• 검색 결과가 없습니다.

제4절 결 과

4.1 Reads output of genomicDNA of the 10 samples

10개의 잎 샘플 개체에서 각각 gDNA를 추출 후 Raw data를

4.4 SNPs mapping on transcripts data

N/T그룹 내에서 모든 샘플이 일치하며 그룹 간의 서로 다른 homo/homo SNPs로 최종으로 92개의 SNPs를 선발하였다. 이 SNPs가 존재하는 위치의 reference genome sequence와 제 2 장에서 생산한 transcripts의 sequence를 mapping하여 선발한 92개의 SNPs가

84

위치한 서열이 기능을 하는 위치인지 알아보고자 하였다. 그 결과 총 29개의 transcripts의 sequence에 mapping이 되었으며, NCBI의 data base로 annotation한 결과 19개의 SNPs의 위치는 Pinus taeda clone의 complete sequence에 mapping되었으며, 이 부분의 기능은 아직 밝혀져 있지 않다. 그 외 Picea sitchensis clone은 2개, Picea glauca clone에 3개의 SNPs가 mapping 되었다. 그리고 Pinus contorta에서 voucher DSG655 plastid, complete genome (MH612863.1)에 mapping 되었다. SNPs 위치의 기능이 밝혀져 있는 transcripts은 Pinus pinaster의 malate dehydrogenase (mdhB) gene, partial cds(HM853297.1)였다(Table 3-4). mdh는 말산을 탈수소하며, 옥살로아세트산을 생성하는 반응을 촉매하는 효소로 자연계에 널리 분포하고 있는 효소이다. 앞서 언급한 반응은 에너지원인 ATP를 생산하는 TCA회로의 점화제와 글루코스 재합성의 준비단계로서 중요하다. Pinus pinaster의 transposon PpRT1, complete sequence (DQ394069.1)가 mapping 되었다(Rocheta et al., 2007). PpRT1은 5,966 bp이며, Pinus radiata의 IFG7 gypsy 레트로 트랜스포존과 밀접하게 관련되어있다. 긴 말단 반복 (LTRs)은 각각 333bp를 가지며, 이들 사이에 5.4 %의 서열 차이를 나타낸다. 특이적인 polypurine tract (PPT)와 primer binding site (PBS) 외에, PpRT1은 retroviral gene gag와 pol과 상동성이 있는 internal region을 가지고있다. PpRT1은 IFG7 gypsy 와의 서열 차이가 있어 Pinus radiata내에서 잘 보존된 retrotransposon인데 반송에서도 발견 된 것으로 보아 Pinus 속에서 잘 보존된 orthologous retrotransposon인 것으로 판단된다.

85 Table 3-1. Data output from 10 samples

Sample ID Total read bases (bp) total reads GC (%) AT (%) Q20 (%) Q30 (%)

T1 107,627,971,020 712,768,020 38.499 61.5 98.032 94.331

T4 134,933,354,172 893,598,372 38.584 61.42 97.69 93.933

T5 142,086,574,794 940,970,694 38.52 61.48 97.691 93.42

T9 152,804,097,566 1,011,947,666 38.399 61.6 97.704 93.388

T12 132,898,763,260 880,124,260 38.526 61.47 97.714 93.409

N2 135,032,557,246 894,255,346 38.539 61.46 97.504 93.095

N15 129,806,754,984 859,647,384 38.478 61.52 96.858 91.577

N19 122,937,111,456 814,153,056 38.292 61.71 97.65 93.299

N27 127,679,873,778 845,562,078 38.479 61.352 97.504 92.922

N37 139,214,412,854 921,949,754 38.4 61.6 97.323 92.648

Average 132,502,147,113 877,497,663 38.47 61.51 97.57 93.20

86

Figure 3-2. Average depth per each samples. Mapping program : BWA v 0.7.17 with ‘mem’ engine

Table 3-3. Selection of different SNPs of N/T group

Type (N/T) SNP number

Homo/Homo 7,356

Homo/Hetero 4,869

Hetero/Homo 4,441

Total 16,666

87 transposon PpRT1, complete sequence(DQ394069.1)이었다.

PpRT1에 대한 연구에서 보면 PpRT1은 Pinus radiata내에서 잘

DNA demethylation, heterochromatin 탈증축 그리고 transposon 활성화가 일어나며(He et al., 2019), 애기장대 연구에서는 동반

88

요소가 개화에 관여할 가능성이 있는 것으로 판단하였다.

