• 검색 결과가 없습니다.

In this section, we study the limiting case of (4.18).

Proposition 4.12 If M admits a non-zero transversal twistor spinor field Ψ of type s with the transversally conformal metric ¯gQ = e2ugQ, i.e., P¯XsΨ = 0, then, for any X ∈ T M ,¯

XΨ = −1

s π(X) · DtrΨ + s − q + 1

2s π(X) · dBu · Ψ + 1

2X(u)Ψ. (4.19) Proof. Let ¯Ψ ∈ Ker ¯Ptrs. From (4.4), we have

∇¯XΨ +¯ 1

sπ(X) ¯· ¯DtrΨ = 0.¯ Hence from (3.20) and (3.22), we have

XΨ −s − q + 1

2s π(X) · dBu · Ψ −1

2X(u) ¯Ψ + 1

s π(X) · DtrΨ = 0, which yields (4.19). 2

Theorem 4.13 If (M, gM, F ) admits a non-vanishing trnsversal twistor spinor field of type q, then the foliation F is minimal.

Proof. From Theorem 4.5, the space of transversal twistor spinor space of type q is invariant under the transversally conformal metric change.

Let Φ ∈ KerPtrq. Then ¯Ψ = eu2Φ ∈ Ker ¯¯ Ptrq be the corresponding transversal twistor spinor field. Hence from (4.4), we have

∇¯E¯aΨ +¯ 1 Proof. From (2.18) and (4.20), we have

0 =X

On the other hand, from Theorem 4.13, the foliation is minimal, i.e., κ = 0. Hence from (2.18), (3.26) and (4.22), we have

tr2Ψ =¯ 1

q D¯2trΨ +¯ 1 − q

q e−udBu ¯· ¯DtrΨ + (1 − q)e¯ −2u∇¯dBuΨ +¯ 1

¯( ¯Ψ).

From (3.20) and (3.19), we have

∇¯dBuΨ =∇¯ dBuΨ −1

2 dBu · dBu · Ψ −1

2 gQ(dBu, dBu) ¯Ψ

= − 1

q dBu ¯· DtrΨ + q − 1

2q |dBu|2Ψ¯

= − 1

q dBu ¯· {eutrΨ −¯ q − 1

2 dBu · Ψ} + q − 1

2q |dBu|2Ψ¯

= − 1

q eudBu ¯· ¯DtrΨ.¯ Hence we have

tr2Ψ =¯ 1 q

2trΨ +¯ 1

4 σ¯( ¯Ψ), which means (4.21). 2

Hence we have the following theorem.

Theorem 4.15 Let (M, gM, F ) be a compact Riemannian manifold with a transverse spin foliation F of codimension q ≥ 3 and bundle-like met-ric gM such that κ ∈ Ω1B(F ) and δκ = 0. Assume that Kσ ≥ 0. If there exists an eigenspinor field Φ1 of the basic Dirac operator Db for the eigenvalue λ1 satisfying

λ21 = q

4(q − 1)(µ1+ inf |κ|2), (4.23) then F is minimal and transversally Einsteinian with a positive constant transversal scalar curvature σ.

Proof. Let DbΦ1 = λ1Φ1 with λ21 = 4(q−1)q1+ inf |κ|2). From (4.8), we know that ¯Ψ1 ∈ Ker ¯Ptrq with Ψ1 = eq−12 uΦ1. Since ¯DbΨ¯1 = λ1e−uΨ¯1,

we have

2bΨ¯1 = −λ1e−2udBu · Ψ1+ λ21e−2uΨ¯1.

