 7204-18.

15. Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity Cell 2006; 124: 783-801.

16. Santos-Sierra S: Targeting Toll-like Receptor (TLR) Pathways in Inflammatory Arthritis: Two Better Than One? Biomolecules 2021;

11.

17. Joosten LA, Abdollahi-Roodsaz S, Dinarello CA, O'Neill L, Netea MG: Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol 2016; 12: 344-57.

18. Sandra M. Sacre, Evangelos Andreakos, Serafim Kiriakidis, Parisa Amjadi, Anna Lundberg, Grey Giddins, et al.: The Toll-Like Receptor Adaptor Proteins MyD88 and Mal/TIRAP Contribute to the Inflammatory and Destructive Processes in a Human Model of Rheumatoid Arthritis. Am J Pathol 2007; 170: 518–525.

19. Li Yu,, a Liantang Wang, and Shangwu Chen: Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 2010; 14: 2592–2603.

20. Kawasaki T, Kawai T: Toll-like receptor signaling pathways. Front Immunol 2014; 5: 461.

21. Sabio G, Davis RJ: TNF and MAP kinase signalling pathways.

Semin Immunol 2014; 26: 237-45.

22. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A: The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66: 311-28.

23. Czaja AJ: Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014; 20: 2515-32.

24. Liu Z, Wang Y, Wang Y, Ning Q, Zhang Y, Gong C, et al.:

Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. Int Immunopharmacol 2016; 35: 210-6.

25. Murakami A, Ohigashi H: Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer 2007; 121: 2357-63.

26. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ: Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 2004; 571: 43-9.

27. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al.: Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479: 117-21.

28. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, et al.:. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013; 341:

1246-9.

29. Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, Wu D, et al.:

Pim-1 kinase as cancer drug target: An update. Biomed Rep 2016; 4:

140-6.

30. Saris CJ, Domen J, Berns A: The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. Embo J 1991; 10: 655-64.

31. Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB, et al.: Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol Cell 1998; 2: 417-25.

32. Beharry Z, Mahajan S, Zemskova M, Lin YW, Tholanikunnel BG, Xia Z, et al.: The Pim protein kinases regulate energy metabolism and cell growth. Proc Natl Acad Sci USA 2011; 108: 528-33.

33. Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM: Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett 2000; 467: 17-21.

34. Wang J, Cao Y, Liu Y, Zhang X, Ji F, Li J, et al.: PIM1 inhibitor SMI-4a attenuated lipopolysaccharide-induced acute lung injury

through suppressing macrophage inflammatory responses via modulating p65 phosphorylation. Int Immunopharmacol 2019; 73:

568-74.

35. Rainio EM, Sandholm J, Koskinen PJ. Cutting edge: Transcriptional activity of NFATc1 is enhanced by the Pim-1 kinase. J Immunol 2002; 168: 1524-7.

36. Kim K, Kim JH, Youn BU, Jin HM, Kim N: Pim-1 regulates RANKL-induced osteoclastogenesis via NF-κB activation and NFATc1 induction. J Immunol 2010; 185: 7460-6.

37. Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K:

Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Cell Death Differ 2010; 17: 689-98.

38. Rahman I, MacNee W: Role of transcription factors in inflammatory lung diseases. Thorax 1998; 53: 601-12.

39. Liu T, Zhang L, Joo D, Sun SC: NF-κB signaling in inflammation.

Signal Transduct Target Ther 2017; 2: 17023-.

40. Ha YJ, Choi YS, Han DW, Kang EH, Yoo IS, Kim JH, et al.: PIM-1 kinase is a novel regulator of proinflammatory cytokine-mediated responses in rheumatoid arthritis fibroblast-likesynoviocytes.

Rheumatology (Oxford) 2019; 58: 154-64.

41. Turner MD, Nedjai B, Hurst T, Pennington DJ: Cytokines and

chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843: 2563-82.

42. Takeda K, Akira S: TLR signaling pathways. Semin Immunol 2004;

16: 3-9.

43. Zhang JM, An J: Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007; 45: 27-37.

44. Needleman P, Manning PT: Interactions between the inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) pathways: implications for therapeutic intervention in osteoarthritis. Osteoarthritis Cartilage 1999; 7: 367-70.

45. Bonizzi G, Karin M: The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004;

25: 280-8.

46. Ghosh S, Karin M: Missing pieces in the NF-kappaB puzzle. Cell 2002; 109: S81-96.

47. Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5:

749-59.