본 연구를 시작하기 앞선 관찰에서 풍매차대집단의 개체들에서 암구화의 발달 위치를 관찰하여 다년간의 일관된 개화 위치에 대한 경향성이 존재한다고 판단하였다. 그리고 이 현상이 지속된다면 암구화가 정단에만 발달하는 개체들과 측면에만 발달하는 개체간 유전적인 차이가 있을 것이라는 가설을 세웠었다.

연구 결과 두 그룹간에 차이를 보이는 SNP들을 다수 찾을 수 있었느며 그룹 내에서 일치하며 그룹 간 차이가 나는 homo/homo SNPs를 92개 찾아내었다. 이는 전사수준에서 변하는 것이 아닌 유전적인 요인으로 인한 화기의 위치가 바뀌는 것이라는 가설을 뒤받침 해줄 수 있는 일부 근거가 될 수 있으며, 초기에 세웠던 가설을 기각하지 않는다는 것을 증명하였다.

향후 실제로 SNPs의 위치를 반송 내의 유전체 서열과 염색체 내에서 파악하여, 변이가 존재하는 원인을 증명하고 SNPs의 주변부를 더욱 탐색하여 주변 유전자에 SNPs가 어떠한 영향을 끼치는가에 대한 연구를 지속적으로 해나가야 할 것이다.

89

90

91

92

참 고 문 헌

Aguirre A, M. Vallejo-Marin, L. Salazar-Goroztieta, D. M. Arias, R.

Dirzo. 2007. Variation in sexual expression in Jacaratia mexicana (Caricaceae) in Southern Mexico : Frequency and Relative seed performance of fruit-producing males.

Biotropica 39(1) : 79-86.

BAIL. 1869. Ueber androgene Bliithenstande bei solchen Moniicisten und Diiicisten bei denen Trennung der Bliithenstande Regel ist. Schrif ten der Naturforschenden Gesell- srhaft in Danzig 2 (2). 9 pp.

Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37-52.

Bradley D, Vincent C, Carpenter R, Coen E. 1996. Pathways for inflorescence and floral induction in Antirrhinum.

Development. 122: 1535-1544;.

Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B. 2017. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in

93

transgenic Arabidopsis plants. Planta. 2017 Dec;246(6):1215-1231.

Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. 2014.

The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ. 2014 Sep;21(9):1399-408.

Dellaporta SL, Calderon-Urrea A. 1994. The sex determination process in maize. Science. 1994 Dec 2;266(5190):1501-5.

Figueiredo J, Sousa Silva M, Figueiredo A. 2018. Subtilisin-like proteases in plant defence: the past, the present and beyond.

Mol Plant Pathol. 2018 Apr;19(4):1017-1028.

Fu X, Harberd NP. 2003. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003 Feb 13;421(6924):740-3.

Gaudet P, Livstone M.S., Lewis S.E., Thomas P.D. 2011.

Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinformatics 12:449-462(2011)

Giertych M.M. and D.F. Forward. 1966. Growth regulator changes in relation to growth and development of Pinus resinosa. Ait., Can. J. Bot. 44: 717-738.

94

Goodwillie C, Weber JJ. 2018. The best of both worlds? A review of delayed selfing in flowering plants. Am J Bot. 2018 Apr;105(4):641-655.

Gross-Hardt R., Kaegi C., Baumann N., Moore J.M., Baskar R., Gagliano W.B., Juergens G., Grossniklaus U. 2007.

LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol. 5:E47-E47

HAMPSON A, A. O ’ CONNOR and A. SMOLENSKI. 2013.

Synaptotagmin-like protein 4 and Rab8 interact and increasedense granule release in platelets. journal of Thrombosis and Haemostasis, 11: 161–168

Hayakawa Y, Kato D, Kamiya K, Minakuchi C, Miura K. 2017. Chitin synthase 1 gene is crucial to antifungal host defense of the model beetle, Tribolium castaneum. J Invertebr Pathol. 2017 Feb;143:26-34.

Groen SC1, Whiteman NK. 2014. The evolution of ethylene signaling in plant chemical ecology. J Chem Ecol. 2014 Jul;40(7):700-16.