From (4.21), we have

λ21Ψ¯1 = q

4(q − 1) e2uσ¯Ψ¯1+ λ1dBu · Ψ1. Hence we get

λ21| ¯Ψ1|2 = q

4(q − 1) e2uσ¯| ¯Ψ1|2 and dBu · Ψ1 = 0, (4.24) which means u is constant and e2uσ¯ is positive and constant. So Propo-sition 4.12 implies that for ¯Ψ1 ∈ Ker ¯Ptrq, Ψ1 = eq−12 uΦ1,

XΦ1 = −λ1

q X · Φ1. (4.25)

By direct calculation with (4.25), we have

XEaΦ1 =∇X{−λ1

q Ea· Φ1}

= −λ1

q (∇XEa) · Φ1− λ1

q Ea· ∇XΦ1

= −λ1

q (∇XEa) · Φ1+ λ21

q2 Ea· X · Φ1 for any X ∈ ΓQ. Hence we have

RS(X, Ea) · Φ1 =2λ21

q2 Ea· X · Φ1 +2λ21

q2 gQ(X, Ea1 and so we have

X

a

Ea· RS(X, Ea) · Φ1 = −2λ21

q2 (q − 1)X · Φ1. (4.26) On the other hand, from (2.21) and (4.24), we have

λ21 = q

4(q − 1) σ. (4.27)

Therefore we have, from (3.12), (4.26), and (4.27), ρ(X) =σ

q X. (4.28)

This means that F is transversally Einsteinian with a positive constant transversal scalar curvature σ. 2

5 Eigenvalue estimate with a modified con-nection

5.1 Eigenvalue estimate

Let (M, gM, F , S(F )) be a Riemannian manifold with a transverse spin foliation F of codimension q and a bundle-like metric gM such that κ is basic-harmonic.

Now, we introduce a new connection f,g∇ on S(F ) as the following:

Definition 5.1 Let f and g be real-valued basic functions on M . For any tangent vector field X and any spinor field Ψ, we define the modified connection f,g∇ on S(F ) by

f,g

X Ψ = ∇XΨ + f π(X) · Ψ + gκ · π(X) · Ψ, (5.1) where π : T M → Q.

Lemma 5.2 Let (M, gM, F ) be a Riemannian manifold with a trans-verse spin foliation F and a bundle-like metric gM. Then, for any basic-harmonic 1-form ω ∈ Ω1B(F ),

Dtr(ω · Ψ) = −ω · DtrΨ − 2∇ωΨ. (5.2)

Proof. For any spinor field Ψ, a simple calculation gives Dtr(ω · Ψ) =X

a

Ea· (∇Eaω) · Ψ +X

a

Ea· ω · ∇EaΨ −1

2 κ · ω · Ψ

=X

a

{Ea∧ ∇Eaω − i(Ea)∇Eaω}Ψ −X

a

ω · Ea· ∇EaΨ

− 2X

a

gQ(Ea, ω)∇EaΨ −1

2 {−ω · κ · Ψ − 2gQ(κ, ω)Ψ}

=(dBω + δBω − i(κB)ω)Ψ −X

a

ω · Ea· ∇EaΨ − 2∇ωΨ +1

2 ω · κ · Ψ + gQ(κ, ω)Ψ

= − ω · DtrΨ − 2∇ωΨ + (dBω + δBω)Ψ.

Since ω ∈ Ω1B(F ) is a basic-harmonic 1-form, we have dBω = 0 = δBω.

Hence the proof is complete. 2

Proposition 5.3 For any real-valued basic functions f and g on M , and for any spinor field Ψ ∈ S(F ), we have

|f,gtr Ψ|2 = |∇trΨ|2+ qf2|Ψ|2+ qg2|κ|2|Ψ|2+ g|κ|2|Ψ|2 (5.3)

− 2f Re < DtrΨ, Ψ > +2gRe < DtrΨ, κ · Ψ >

− 4gRe < ∇κΨ, Ψ > .

Proof. Fix x ∈ M and choose an orthonormal basic frame {Ea} such that (∇Ea)x = 0 for all a. Then we have at the point x that for any Ψ,

|f,gtr Ψ|2 =X

a

<f,gEa Ψ,f,gEa Ψ >

= |∇trΨ|2+ qf2|Ψ|2+ qg2|κ|2|Ψ|2+ g|κ|2|Ψ|2

− f {< DtrΨ, Ψ > + < Ψ, DtrΨ >}

+ g{< DtrΨ, κ · Ψ > + < κ · Ψ, DtrΨ >}

− f Re < Ψ, κ · Ψ > −4gRe < ∇κΨ, Ψ >,

which means (5.3) together with the fact that < X · Ψ, Ψ > is pure imaginary. 2

We now that for an appropriate choice of the real-valued basic func-tions f and g, one gets a sharp estimate of the first eigenvalue of the basic Dirac operator on compact foliated Riemannian manifolds.

