• 검색 결과가 없습니다.

4. Discussion

3.2 Development of transgenic Arabidopsis lines

Independent transgenic lines were generated which expressed hairpin RNA complementary to mRNA of COPA of T. urticae (five lines). Integration of the gene in T0 transgenic lines was confirmed by PCR (Fig. 1). The leaf disc bioassay showed all five transgenic lines of COPA to be lethal to the infested mites.

These lines were selected for detailed study. The T0 lines were self-pollinated, and seeds collected. The T1 and T2 lines were screened for glufosinateresistance to

70

glufosinate. All glufosinate-resistant lines showed to possess the COPA gene cassette. Lethality of T1 and T2 lines to T. urticae was evaluated (Fig. 2). Lethality to T. urticae in T0 generation, the presence of glufosinate resistance, the amplification of transgene and the lethality to T. urticae observed in the T1 and T2

generation plants indicated the stable integration of COPA gene cassette into Arabidosis genome. No apparent difference in growth and morphology was observed between the transgenic and control plants

Fig. 1. PCR results confirmed by COPA primer

(M:100 bp DNA ladder. C: Untransformed plant with same genetic background. 1-17: Expected transgenic plants for COPA transgene. Plant 3,7,8,9 and 12 are positive transgenic for COPA gene)

3.3 Lethality of Arabidopsis expressing COPA hairpin RNA against T. urticae 72 h after the infestation on Arabidopsis expressing COPA hairpin RNA (T2), a low level of T. urticae mortality (16.8 ±13.19%) was observed. The mortality

71

increased to 52.4 ± 11.9% and 61.7 ± 24.5% at 96 and 144 h post-infestation, respectively (Fig. 2).

Fig. 2. Toxicity test of A. thaliana expressing T. urticae COPA hairpin RNA against T.

urticae

3.4 Downregulation of COPA transcripts in T. urticae fed Arabidopsis expressing COPA hairpin RNA

qPCR analysis was performed to measure the extent of COPA gene silencing in T.

urticae fed Arabidopsis plants expressing COPA hairpin RNA. The COPA

transcript levels were reduced in T. urticae fed soybean plants expressing COPA hairpin RNA from 0 days to 6 days infestation. Compared to 0 day post-infestation (control), the COPA transcript levels were reduced 1.35-fold at 4 days post-infestation.

72

Fig. 2. Extent of COPA gene knockdown in T. urticae fed A. thaliana expressing T.

urticae COPA hairpin RNA

4. Discussion

Success of in planta RNAi relies primarily on the efficient expression of hairpin RNA. In current study, hairpin RNA was determined to be expressed constitutively in transgenic Arabidopsis under the control of CaMV 35S promoter.

It is unclear whether the hairpin RNA expression is tissue-specific or general in most tissues and how the expressed hairpin RNA is processed. As a substantial level of mortality of T. urticae was observed on the transgenic Arabidopsis, the expressed hairpin RNA (and/or its processed siRNA) appears to be translocated to the phloem syetem and delivered to T. urticae when sucking the phloem sap. To

73

maximize the delivery of expressed hairpin RNA to T. urticae, its tissue-specific expression in the sieve tube cells would be desirable, where expressed foreign transgene is directly translocated into the phloem sap, thereby facilitating the uptake of hairpin RNA into T. urticae. Since T. urticae is known to consume chloroplasts when sucking plant sap (Park and Lee 2002),, expression of target hairpin RNA in chloroplasts would also enhance the efficacy of RNAi-based T.

urticae control significantlyas recently demonstrated in the case of RNAi against

Colorado potato beetle, which was mediated by hairpin RNA expressed in chloroplasts

Selection of the target gene is of utmost importance for the effectiveness of RNAi. Since COPA is involved in the formation of coatomer-coated vesicles that are responsible for vesicular traffic between the endoplasmic reticulum and Golgi complex in eukaryotic cells. RNAi-mediated COPA knockdown may cause endomembrane system disintegration. Consequently, the RNAi-mediated down-regulation of the COPA protein may disrupt several physiological functions (e.g., autophagy, protein sorting and trafficking), thereby ultimately resulting in T.

urticae death. Nevertheless, more potent lethal gene can be still identified from

the T. urticae genome, as the initial identification of target gene (i.e., COPA) was based on a small scale screening. Since the ingestion RNAi mediated by in planta expression of lethal target gene was demonstrated to kill T. urticae, an extensive

74

screening of more potent lethal genes from T. urticae merits further investigation.