He S, Vickers M, Zhang J, Feng X. 2019. Natural depletion of H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. Elife. 2019 May

95 28;8. pii: e42530

Herzog M, Dorne AM, Grellet F. 1995. GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol. 1995 Feb;27(4):743-52.

Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D.. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 2012 Sep 14;337(6100):1360-1364.

Im KB, JS Kang, KW Kwon, JJ Lee. 1975-1979. Study of variation of natural population of Pinus densiflora.. Journal of Korean Forest Society. 28 : 1-20. 31 : 8-20, 32 : 36-63, 35 : 39-46, 36 : 9-25, 38 : 33-45, 40 : 1-18, 43 : 20-30, 44 : 1-25.

Jackson D.I. and G.B. Sweet. 1972. Flower determination in temperate woody plants. Hortic. Abstr. 42: 9-24.

Jie Gao & Ting Lan. 2016. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Nature

96 scientific reports. 6:19467.

Kang, H. 2007. Changes in Gender Expression in Korean Populations of Pinus densiflora over a Five-Year Period.

Journal of Plant Biology 50(2) : 181-189.

Kerachian MA, Kerachian M. 2019. Long interspersed nucleotide element-1 (LINE-1) methylation in colorectal cancer. Clin Chim Acta. 2019 Jan;488:209-214

Kim YB, Kim SM, Kang MK, Kuzuyama T, Lee JK, Park SC, Shin SC, Kim SU. 2009. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.Tree Physiol. 2009 May;29(5):737-49.

Lee KJ. 1980. Physiology of Strobilus Initiation in Slash Pine I. Ovu late Strobilus Production in Relation to Shoot Morphology.

Journal of Korean Forest Society. No. p. 21-28(1980).

Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D1, Wu L, Wang C, Wu W, Xia J, Han X, Lu S, Lai J, Song W, Schnable PS, Tian F.. 2019. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation.

97

New Phytol. 2019 Mar;221(4):2335-2347.

Liang Y, Xiong Z, Zheng J, Xu D, Zhu Z, Xiang J, Gan J, Raboanatahiry N, Yin Y, Li M. 2016. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep. 2016 Apr 13;6:24265.

Lluvia FR, VL Alejandra, VW Amy, P Daniel, MG Judith and CA Dom inguez. 2011. Functional bisporangiate cones in Pinus Johannis (PINACEAE) : Implications for the evolution of bisexuality in seed plant. American Journal of Botany 98(1):

130–139.

Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. 2005.

MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis.

Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17531-6. Epub 2005 Nov 17.

Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009 Oct 22;461(7267):1135-8

98

Mergen Francois. 1963. Sex Transformation in Pine Hybrids. Forest Science, Volume 9, Issue 3, Sep 1963 : 258–262

Moon TS. 2010. Environmental factors affecting graft-take of Pinus densiflora for. multicaulis grafting. Gyeongnam National University of Science and Technology. Graduate thesis.

Naumann TA, Wicklow DT. 2010. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Phytopathology. 2010 Jul;100(7):645-54.

Ohkubo S, Mancinelli R, Miglietta S, Cona A, Angelini R, Canettieri G, Spandidos DA, Gaudio E, Agostinelli E. 2019. Maize polyamine oxidase in the presence of spermine/spermidine induces the apoptosis of LoVo human colon adenocarcinoma cells.Int J Oncol. 2019 Jun;54(6):2080-2094.

Ohnishi T1, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M. 2012.

CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem.

2012 Sep 7;287(37):31551-60.

Radwan A, Kleinwächter M, Selmar D. 2017. Impact of drought stress on specialised metabolism: Biosynthesis and the

99

expression of monoterpene synthases in sage (Salvia officinalis). Phytochemistry. 2017 Sep ; 141:20-26.

Pimenta Lange MJ, Lange T. 2016. Ovary-derived precursor gibberellin A9 is essential for female flower development in cucumber. Development. 2016 Dec 1;143(23):4425-4429.

Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C., Keddie J., Adam L., Pineda O., Ratcliffe O.J., Samaha R.R., Creelman R., Pilgrim M., Broun P., Zhang J.Z., Ghandehari D., Sherman B.K., Yu G. 2000. Arabidopsis transcription factors:

genome-wide comparative analysis among eukaryotes.

Science 290:2105-2110.

Rocheta Margarida, Cordeiro Jorge, M. Oliveira, Célia Miguel. 2007.