48. Manzoor Z, Koh Y-S: Mitogen-activated Protein Kinases in Inflammation.

Jbv 2012; 42: 189-95.

49. Huang P, Han J, Hui L: MAPK signaling in inflammation-associated

cancer development. Protein Cell 2010; 1: 218-26.

50. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W: IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999; 274: 30353-6.

51. He Y, Hara H, Núñez G: Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci 2016; 41: 1012-21.

52. Martinon F, Burns K, Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417-26.

53. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013; 341: 1250-3.

54. Lu YC, Yeh WC, Ohashi PS: LPS/TLR4 signal transduction pathway. Cytokine 2008; 42: 145-51.

55. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, et al: Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6: 1087-95.

56. Sakurai H: Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 2012; 33: 522-30.

57. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z,

Matsumoto K: The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway.

Nature 1999; 398: 252-6.

58. Warfel NA, Kraft AS: PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther 2015; 151: 41-9.

59. Hofmann AD, Takahashi T, Duess J, Gosemann JH, Puri P:

Increased expression of activated pSTAT3 and PIM-1 in the pulmonary vasculature of experimental congenital diaphragmatic hernia. J Pediatr Surg 2015; 50: 908-11.

60. Szydłowski M, Dębek S, Prochorec-Sobieszek M, Szołkowska M, Tomirotti AM, Juszczyński P, et al.: PIM Kinases Promote Survival and Immune Escape in Primary Mediastinal Large B-Cell Lymphoma through Modulation of JAK-STAT and NF-κB Activity.

Am J Pathol 2021; 191: 567-74.

61. McInnes IB, Schett G: The pathogenesis of rheumatoid arthritis. N Engl J Med 2011; 365: 2205-19.

62. Bartok B, Firestein GS: Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 2010; 233: 233-55.

63. Huang QQ, Pope RM: The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 2009; 11: 357-64.

64. Elemam NM, Hannawi S, Maghazachi AA: Role of Chemokines and

Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther 2020; 9: 43-56.

65. Sucur A, Jajic Z, Artukovic M, Matijasevic MI, Anic B, Flegar D, et al.: Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells. Arthritis Res Ther 2017; 19: 142.

66. McInnes IB, Schett G: Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7: 429-42.

67. Sano H, Hla T, Maier JA, Crofford LJ, Case JP, Maciag T, et al.: In vivo cyclooxygenase expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis. J Clin Invest 1992; 89: 97-108.

68. Kang RY, Freire-Moar J, Sigal E, Chu CQ: Expression of cyclooxygenase-2 in human and an animal model of rheumatoid arthritis. Br J Rheumatol 1996; 35: 711-8.

69. Beiche F, Brune K, Geisslinger G, Goppelt-Struebe M: Expression of cyclooxygenase isoforms in the rat spinal cord and their regulation during adjuvant-induced arthritis. Inflamm Res 1998; 47: 482-7.

70. Abd-El-Aleem SA, Ferguson MW, Appleton I, Bhowmick A, McCollum CN, Ireland GW: Expression of cyclooxygenase isoforms in normal human skin and chronic venous ulcers. J Pathol 2001; 195: 616-23.

71. Bruch-Gerharz D, Stahl W, Gerharz CD, Megahed M, Wingerath T, Sies H, et al.: Accumulation of the xanthophyll lutein in skin amyloid deposits of systemic amyloidosis (al type). J Invest Dermatol 2001; 116: 196-7.

72. Bruch-Gerharz D, Fehsel K, Suschek C, Michel G, Ruzicka T, Kolb-Bachofen V: A proinflammatory activity of interleukin 8 in human skin: expression of the inducible nitric oxide synthase in psoriatic lesions and cultured keratinocytes. J Exp Med 1996; 184:

2007-12.

73. Lawrence T: The nuclear factor NF-kappaB pathway in inflammation.

Cold Spring Harb Perspect Biol 2009; 1: a001651.

74. Nejatbakhsh Samimi L, Farhadi E, Tahmasebi MN, Jamshidi A, Sharafat Vaziri A, Mahmoudi M: NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Autoimmunity Highlights 2020; 11: 11.

75. Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A, et al: Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol 2020; 98: 171-86.

76. Schett G, Tohidast-Akrad M, Smolen JS, Schmid BJ, Steiner CW, Bitzan P, et al: Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein

kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 2000; 43: 2501-12.

77. Ajibade AA, Wang HY, Wang RF: Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol 2013; 34:

307-16.

78. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al.:

Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016; 535: 153-8.

79. Pope RM, Tschopp J: The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis Rheum 2007; 56: 3183-8.

80. Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A:

Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology 2010; 129: 178-85.

81. Yeung YT, Aziz F, Guerrero-Castilla A, Arguelles S: Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Curr Pharm Des. 2018; 24: 1449-84.

82. MacFarlane LA, Todd DJ: Kinase inhibitors: the next generation of therapies in the treatment of rheumatoid arthritis. Int J Rheum Dis 2014; 17: 359-68.

83. Flanagan ME, Blumenkopf TA: Brissette WH, Brown MF, Casavant

JM, Shang-Poa C, et al. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem 2010; 53: 8468-84.

84. Feldmann M, Brennan FM, Maini RN: Rheumatoid arthritis. Cell 1996; 85: 307-10.

85. Teitelbaum SL: Bone resorption by osteoclasts. Science 2000; 289:

1504-8.

86. Ammann P, Rizzoli R, Bonjour JP, Bourrin S, Meyer JM, Vassalli P, et al.: Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997; 99: 1699-703.

87. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al.: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165-76.

88. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al.: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cel 2002; 3: 889-901.

89. Nakamura I, Takahashi N, Jimi E, Udagawa N, Suda T: Regulation of osteoclast function. Mod Rheumatol 2012; 22: 167-77.

90. Wilson SR, Peters C, Saftig P, Brömme D: Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J Biol Chem 2009; 284: 2584-92.

91. Shaulian E, Karin M: AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131-6.

92. Wang ZQ, Ovitt C, Grigoriadis AE, Möhle-Steinlein U, Rüther U, Wagner EF: Bone and haematopoietic defects in mice lacking c-fos.

Nature 1992; 360: 741-5.

93. Lee K, Seo I, Choi MH, Jeong D: Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology. Int J Mol Sci 2018; 19: 3004.

94. Lamothe B, Lai Y, Xie M, Schneider MD, Darnay BG: TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol 2013; 33:

582-95.

95. Soysa NS, Alles N: NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun 2009; 378: 1-5.

96. Iotsova V, Caamaño J, Loy J, Yang Y, Lewin A, Bravo R:

Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 1997; 3: 1285-9.

97. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, et al.: Requirement for NF-kappaB in osteoclast and B-cell

development. Genes Dev 1997; 11: 3482-96.

98. Boyce BF, Xing L, Franzoso G, Siebenlist U: Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 1999; 25: 137-9.

Pim-1 Regulates NLRP3 Inflammasome-mediated Inflammatory Signals

Baek, Hye Suk Department of Immunology

Graduate School Keimyung University (Supervised by Professor Kim, Shin)

(Abstract)

Pim-1 is a proto-oncogene that encodes for the serine-threonine protein kinase family. Recent studies have suggested that Pim-1 kinase

plays an important role in inflammatory signaling. However, the underlying regulatory mechanism remains unclear. In this study, I

investigated the regulatory mechanism of Pim-1 on inflammation, and the anti-inflammatory effect of a novel protein kinase inhibitor,

KMU-11342. PIM-1 knockdown suppressed lipopolysaccharide (LPS)-induced up-regulation of pro-inflammatory cytokines, inducible nitric oxide synthase

(iNOS), cyclooxygenase-2 (COX-2), phospho-Janus kinase, phospho-signal transducer and activator of transcription 3, phospho-extracellular signal-regulated

kinase, phospho-c-Jun N-terminal kinase, phospho-p38, phospho-nuclear factor

kappa B p65 (p-NF-κB p65), nuclear translocation of NF-κB p65, and

phospho-inhibitor of NF-κB kinase α/β (p-IKKα/β). PIM-1 knockdown inhibited up-regulation of Nod-like receptor family pyrin domain

containing 3 (NLRP3) and cleavage of caspase-1 induced by combination of LPS and adenosine triphosphate (ATP). Additionally, phospho-transforming

growth factor-β-activated kinase 1 (TAK1) was found to be associated with Pim-1 binding. KMU-11342 inhibited LPS-induced up-regulation of

chemokines in human rheumatoid arthritis fibroblast-like synoviocyte (RA-FLS). KMU-11342 suppressed LPS-induced up-regulation of

pro-inflammatory cytokines, iNOS, COX-2, p-IKKα/β, p-NF-κB p65, and nuclear translocation of NF-κB p65 in both RA-FLS and THP-1

cells. It suppressed up-regulation of NLRP3 and co-treatment with LPS and ATP-induced caspase-1 cleavage. KMU-11342 also inhibited receptor

activator of NF-κB-induced osteoblast differentiation and up-regulation of nuclear factor of activated T-cells, cytoplasmic 1 and c-Fos in

RAW264.7 cells. Taken together, these findings indicated that Pim-1 plays an important role in inflammatory signaling and KMU-11342 is a

promising anti-inflammatory agent.