Since the alimentary track tissues are the first contact point to the uptaken hairpin RNA, any housekeeping genes with essential functions in these tissues would be the primary candidates.

Variation in hairpin RNA expression can occur depending on the integration site in the plant genome. Although it is not determined yet the precise location of the COPA transgene cassette in the Arabidopsis genome, it is likely to be in the intergenic region as no apparent negative aspects were noticed in the transgenic lines

In summary, our study provides a proof of concept that hairpin RNA expressed in plant hosts can induce RNAi and eventually kill T. urticae, a sap-sucking pest, as well. Our results also provide a framework for the ingestion RNAi against other sucking arthropod pests, including aphids, thrips, whiteflies, etc. Nevertheless, several questions remain to be addressed: how much target hairpin RNA was transcribed and processed to dsRNA (or siRNA), and how much of the processed RNA was translocated into the phloem sap and became available to T. urticae ingestion. Searching for more potent lethal genes and more efficient expression of hairpin RNA in plant tissues either via tissue-specific or organelle-specific transformation would be desirable.

75

LITERATURE CITED

Andrieu, A., J. C. Breitler, C. Sire, D. Meynard, P. Gantet and E. Guiderdoni (2012). "An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves." Rice 5.

Andrieu, A., J. C. Breitler, C. Sire, D. Meynard, P. Gantet and E. Guiderdoni (2012). "An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves." Rice (N Y) 5(1): 23.

Aravin, A. A., N. M. Naumova, A. V. Tulin, V. V. Vagin, Y. M. Rozovsky and V. A. Gvozdev (2001). "Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D-melanogaster germline."

Current Biology 11(13): 1017-1027.

Aravin, A. A., N. M. Naumova, A. V. Tulin, V. V. Vagin, Y. M. Rozovsky and V. A. Gvozdev (2001). "Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline." Curr Biol 11(13): 1017-1027.

Baum, J. A., T. Bogaert, W. Clinton, G. R. Heck, P. Feldmann, O. Ilagan, S.

Johnson, G. Plaetinck, T. Munyikwa, M. Pleau, T. Vaughn and J. Roberts (2007).

"Control of coleopteran insect pests through RNA interference." Nat Biotechnol 25(11): 1322-1326.

Baum, J. A., T. Bogaert, W. Clinton, G. R. Heck, P. Feldmann, O. Ilagan, S.

Johnson, G. Plaetinck, T. Munyikwa, M. Pleau, T. Vaughn and J. Roberts (2007).

"Control of coleopteran insect pests through RNA interference." Nature Biotechnology 25(11): 1322-1326.

Bendahmane, A., M. Querci, K. Kanyuka and D. C. Baulcombe (2000).

"Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato." Plant Journal 21(1): 73-81.

Chen, Q., H. Lai, J. Hurtado, J. Stahnke, K. Leuzinger and M. Dent (2013).

"Agroinfiltration as an Effective and Scalable Strategy of Gene Delivery for Production of Pharmaceutical Proteins." Adv Tech Biol Med 1(1).

Chen, X. L., R. Equi, H. Baxter, K. Berk, J. Han, S. Agarwal and J. Zale (2010). "A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings." Biotechnology for Biofuels 3.

Dubey, V. K., U. G. Lee, D. H. Kwon and S. H. Lee (2017). "Agroinfiltration-based expression of hairpin RNA in soybean plants for RNA interference against Tetranychus urticae." Pesticide Biochemistry and Physiology.

Dunoyer, P. and O. Voinnet (2005). "The complex interplay between plant viruses and host RNA-silencing pathways." Current Opinion in Plant Biology 8(4):

76 415-423.