Theorem 5.4 Let (M, gM, F ) be a Riemannian manifold with an isopara-metric transverse spin foliation of codimension q > 1 and bundle-like metric gM with respect to F . Assume that the mean curvature κ of F satisfies δBκ = 0 and Kσ ≥ 0. Any eigenvalue λ of the transverse Dirac

Hence from Proposition 5.3, we have Z

Corollary 5.5 In addition to assumptions in Theorem 5.4, if the trans-verse scalar curvature is zero, then we get

λ2 ≥ q + 1 4(q − 1) inf

M |κ|2.

5.2 The limiting case

We define Ricf,g : ΓQ ⊗ S → S by Ricf,g (X ⊗ Ψ) =X

a

Ea· Rf,g(X, Ea)Ψ, (5.6)

where Rf,g is the curvature tensor with respect to f,g∇. Then we have the following lemma.

Lemma 5.6 For any vector field X ∈ ΓQ and spinor field Ψ ∈ ΓS(F ),

Ricf,g (X ⊗ Ψ) (5.7)

= −1

2 ρ(X)Ψ − qX(f )Ψ + 2(q − 1)f2X · Ψ − dBf · X · Ψ

+ (q − 2)X(g)κ · Ψ + (q − 2)g∇Xκ · Ψ + 2qf ggQ(X, κ)Ψ + 2f gκ · X · Ψ + 2(q − 2)g2|κ|2X · Ψ − 2(q − 2)g2gQ(X, κ)κ · Ψ − dBg · κ · X · Ψ + g|κ|2X · Ψ.

Proof. A direct calculation gives

f,g

X f,g

Ea Ψ =f,gX {∇EaΨ + f Ea· Ψ + gκ · Ea· Ψ}

= ∇XEaΨ + X(f )Ea· Ψ + f ∇XEa· Ψ + f Ea· ∇XΨ + X(g)κ · Ea· Ψ + g∇Xκ · Ea· Ψ + gκ · ∇XEa· Ψ + gκ · Ea· ∇XΨ + f X · ∇EaΨ + f2X · Ea· Ψ

+ f gX · κ · Ea· Ψ + gκ · X · ∇EaΨ + f gκ · X · Ea· Ψ + g2κ · X · κ · Ea· Ψ.

With the similar calculation, we have

Rf,g(X, Ea)Ψ = RS(X, Ea)Ψ + X(f )Ea· Ψ − X(g)Ea· κ · Ψ

− 2X(g)gQ(κ, Ea)Ψ − gEa· ∇Xκ · Ψ − 2ggQ(∇Xκ, Ea

− 2f2Ea· X · Ψ − 2f2gQ(X, Ea

− 2f ggQ(X, κ)Ea· Ψ + 2f ggQ(Ea, κ)X · Ψ

+ g2κ · {X · κ · Ea− Ea· κ · X} · Ψ − Ea(f )X · Ψ

− Ea(g)κ · X · Ψ − g∇Eaκ · X · Ψ.

Note that

X · κ · Ea− Ea· κ · X = 2κ · Ea· X + 2gQ(X, Ea)κ − 2gQ(X, κ)Ea + 2gQ(Ea, κ)X.

Hence we have

Rf,g(X, Ea)Ψ = RS(X, Ea)Ψ + X(f )Ea· Ψ − X(g)Ea· κ · Ψ

− 2X(g)gQ(κ, Ea)Ψ − gEa· ∇Xκ · Ψ − 2ggQ(∇Xκ, Ea

− 2f2Ea· X · Ψ − 2f2gQ(X, Ea)Ψ − 2f ggQ(X, κ)Ea· Ψ + 2f ggQ(Ea, κ)X · Ψ − 2g2|κ|2EaX · Ψ

− 2g2gQ(X, Ea)|κ|2Ψ + 2g2gQ(X, κ)Ea· κ · Ψ + 4g2gQ(X, κ)gQ(Ea, κ)Ψ + 2g2gQ(Ea, κ)κ · X · Ψ

− Ea(f )X · Ψ − Ea(g)κ · X · Ψ − g∇Eaκ · X · Ψ.