PpRT1: the Wrst complete gypsy-like retrotransposon isolated in Pinus pinaster. Planta (2007) 225:551–562.

Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science. Jun 2;288(5471):1613-6.

Simon R, Igeño MI, Coupland G. 1996. Activation of floral meristem identity genes in Arabidopsis. Nature. Nov 7;384(6604):59-62.

100

Shakes D, Allen A, Albert K, Golden A. 2011. emb-1 encodes the APC16 subunit of the Caenorhabditis elegans anaphase-promoting complex. Genetics. 189(2):549-60.

Shihui Niu, Huwei Yuan, Xinrui Sun, Ilga Porth, Yue Li, Yousry A.

El-Kassaby and Wei Li. A transcriptomics investigation into pine reproductive organ development. New Phytologist (2016) 209: 1278–1289.

Smith, C. C., J.L. Hamrick, C. L. Kramer. 1988. The effects of stand density on frequency of filled seeds and fecundity in lodgepole pine (Pinus contorta Dougl.). Canadian Journal of Forest Research 18(4) : 453-460.

Stival Sena J, Giguère I, Rigault P, Bousquet J, Mackay J. 2018.

Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiol. 2018 Mar 1;38(3):442-456.

Sweet G.B. and G.M. Will. 1965. Precocious male cone production associated with low nutrient status in clones of Pinus radiata. Natuee, 206: 739.

Taura F, Morimoto S, Shoyama Y. 1996. Purification and characterization of cannabidiolic-acid synthase from

101

Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem. 1996 Jul 19;271(29):17411-6.

Thior E. 1961. Variation patterns in natural stands of loblolly pine.

Papper presented, 6th Southern Conference on Forest Tree Improve ment. pp. 14.

Trapnell & Cole. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols 7.3 : 562.

Um, Y., W. K. Park, N. S. Jo, S. H. Han and Y. Lee. 2014.

Phylogenetic analysis of pines based on chloroplast trnT-trnL intergenic spacer DNA sequences. Journal of Forest and Environmental Science 30(3) : 307-313.

USDA Forest Service. 1977. Cone analysis of southern pines-A guidebook. General Technical Report SE-13

Wakushima, Satoru., Hisashi Yoshioka, and Naoki Sakurai. 1997.

Promotion of lateral female strobilus production in Pinus densiflora by cytokinin application at a specific stage.

Journal of Forest Research 2(1) : 51-57.

Wakushima, Satoru., Hisashi Yoshioka, and Naoki Sakurai. 1996.

102

Lateral female strobilus production in a Japanese red pine (Pinus densiflora Sieb. Et Zucc.) clone by exogenous cytokinin application. Journal of Forest Research 1(3) : 143-148.

Wang, Hui., M. Matshshita, N. Tomaru and M. Nakagawa. 2017. Sex change in the subioecious shrub Eurya japonica (Pentaphylacaceae). Ecology and Evolution 7(7) : 2340–

2345.

Wang M, Xu Z, Ding A and Kong Y. 2018. Genome-Wide Identification and Expression Profiling Analysis of the Xyloglucan Endotransglucosylase/Hydrolase Gene Family in Tobacco (Nicotiana tabacum L.). Genes 2018, 9, 273;

doi:10.3390/genes9060273

Wang Y, Li Y, He SP, Gao Y, Wang NN, Lu R, Li XB. 2019. A cotton (Gossypium hirsutum) WRKY transcription factor (GhWRKY22) participates in regulating anther/pollen development. Plant Physiol Biochem. 2019 Jun 6;141:231-239.

Wareing P.F.. 1958. Reproductive development in Pinus sylvestris. Physiology of Forest Trees. Ronald Press, N.Y. pp. 643-654.

103

Warwell MV, Shaw RG. 2017. Climate-related genetic variation in a threatened tree species, Pinus albicaulis. Am J Bot. 2017 Aug;104(8):1205-1218.

Weigel D, Meyerowitz EM. 1994. The ABCs of floral homeotic genes. Cell. 1994 Jul 29;78(2):203-9.

Wei W, Zhang Y, Han L, Guan Z, Chai T. 2008. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco.

Plant Cell Rep. 2008 Apr;27(4):795-803.

Whang JW, Lee SW. 1996. Genetic variation of several isoenzymes in Pinus densiflora for. multicaulis. Journal of Korean Forest Society. 85(3) : 409-415.