Dunoyer, P. and O. Voinnet (2005). "The complex interplay between plant viruses and host RNA-silencing pathways." Curr Opin Plant Biol 8(4): 415-423.

Elbashir, S. M., W. Lendeckel and T. Tuschl (2001). "RNA interference is mediated by 21-and 22-nucleotide RNAs." Genes & Development 15(2): 188-200.

Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver and C. C. Mello (1998). "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans." Nature 391(6669): 806-811.

Hannon, G. J. (2002). "RNA interference." Nature 418(6894): 244-251.

Helle, W. and W. Sabelis (1985). Spider Mites: Their Biology, Natural Enemies, and Control, Elsevier Science & Technology Books.

Huvenne, H. and G. Smagghe (2010). "Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review." Journal of Insect Physiology 56(3): 227-235.

Huvenne, H. and G. Smagghe (2010). "Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review." J Insect Physiol 56(3):

227-235.

Jin, T., J. Wang, X. Zhu, Y. Xu, X. Zhou and L. Yang (2015). "A new transient expression system for large-scale production of recombinant proteins in plants based on air-brushing an Agrobacterium suspension." Biotechnology Reports 6:

36-40.

Kapila, J., R. DeRycke, M. VanMontagu and G. Angenon (1997). "An Agrobacterium-mediated transient gene expression system for intact leaves." Plant Science 122(1): 101-108.

Kapila, J., R. DeRycke, M. VanMontagu and G. Angenon (1997). "An Agrobacterium-mediated transient gene expression system for intact leaves (vol 122, pg 101, 1997)." Plant Science 124(2): 227-227.

Kim, Y. J., H. M. Park, J. R. Cho and Y. J. Ahn (2006). "Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae)." J Econ Entomol 99(3): 954-958.

Kirchhausen, T. (2000). "Three ways to make a vesicle." Nature Reviews Molecular Cell Biology 1(3): 187-198.

Knowles, C. (1997). Mechanisms of Resistance to Acaricides. Molecular Mechanisms of Resistance to Agrochemicals. V. Sjut, Springer Berlin Heidelberg.

13: 57-77.

Kwon, D. H., H. Kim, J. H. Oh, S. Lee and S. H. Lee (2011). "Establishment of an acaricide-susceptible Tetranychus urticae strain and its species confirmation based on morphological and molecular characters." Journal of Asia-Pacific Entomology 14(4): 379-385.

77

Kwon, D. H., J. H. Park, P. A. Ashok, U. Lee and S. H. Lee (2016). "Screening of target genes for RNAi in Tetranychus urticae and RNAi toxicity enhancement by chimeric genes." Pestic Biochem Physiol 130: 1-7.

Kwon, D. H., J. H. Park and S. H. Lee (2013). "Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae." Pestic Biochem Physiol 105(1): 69-75.

Kwon, D. H., J. H. Park and S. H. Lee (2017). "Identification of initial responsive genes to systemic dsRNA ingestion in the two-spotted spider mite, Tetranychus urticae Koch." Journal of Asia-Pacific Entomology.

Lee, U. G., V. K. Dubey, D. H. Kwon, D. Ho and S. H. Lee (2016).

Knockdown of COPA gene by RNAi resulted in reduction of lysosome in Tetranychus urticae. 2016 Korean Society of Applied Entomology.

Livak, K. J. and T. D. Schmittgen (2001). "Analysis of Relative Gene sunflower leaf discs via an Agrobacterium-mediated method: applications for gene expression and silencing studies." Nat Protoc 4(11): 1699-1707.

Manavella, P. A. and R. L. Chan (2009). "Transient transformation of sunflower leaf discs via an Agrobacterium-mediated method: applications for gene expression and silencing studies." Nature Protocols 4(11): 1699-1707.

Mao, Y. B., W. J. Cai, J. W. Wang, G. J. Hong, X. Y. Tao, L. J. Wang, Y. P.

Huang and X. Y. Chen (2007). "Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol." Nat Biotechnol 25(11): 1307-1313.

Marion, J., L. Bach, Y. Bellec, C. Meyer, L. Gissot and J. D. Faure (2008).

"Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings." Plant Journal 56(1):

169-179.

Mohri, T., N. Yamamoto and K. Shinohara (1996). "Agrobacterium-mediated transformation of lombardy poplar (Populus nigra L. var. italica Koehne) using stem segments." Journal of Forest Research 1(1): 13-16.

Montgomery, M. (2004). RNA Interference. RNA Interference, Editing, and Modification. J. Gott, Humana Press. 265: 3-21.

Park, Y. L. and J. H. Lee (2002). "Leaf cell and tissue damage of cucumber caused by twospotted spider mite (Acari: Tetranychidae)." J Econ Entomol 95(5):

78 952-957.

Price, D. R. and J. A. Gatehouse (2008). "RNAi-mediated crop protection against insects." Trends Biotechnol 26(7): 393-400.

Price, D. R. G. and J. A. Gatehouse (2008). "RNAi-mediated crop protection against insects." Trends in Biotechnology 26(7): 393-400.

Saito, T., K. Tabata and S. Kohnot (1983). Mechanisms of acaricide resistance with emphasis on dicofol. Pest resistance to pesticides, Springer: 429-444.

Santi, L., L. Batchelor, Z. Huang, B. Hjelm, J. Kilbourne, C. J. Arntzen, Q.

Chen and H. S. Mason (2008). "An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles." Vaccine 26(15):

1846-1854.

Sparkes, I. A., J. Runions, A. Kearns and C. Hawes (2006). "Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants." Nat Protoc 1(4): 2019-2025.

Sparkes, I. A., J. Runions, A. Kearns and C. Hawes (2006). "Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants." Nature Protocols 1(4): 2019-2025.

Spring, J. H., S. R. Robichaux and J. A. Hamlin (2009). "The role of aquaporins in excretion in insects." J Exp Biol 212(Pt 3): 358-362.

Spring, J. H., S. R. Robichaux and J. A. Hamlin (2009). "The role of aquaporins in excretion in insects." Journal of Experimental Biology 212(3): 358-362.

Stephan, D., C. Slabber, G. George, V. Ninov, K. P. Francis and J. T. Burger (2011). "Visualization of plant viral suppressor silencing activity in intact leaf lamina by quantitative fluorescent imaging." Plant Methods 7: 25.

Tabara, H., M. Sarkissian, W. G. Kelly, J. Fleenor, A. Grishok, L. Timmons, A.

Fire and C. C. Mello (1999). "The rde-1 gene, RNA interference, and transposon silencing in C-elegans." Cell 99(2): 123-132.

Tabara, H., M. Sarkissian, W. G. Kelly, J. Fleenor, A. Grishok, L. Timmons, A.

Fire and C. C. Mello (1999). "The rde-1 gene, RNA interference, and transposon silencing in C. elegans." Cell 99(2): 123-132.

Tehri, K., R. Gulati and M. Geroh (2014). "Damage potential of Tetranychus urticae Koch to cucumber fruit and foliage: Effect of initial infestation density."

Journal of Applied and Natural Science 6(1): 170-176.

Tenllado, F., D. Barajas, M. Vargas, F. A. Atencio, P. Gonzalez-Jara and J. R.

Diaz-Ruiz (2003). "Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing." Mol Plant Microbe Interact 16(2): 149-158.

Tenllado, F. and J. R. Diaz-Ruiz (2001). "Double-stranded RNA-mediated

79

interference with plant virus infection." J Virol 75(24): 12288-12297.

Turner, C. T., M. W. Davy, R. M. MacDiarmid, K. M. Plummer, N. P. Birch and R. D. Newcomb (2006). "RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding." Insect Molecular Biology 15(3): 383-391.

Van der Hoorn, R. A. L., F. Laurent, R. Roth and P. J. G. M. De Wit (2000).

"Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis." Molecular Plant-Microbe Interactions 13(4): 439-446.

Van Leeuwen, T., J. Vontas, A. Tsagkarakou, W. Dermauw and L. Tirry (2010).

"Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review." Insect Biochemistry and Molecular Biology 40(8): 563-572.

VELTCHEVA, M. R. and D. Lilova SVETLEVA (2005). "In vitro regeneration of Phaseolus vulgaris L. via organogenesis from petiole explants."

Journal of Central European Agriculture 6(1): 53-58.

Wesley, S. V., C. A. Helliwell, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, P. A. Stoutjesdijk, S. P. Robinson, A. P.

Gleave, A. G. Green and P. M. Waterhouse (2001). "Construct design for efficient, effective and high-throughput gene silencing in plants." Plant Journal 27(6): 581-590.

Wesley, S. V., C. A. Helliwell, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, P. A. Stoutjesdijk, S. P. Robinson, A. P.

Gleave, A. G. Green and P. M. Waterhouse (2001). "Construct design for efficient, effective and high-throughput gene silencing in plants." Plant J 27(6): 581-590.

Wroblewski, T., K. S. Caldwell, U. Piskurewicz, K. A. Cavanaugh, H. Q. Xu, A. Kozik, O. Ochoa, L. K. McHale, K. Lahre, J. Jelenska, J. A. Castillo, D.

Blumenthal, B. A. Vinatzer, J. T. Greenberg and R. W. Michelmore (2009).

"Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of Pseudomonas and Ralstonia." Plant Physiology 150(4): 1733-1749.

Wroblewski, T., A. Tomczak and R. Michelmore (2005). "Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis." Plant Biotechnology Journal 3(2): 259-273.

Wroblewski, T., A. Tomczak and R. Michelmore (2005). "Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis." Plant Biotechnol J 3(2): 259-273.

Zha, W., X. Peng, R. Chen, B. Du, L. Zhu and G. He (2011). "Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the

80

hemipteran insect Nilaparvata lugens." PLoS One 6(5): e20504.

Zha, W. J., X. X. Peng, R. Z. Chen, B. Du, L. L. Zhu and G. C. He (2011).

"Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect Nilaparvata lugens." Plos One 6(5).

Zhang, H., H. C. Li and X. X. Miao (2013). "Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control." Insect Science 20(1): 15-30.

Zhang, M., Q. Wang, K. Xu, Y. Meng, J. Quan and W. Shan (2011).

"Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica." PLoS One 6(11): e28114.

81

KOREAN ABSTRACT

흡즙성 해충인 점박이응애에 대한 섭식 RNA 간섭에 의한 치사력 검증 체계 구축

서울대학교 대학원 농생명공학부

이웅규

초록

특정유전자의 발현 조절을 위해 보편적으로 사용되는 RNA 간섭 기술은 최근 해충방제용 형질전환 식물체에 접목되어 미래의 해충 방제 전략으로 간주된다. 섭식 RNA간섭에 의한 치사력 검증 체계

구축의 일환으로서 이미 치사력이 검증된 점박이응애 유래

COPA(Coatomer subunit of coatomer protein complex) 유전자의 hairpin RNA를 일시적으로 식물체에서 발현할 수 있는 agroinfiltration 체계를 최적화하여 RNA간섭 효과를 검정하였다. Agroinfiltration의 방법에 따른 hairpin RNA 발현효율은 Carborundum을 이용한 agroinfiltration과

82

83

확인하고자 qPCR를 수행하였고, COPA의 유전자 발현이 접종 후 96시간에서 제일 많이 감소하는 것을 확인하였다.

본 실험에서는 형질전환체 개발 전 섭식 RNA간섭 체계를

구축함으로써, 짧은 시간 안에 해당유전자의 치사력을 검증할 수 있었다. 또한 모델식물인 애기장대를 대상으로 형질전환체의 치사력을 검증할 수 있었다. 앞으로 더 높은 치사력을 갖는 유전자의 선별과 hairpin RNA의 발현량을 증대시킬 수 있는 방법이 접목된다면 흡즙성 해충의 방제에 큰 기여를 할 수 있을 것으로 사료된다.

검색어: 점박이응애, Agroinfiltration, RNA 간섭, 섭식 RNAi 시스템, 학번: 2015-21787

관련 문서