From (3.12) and (5.6), the proof is completed. 2 Let DbΨ1 = λ1Ψ1 with λ21 = q

4(q − 1) inf

M



Kσ+1 q|κ|2

. From (5.5), we see f1,g1tr Ψ1 = 0, where f1 = λ1

q and g1 = − 1

2q. Hence from (5.1), we have

XΨ1 = −λ1

q X · Ψ1+ 1

2q κ · X · Ψ1. (5.8)

Note that

X

a

Ea· ∇EaΨ11Ψ1+ 1

2 κ · Ψ1. On the other hand, from (5.8)

X the left-hand side of (5.10) is pure imaginary. But the right-hand side of (5.10) is real. Therefore, both sides are zero. Hence, if q ≥ 2, then we have dBf = 0. That is, X(f ) = 0 for any X ∈ ΓQ. Since f is basic function, f is constant. So from (5.9), we have

ρ(X)Ψ = 4(q − 1)

q2 λ21X · Ψ. (5.11) This means that F is transversally Einsteinian with a constant transver-sal scalar curvature σ= 4(q − 1)

q λ21. Hence we have the following the-orem.

Theorem 5.7 Let (M, gM, F ) be a compact Riemannian manifold with a transverse spin foliation F of codimension q > 1 and a bundle-like

metric gM. Assume that Kσ≥ 0. If there exists an eigenspinor field Ψ1 of the basic Dirac operator Db for the eigenvalue λ1 satisfying

λ21 = q

4(q − 1) inf

M



Kσ+ 1 q |κ|2

, (5.12)

then F is minimal and transversally Einsteinian with a positive constant transversal scalar curvature σ.

6 Eigenvalue estimate with the conformal change

6.1 Eigenvalue estimate

Let (M, gM, F , S(F )) be a Riemannian manifold with a transverse spin foliation F of codimension q and a bundle-like metric gM such that κ is basic-harmonic. In this section, we estimate the eigenvalues of the basic Dirac operator by a transversally conformal change of the metric.

Now, we consider, for any real basic function u on M , the transversally conformal metric ¯gQ = e2ugQ. Let ¯S(F ) be its corresponding spinor bundle. For any tangent vector field X and any spinor field Ψ, we define the modified connection

f,g∇ on ¯¯ S(F ) by

f,g∇¯X Ψ = ¯¯ ∇XΨ + f π(X) ¯· ¯¯ Ψ + gκ¯g¯· π(X) ¯· ¯Ψ, (6.1)

where f and g are real-valued basic functions on M .

Lemma 6.1 Let (M, gM, F ) be a Riemannian manifold with a trans-verse spin foliation F and a bundle-like metric gM. Then for any

basic-harmonic 1-form ω ∈ Ω1B(F ),

tr(f ω ¯· ¯Ψ) = − f ω ¯· ¯DtrΨ − 2f ¯¯ ∇ωΨ − (q + 2)f ω(u) ¯¯ Ψ (6.2)

− 2f ω · dBu · Ψ + dBf · ω · Ψ where f is any basic function.

Proof. Note that we have, from (3.23),

Dtr(f ω · Ψ) =dBf · ω · Ψ + f Dtr(ω · Ψ)

= − f ω · DtrΨ − 2f ∇ωΨ + dBf · ω · Ψ.