Woo KS. 2003. Studies on the variation of needle, cone, and seed characteristics related to the conservation of genetic resources of Pinus densiflora for. multicaulis. Journal of Korean Forest Society. 92(1) : 8-18.

Yang J1, Xu X2, Ng TB3, Lin J4, Ye X5. 2016. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis. Molecules. 2016 Aug 4;21(8).

pii: E1017.

Yaxley JR, Ross JJ, Sherriff LJ, Reid JB. 2001. Gibberellin biosynthesis mutations and root development in pea. Plant

104

Physiol. 2001 Feb;125(2):627-33.

Zhang H, Wang NA, Wang Y, Wang J, Zheng H, Liu Z. 2017.

Subtilisin-like serine protease gene TghSS42 from Trichoderma ghanense ACCC 30153 was successfully expressed in Escherichia coli and recombinant protease rTghSS42 exhibited antifungal ability to five phytopathogens.

Biocontrol Science. 2017;22(3):145-152.

105

Abstract

Pinus densiflora f. multicaulis Uyeki is one of the unique varieties of pine trees and is distributed mainly in Korea and Japan. Unlike the pine tree, the trunk is not developed straightly, but several branches are separated from the beginning of the ground. Thus, various types of tree appear for each individual, and they have excellent value. P. densiflora f. multicaulis are rarely distributed in nature and propagate by combining them for commercial or research purposes. In addition, Pinus species have been reported to have bisexual strobilus mixed male and female organ, and the development of bisexual strobilus has been observed more frequently in other species than in other species. and recently some transcriptome analysis has been conducted in two overseas species. Also, studies on the reasons for the development of bisexual strobili in the pine trees and the factors determining the reproductive organs have been continuously carried out. In Korea, the genome sequencing project of Pinus densiflora is in the beginning stage, and genetic research on P. densiflora f. multicaulis is also in the basic stage. In this study, we selected P. densiflora f.

multicaulis Uyeki that have a low height and a lot of strobili, and analyzed the characteristics of the strobili and mature cones of P.

densiflora f. multicaulis by the morphological, transcriptomical and genetical variances differences. times and growth than the cones and seeds developed at the apical them. However, it was confirmed that the seeds obtained from the side cones were close to the germination rate of the seeds obtained from the apical cones.

106

As a result of analysis of transcriptome, the LEA gene family, cyplp029 gene, WRKY transcription factor ZmWRKY17, and dhn_ESK2 and so on were expressed in male strobili. In the beginning of biosexual strobili, we identified PtLTP1 to control ethylene, PIN1 to transport Auxin and NPF7 which transports nitrogen respectively. In female strobili, gibberellin, which is always expressed specifically in female tissues, the precursors of hormones such as CYPs and gibberellin metabolism genes, which are involved in the biosynthesis of gibberellin and brassinosteroid, in addition, in female strobili of side part, LINE-1 retrotransposable element was identified.

As a result of the SNPs comparative analysis of normal population only developed apical cones and abnormal population developed side cones, only 16,666 SNPs were found in the two groups. Homo / homo SNPs 92, all of which matched within the population and differ between groups, were selected. Mapping to the sequence and RNA-seq data of the reference genome at the selected SNPs site revealed the transposon PpRT1 of Pinus pinaster. The function of the sequence of the selected SNPs should be clarified through further studies.

From the results of this study, it was found that the same cone as the apical of branch is also developed in the lateral of branches. And genes that are presumed to be expressed by the flower developmental structure of P. densiflora f. multicaulis can be selected. In addition, we could find genetic differences according to the location of female strobili. Future studies such as the functional study of the genes found in this study and the development of the markers according to the results of SNPs molecular markers will be necessary.

107

Keyword : Pinus densiflora f. multicaulis Uyeki, bisexual strobilus, conelets, RNA-seq, SNP

Abbreviations :

FS : female strobilus, seed cone, ovulate strobilus MS : male strobilus, pollen cone, staminate strobilus FSS : seed cone at the side aspect

BS : bisexual strobilus AC : apical cone SC : side cone

108

Supplemental data

S1. Desctiption of mapped transcripts with gene functional data base sets of Arabidopsis thailiana and Pinus sylvestris L.

DB ID Description

DB ID Description

관련 문서