Pim-1의 NLRP3 Inflammasome 매개 염증 신호 조절

백 혜 숙 계명대학교 대학원 의학과 면역학 전공

(지도교수 김 신)

(초록)

Pim-1은 세린-트레오닌 단백질 키나아제 family 계열의 암호화된

proto-oncogene이다. 최근 연구에 따르면 Pim-1 키나아제가 염증 신호에 중요한 역할을 한다. 그러나, 조절 메커니즘은 아직 명확하게 설명되지 않

았다. 본 연구에서는, Pim-1의 염증에서의 조절기전과 새로운 단백질 키나 아제 억제제인, KMU-11342의 항염증 효과를 조사했다. Pim-1의 억제는

LPS로 유도된 염증성 사이토카인, 유도성 일산화질소 합성효소(iNOS), 사 이클로옥시게나제-2 (COX-2), p-JAK, p-STAT, p-ERK, p-JNK, p-p38,

NF-κB p65 인산화 및 핵전사의 상향 조절을 억제하였다.

Pim-1의 억제는 LPS와 ATP의 결합에 의해 유도된 NLRP3의 상향조절과

Caspase-1의 활성을 억제했다. 게다가, TAK1은 Pim-1의 결합과 관련이 있는 것으로 밝혀졌다. KMU-11342는 류마티스 관절염 환자의 섬유아세포

유사 활막세포(RA-FLS)에서 LPS로 유도된 케모카인의 상향 조절을 억제

하였다. KMU-11342는 RA-FLS 와 THP-1 세포 모두에서 LPS 유도 염증

성 사이토카인, iNOS, COX-2, p-IKKα/β, p-NF-κB p65, NF-κB P65의 핵전이를 억제하였다. 또한 LPS와 ATP 유도 NLRP3 inflammasome을 상

향 조절과 Caspase-1의 활성을 억제했다. KMU-11342는 RAW264.7 세포 에서 RANKL 유도 파골세포 분화와 NFATc-1 및 c-Fos의 상향 조절을

억제하였다. 결과적으로, 이러한 연구 결과는 Pim-1이 염증 신호 전달에 중요한 역할을 하며, KMU-11342는 잠재적인 항염증제임을 시사한다.

□ 논문 저자 약력

1980년 대구 출생

계명대학교 식품가공학과 졸업

대구가톨릭대학교 대학원 의학과 석사

□ 논문 및 저서

「KMU-1170, a Novel Multi-Protein Kinase Inhibitor, Suppresses Infla-mmatory Signal Transduction in THP-1 Cells and Human Osteoarthritic Fibroblast-Like Synoviocytes by Suppressing Activation of NF-κB and NLRP3 Inflammasome Signaling Pathway」 Int. J. Mol Sci 2021. 1

「Anti-Inflammatory Effects of the Novel PIM Kinase Inhibitor KMU-470 in RAW 264. 7 Cells through the TLR4-NF-κB-NLRP3 Pathway」

Int. J. Mol. Sci 2020. 6

「Effect of Methanol Extract from Cassia mimosoides var. nomame on Ischemia /Reperfusion-induced Renal Injury in Rats.」 Kor. J. Herbology. 2013. 11

「Hot Water Extract of Triticum aestivum L.(Common Wheat) Ameliorates Renal Injury by Inhibiting Apoptosis in a Rat Model of Ischemia/

Reperfusio」kor. J. Herbology 2013. 5

「Synthesis and Biological Evaluation of a Novel 177Lu-DOTA-[Gly3-Cyclized (Dap4, D-Phe7, Asp10)-Arg11] a-MSH3–13 Analogue for Melanocortin-1 Receptor-Positive Tumor Targeting」Cancer Biother Radiopharm 2012. 8

「Methanol Extract of Goat’s-beard (Aruncus dioicus) Reduces Renal Injury by Inhibiting Apoptosis in a Rat Model of Ischemia-Reperfusion」

관련 문서