From (3.20), (3.22) and (3.24), we have D¯tr(f ω ¯· ¯Ψ)

= ¯Dtr(euf ω · Ψ) = e−udBeu· f ω · Ψ + eutr(f ω · Ψ)

=f dBu · ω · Ψ + Dtr(f ω · Ψ) + q − 1

2 dBu · f ω · Ψ

= − f ¯ω ¯· DtrΨ − 2f ∇ωΨ + dBf · ω · Ψ + q + 1

2 f dBu · ω · Ψ

= − f ¯ω ¯·



eutrΨ −¯ q − 1

2 dBu · Ψ



− 2f ¯∇ωΨ +¯ 1

2 ω · dBu · Ψ + 1

2 ω(u) ¯Ψ + dBf · ω · Ψ − q + 1

2 f ω · dBu · Ψ − (q + 1)f ω(u) ¯Ψ

= − f ω ¯· ¯DtrΨ +¯ q − 1

2 f ω · dBu · Ψ − 2f ¯∇ωΨ¯

− f ω · dBu · Ψ − f ω(u) ¯Ψ + dBf · ω · Ψ

−q + 1

2 f ω · dBu · Ψ − (q + 1)f ω(u) ¯Ψ

= − f ω ¯· ¯DtrΨ − 2f ¯¯ ∇ωΨ¯

− 2f ω · dBu · Ψ − (q + 2)ω(u) ¯Ψ + dBf · ω · Ψ, which implies (6.2). 2

Let Ku = {u ∈ Ω0B(F ) | κ(u) = 0}. Then we have the following

Proposition 6.3 For any real-valued basic functions f and g on M , and for any spinor field Ψ, we have

| Proof. This is a simple calculation. 2

Let DbΦ = λΦ (Φ 6= 0) and ¯Ψ = eq+12 uΦ. Since < X · Ψ, Ψ > is pure

From (6.3) and (3.30), if u ∈ Ku, then Hence we have the following theorem.

Theorem 6.4 Let (M, gM, F ) be a compact manifold with a transverse spin foliation F of codimension q ≥ 2 and bundle-like metric gM such that κ ∈ Ω1B(F ) and δκ = 0. Assume that Kσ¯ ≥ 0 for some transversally

From (4.16), we have the following corollary.

Corollary 6.5 Under the same condition as in Corollary 4.10, we have

λ2

Corollary 6.6 Let (M, gM, F ) be a compact Riemannian manifold with a transverse spin foliation F of codimension q ≥ 3 and bundle-like metric gM with κ ∈ Ω1B(F ) and δκ = 0. If the transversal scalar curvature sat-isfies σ≥ 0, then any eigenvalue λ of the Dirac operator corresponding to the eigenspinor Ψ satisfies

where µ1 is the first eigenvalue of the basic Yamabe operator Yb of F .

6.2 The limiting case

We define Ricf,g¯ : ΓQ ⊗ ¯S(F ) → ¯S(F ) by Ricf,g¯ (X ⊗ ¯Ψ) =X

a

a¯· ¯Rf,g(X, ¯Ea) ¯Ψ, (6.9)

where ¯Rf,g is the curvature tensor with respect to

f,g∇. For X ∈ ΓQ and¯ Ψ ∈ ΓS(F ) we have the following by the direct calculation;

f,g

∇¯X

f,g

∇¯E¯a Ψ =¯

f,g

∇¯X  ¯∇E¯aΨ + f ¯¯ Ea¯· ¯Ψ + gκg¯¯· ¯Ea¯· ¯Ψ

= ¯∇X∇¯E¯aΨ + f X ¯· ¯¯ ∇E¯aΨ + gκ¯ g¯¯· X ¯· ¯∇E¯aΨ¯ + X(f ) ¯Ea¯· ¯Ψ + f ¯∇Xa¯· ¯Ψ + f ¯Ea¯· ¯∇XΨ¯ + f2X ¯· ¯Ea¯· ¯Ψ + f gκg¯¯· X ¯· ¯Ea¯· ¯Ψ

+ X(g)κg¯¯· ¯Ea¯· ¯Ψ + g ¯∇Xκ¯g¯· ¯Ea¯· ¯Ψ + gκ¯g¯· ¯∇Xa¯· ¯Ψ + gκ¯g¯· ¯Ea¯· ¯∇XΨ + f gX ¯· κ¯ ¯g¯· ¯Ea¯· ¯Ψ

+ g2κ¯g¯· X ¯· κ¯g¯· ¯Ea¯· ¯Ψ.

With the similar calculation, we have R¯f,g(X, ¯Ea) ¯Ψ

= ¯RS(X, ¯Ea) ¯Ψ + X(f ) ¯Ea¯· ¯Ψ − 2f2a¯· X ¯· ¯Ψ − 2f2Q(X, ¯Ea) ¯Ψ

− 2f g¯gQ¯g, X) ¯Ea¯· ¯Ψ − X(g) ¯Ea¯· κg¯¯· ¯Ψ

− 2X(g)¯gQ¯g, ¯Ea) ¯Ψ − g ¯Ea¯· ¯∇Xκg¯¯· ¯Ψ − 2g¯gQ( ¯∇Xκ¯g, ¯Ea) ¯Ψ − ¯Ea(f )X ¯· ¯Ψ + g2κg¯¯· 

X ¯· κ¯g¯· ¯Ea− ¯Ea¯· κg¯¯· X

¯· ¯Ψ + 2f g¯gQg¯, ¯Ea)X ¯· ¯Ψ

− ¯Ea(g)κ¯g¯· X ¯· ¯Ψ − g ¯∇E¯aκ¯g¯· X ¯· ¯Ψ.

Note that

X ¯· κ¯g¯· ¯Ea− ¯Ea¯· κg¯¯· X = 2κ¯g¯· ¯Ea¯· X + 2¯gQ(X, ¯Ea¯g

− 2¯gQ(X, κ¯g) ¯Ea+ 2¯gQ¯g, ¯Ea)X.

Hence we have R¯f,g(X, ¯Ea) ¯Ψ

= ¯RS(X, ¯Ea) ¯Ψ + X(f ) ¯Ea¯· ¯Ψ − 2f2a¯· X ¯· ¯Ψ − 2f2Q(X, ¯Ea) ¯Ψ

− 2f g¯gQ¯g, X) ¯Ea¯· ¯Ψ − X(g) ¯Ea¯· κ¯g¯· ¯Ψ − ¯Ea(f )X ¯· ¯Ψ

− 2X(g)¯gQ¯g, ¯Ea) ¯Ψ − g ¯Ea¯· ¯∇Xκg¯¯· ¯Ψ − 2g¯gQ( ¯∇Xκ¯g, ¯Ea) ¯Ψ

− 2g2¯g|2a¯· X ¯· ¯Ψ − 2g2g¯|2¯gQ(X, ¯Ea) ¯Ψ + 2g2Q(X, κ¯g) ¯Ea¯· κg¯¯· ¯Ψ + 4g2Q(X, κg¯)¯gQg¯, ¯Ea) ¯Ψ + 2g2¯gQ¯g, ¯Eag¯¯· X ¯· ¯Ψ

+ 2f g¯gQ¯g, ¯Ea)X ¯· ¯Ψ − ¯Ea(g)κ¯g¯· X ¯· ¯Ψ − g ¯∇E¯aκ¯g¯· X ¯· ¯Ψ.

By a simple calculation, we have, from (3.12) and (6.9),

Ricf,g¯ (X ⊗ ¯Ψ) (6.10)

= −1

2 ρ¯(X) ¯· ¯Ψ − qX(f ) ¯Ψ + 2(q − 1)f2X ¯· ¯Ψ + 2qf g¯gQ¯g, X) ¯Ψ + (q − 2)X(g)κ¯g¯· ¯Ψ + (q − 2)g ¯∇Xκg¯¯· ¯Ψ

− dBf ¯· X ¯· ¯Ψ + 2(q − 2)g2¯g|2X ¯· ¯Ψ − 2(q − 2)g2Q(X, κ¯gg¯¯· ¯Ψ

− 2f gκg¯¯· X ¯· ¯Ψ − dBg ¯· κg¯¯· X ¯· ¯Ψ + g|κg¯|2X ¯· ¯Ψ.

On the other hand, we have the following.

Proposition 6.7 If a non-zero spinor field Ψ satisfies

f,g∇¯tr Ψ = 0, then¯

XΨ = −f euπ(X) · Ψ − gκ · π(X) · Ψ (6.11) + 1

2 gQ(dBu, π(X))Ψ + 1

2 π(X) · dBu · Ψ.

Proof. From (6.1), we have

∇¯XΨ + f π(X) ¯· ¯¯ Ψ + gκ¯g¯· π(X) ¯· ¯Ψ = 0.

Hence from (3.20), we have

XΨ −1

2 π(X) · dBu · Ψ −1

2X(u) ¯Ψ + f euπ(X) · Ψ + gκ · π(X) · Ψ = 0.

Since ˜Iu is an isometry, the proof is completed. 2

Theorem 6.8 Let (M, gM, F ) be a compact Riemannian manifold with a transverse spin foliation F of codimension q ≥ 3 and bundle-like metric gM such that κ ∈ Ω1B(F ) and δκ = 0. Assume that σ≥ 0. If there exists an eigenspinor field Ψ1 of the basic Dirac operator Db for the eigenvalue λ21 = q

4(q − 1)



µ1 + q + 1

q inf |κ|2

, then F is minimal, transversally Einsteinian with a positive constant transversal scalar curvature σ. Proof. Let DbΦ = λ1Φ with λ21 = q

Hence the left hand side in the equation (6.12) is pure imaginary but the right hand side in the equation (6.12) is real, and so both sides are all zero. That is, dBf = 0. So u is constnat. Also, we have from (6.10)

ρ¯(X) = 4(q − 1)f2X for X ∈ ΓQ. (6.13) Since u is constant, we have from (2.20)

ρ(X) = 4(q − 1)

q2 λ21X. (6.14)

Hence F is transversally Einsteinian with a constant transversal scalar curvature σ = 4(q − 1)

q λ21. 2

References

[1] J.A.Alvarez L´opez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10(1992), 179-194.

[2] J. Br¨uning and F. W. Kamber, Vanishing theorems and index for-mulas for transversal Dirac oprators, A.M.S Meeting 845, Special Session on oprator theorey and applications to Geometry, Lawrence, K.A.; A.M.S. Abstracts, October 1988.

[3] H. Baum, T. Friedrich, R. Grunewald and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Seminarbericht Nr. 108, Humboldt-Universit¨at zu Berlin, 1990.

[4] G. Habib, Eigenvalues of the transversal Dirac operator on K¨ahler foliations, J. Geom. Phys. 56(2005) 260-270.

[5] D. Dom´ınguez, A tenseness theorem for Riemannian foliations, C.

R. Acad. Sci. S´er. I 320(1995), 1331-1335.

[6] Th. Friedrich, Der erste Eigenwert des Dirac operators einer Kompakten Riemannschen Mannigfaltigkeit nichtnegative skalarkr¨ummung, Math. Nachr. 97(1980), 117-146.

[7] J. F. Glazebrook and F. W. Kamber, Transversal Dirac families in Riemannian foliations, Comm. Math. Phys. 140(1991), 217-240.

[8] O. Hijazi, Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys., 16(1995), 27-38.

[9] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104(1986), 151-162.

[10] S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39(2001), 253-264.

[11] S. D. Jung, Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form, J. Geom.

Phys. 57(2007), 1239-1246.

[12] S. D. Jung and D. S. Kang, Eigenvalues of the basic Dirac operator and transversal twistor operator on Riemannian foliations, Far East J. Math. Sci. 14(2004), 361-369.

[13] S. D. Jung and Y. B. Moon, The transversal Weyl conformal cur-vature tensor on a Riemannian foliation, Far East J. Math. Sci.

17(2005), 261-271.

[14] S. D. Jung and Y. S. Ko, Eigenvalue estimates of the basic Dirac operator on a Riemannian foliation, Taiwaness J. Math. 10(2006), 1139-1156.

[15] S. D. Jung, B. H Kim and J. S. Pak, Lower bounds for the eigenvalues of the basic Dirac operator on a Riemannian foliation, J. Geom.

Phys. 51(2004), 116-182.

[16] F. W. Kamber and Ph. Tondeur, Harmonic foliations, Proc. Na-tional Science Foundation Conference on Harmonic Maps, Tulance, Dec. 1980, Lecture Notes in Math. 949, Springer-Verlag, New York, 1982, 87-121.

[17] F. W. Kamber and Ph. Tondeur, Foliated bundles and Characteristic classes, Lecture Notes in Math. 493, Springer-Verlag, Berlin, 1975.

[18] K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed K¨aler manifolds of positive scalar curvature, Ann.

Glob. Anal. Geom. 4(1986), 291-326.

[19] K.-D. Kirchberg, The first eigenvalue of the Dirac oprator on K¨aler manifolds, J. Geom. Phys. 7(1990), 449-468.

[20] W.Kramer, U. Semmelmann and G. Weingart, Eigenvalue estimates for the Dirac operator on quaternionic K¨aler manifolds, Math. Z.

230(1999), 727-751.

[21] H. B Lawson, Jr. and M. L. Michelsohn, Spin geometry, Princeton Univ. Press, Princeton, New Jersey, 1989.

[22] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris Ser.

A-B 257(1963), 7-9.

[23] P. March, M. Min-Oo and E. A. Ruh, Mean curvature of Rieman-nian foliations, Canad. Math. Bull. 39(1996), 95-105.

[24] A. Mason, An appliation of stochastic flows to Riemannian folia-tions, Amer. J. Math. 26(2000), 481-515.

[25] H. K. Pak and J. H. Park, Transversal harmonic fields for Rieman-nian foliations, Anal. Glob. Anal. Geom. 30(2006), 97-105.

[26] E. Park and K. Richardrdson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118(1966), 1249-1275.

[27] B. Reinhart, Foliated manifolds with bundle-like metrics, Ann.

Math. 69(1959), 119-132.

[28] Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New-York, 1988.

[29] Ph. Tondeur, Geometry of foliations, Birkh¨auser-Verlag, Basel;

Boston; Berlin, 1997.

[30] S. Yorozu and T. Tanemura, Green’s theorem on a foliated Rieman-nian manifold and its applications, Acta Math. Hungar. 56 (1990), 239-245.

< ±  % K   ï Ÿ  ´>

Basic Dirac ¥ o > ñ 5 Ñ U c 7  ø 5  ” §Ë Ân  ˜ +  ø 5 

\P

8£x½¨›¸\¦tHoëߖ€ªœ^‰©œ_Séߖ&h /BNçߖs spin ½¨›¸\¦|9 M

:Séߖ&h Dirac ƒíߖ_ $í|9[þt`¦ /BNÂÒ “¦ s\¦ s6 x #Œ \P[þt_ ýa

³

ð\ Ô¦“ Û¼x-[þt\ Œ•6 x H basic Dirac ƒíߖ_ “¦Ä»u_ ôÇ`¦

#

ŒQ ~½ÓZOܼ–Ð ƒ½¨ôÇ. ĺ‚Séߖ&hܼ–Ð /BN+þA¨8Š`¦ôÇ >|¾Ó_ Û¼x -/

B

Nçߖ\"fSéߖ&h twistor ƒíߖ\¦&ñ_ “¦ sכ ܼ–Ð basic Dirac ƒíߖ _

 “¦Ä»u_ ôÇ`¦½¨ôÇ. ¢¸ôÇ Dh–Ðîr ]X5Åq`¦&ñ_ “¦ Õªכ _ ß¼l

\

¦s6 x #Œ basic Dirac ƒíߖ_ “¦Ä»tu_ ôÇ`¦½¨ H ôǼ# Dh–Ð î

r ]X5Åq`¦ /BN+þA¨8Š #Œ basic Dirac ƒíߖ_ “¦Ä»u_ ôÇ`¦ ƒ½¨ôÇ



. —¸ŽHâĺ\ e”#Q"f “¦Ä»u ôÇ{9 M:_ \P8£x“Ér FG™è&hs“¦ Séߖ

&

h Û¼ºú˜ /BGÒ¦s €ªœ_ ©œÃº“Séߖ&h Einstein /BNçߖs.

´

관련 문서