• 검색 결과가 없습니다.

This study demonstrates that STN lesions and dopamine agonists decreased the hyperactivity of the firing rate of SNpr neurons, and resulted in an increased firing rate of VL neurons in 6-OHDA lesioned rats. Concerning the firing pattern, the STN lesion was found to have a dramatic effect on SNpr neurons, but SKF38393 and Quinpirole did not. This result suggests that STN lesions and dopamine agonists may have different roles in the pathophysiology of PD.

The pathophysiological significance of bursting activity remains obscure, and the ability of dopamine agonist to regularize output nuclei firing patterns may explain why dopamine agonists lose efficacy as PD progress.

32

References

1. DeLong, MR. Primates models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281-5.

2. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders, Trends Neurosci 1989;12:366-75.

3. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia thalamocortical circuits: parallel substrates or motor, oculomotor,

‘prefrontal’ and ‘limbic’ functions. Prog Brain Res 1990;85: 119-46.

4. Delfs JM, Vivian MC, Tom JP Subthalamic nucleus lesions:

Widespread effects on changes in the expression induced by nigrostriatal dopamine depletion in

rats.

J Neurosci 1995;15(10):6562-75.

5. Hutchison WD, Levy R, Dostrovsky JO, Lozano AM, Lang AE.

Effects of apomorphine in globus pallidus neurons in Parkinsonian patients. Ann Neurol 1997;42:767-75.

6. Anderson JJ, Chase TN, Engber TM. Differential effect of subthalamic nucleus ablation on dopamine D1 and D2 agonist-induced rotation in 6-hydroxydopamine-lesioned rats. Brain Res 1992;588:307-10.

7. Charlety PJ, Grenhoff J, Chergut K, DeLaChapelle B, Buda M.

33

Svenson TH, et al. Burst firing of mesencephalic dopamine neurons is inhibited by somatodentritic application of kynurenate. Acta

Physiol Scand 1991;142:105-12.

8. Aziz TZ, Peggs D, Sambrook MA, Crossman AR. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) - induced Parkinsonism in the primate.

Mov Disord. 1991;6:288-92.

9. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 1993;5:382-9.

10. Bergman H, Wichmann T, DeLong MR Reversal of experimental Parkinsonism by lesion of the subthalamic nucleus. Science 1990;249:1436-8.

11. Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. J Neurophysiol 1994;72:507-20.

12. Gao DM, Benazzouz A, Piallat B, Bressand K, Ilinsky IA, Kultas-Ilinsky K, et al. High-frequency stimulation of the subthalamic nucleus suppresses experimental resting tremor in the monkey.

34 Neuroscience 1999;88:201-12.

13. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New Eng J Med 1998;339:1105-11.

14. Dormont JF. Patterns of spontaneous unit activity in the ventro-lateral thalamic nucleus of cats. Brain Res 1972;37:223-39.

15. Bunny BS, Chiodo LA, Grace A. Midbrain dopamine system.

Electrophysiological functioning: a review and new hypothesis.

Synapse 1991;9:79-94.

16. Hutchinson WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Annals Neurol 1998;44:622-8.

17. Burbaud P, Gross C, Benazzouz A, Coussemacq M, Bioulac B.

Reduction of apomorphine-induced rotational behaviour by subthalamic lesion in 6-OHDA lesioned rats is associated with a normalization of firing rate and discharge pattern of pars reticulata neurons. Exp Brain Res 1995;105:48-58.

18. Murer MG, Riquelme LA, Tseng KY, Cristal A, Santos J, Pazo JH.

D1-D2 dopamine receptor interaction: an in vivo single unit

electrophysiological study. Neuroreport 1997;8:783-7.

19. Miller WC, DeLong MR. Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of Parkinsonism. The basal ganglia. II. Carpenter MB, Jayaraman A, editors. Structure and function: current concepts, advances in behavioral biology, vol. 32. New York: Plenum; 1987. p.415-27.

20. Ehringer H, Hornykiewicz O. Vereilung von Noradrenalin und Dopamin(3-Hydrostyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 1960;38:1236-9.

21. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New Eng J Med 1998;339:1105-11.

22. Benazzouz A, Piallat B, Pollak P, Benabid AL. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats:

electrophysiological data. Neurosci Lett 1995;189:77-80.

23. Benazzouz A, Gao DM, Ni ZG, Piallat B, Bouali-Benazzouz R, Benabid AL. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars

35

36

reticulata and ventrolateral nucleus of the thalamus in the rat.

Neuroscience 2000;99:289-95.

24. Krack P, Benazzouz A, Pollak P, Limousin P, Piallat B, Hoffmann D, et al. Treatment of tremor in Parkinson's disease by subthalamic nucleus stimulation. Mov Disord 1998;13(6): 907-14.

25. Ruskin DN, Bergstrom DA, Walters JR. Nigrostriatal lesion and dopamine agonists affect firing pattern of rodent entopeduncular nucleus neurons. J Neurophysiol 2002;88:487-96.

26. Kita H, Kitai ST. Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 1987;260:435-452.

27. Gerfen CR, Enhber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990;250:1429-32.

28. Kreiss DS, Mastropietro CW, Rawji SS, Walters JR. The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease. J Neurosci 1997;17:6807-19.

29. Kreiss DS, Anderson LA, Walters JR. Apomorphine and dopamine D1 receptor agonists increase the firing rates of subthalamic nucleus neurons. Neuroscience 1996;72:863-876.

37

30. Zhu Z, Bartol M, Shen K, Johnson SW. Excitatory effects of dopamine on subthalamic nucleus neurons: in vitro study of rats pretreated with 6-hydroxydopamine and levodopa. Brain Res 2002;945:31-40.

31. Boraud T, Bezard E, Bioulac B, Gross C. Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurons in the MPTP-treated monkey. Brain 2001;124:546-57.

32. Levy R, Hazrati LN, Herrero MT, Vila M, Hassani OK, Mouroux M, et al. Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience 1997;76:225-43.

33. Rohlfs A, Nikkhah G, Rosenthal C, Rundfeldt C, Brandis A, Samii M, et al. Hemispheric asymmetries in spontaneous firing characteristics of substantia nigra pars reticulata neurons following unilateral 6-hydroxydopamine lesion of the rat nigrostriatal pathway. Brain Res 1997;761:352-6.

34. Hassani OK, Mourouz M, Feger J. Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 1996;72:105-15.

35. Hollerman JR, Grace AA. Subthalamic nucleus cell firing in the 6-

38

OHDA-treated rat: basal activity and response to haloperidol. Brain Res 1992;590:291-9.

36. Ni ZG, Bouali-Benazzouz R, Gao DM, Benabid AL, Benazzouz A.

Time-course of changes in firing rates and firing pattern of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats. Brain Res 2001;899:142-7.

37. Tseng KY, Kasanetz F, Kargieman L, Pazo JH, Murer MG, Riquelme LA. Subthalamic nucleus lesions reduce low frequency oscillatory firing of subtantia nigra pars reticulata neurons in a rat model of Parkinson’s disease. Brain Res 2001;904:93-103.

38. Burbaud P, Gross C, benazzouz A, Coussemacq M, Bioulac B.

Reduction of apomorphine-induced rotational behaviour by subthalamic lesion in 6-OHDA lesioned rats is associated with a normalization of firing rate and discharge pattern of pars reticulata neurons. Exp Brain Res 1995;105: 48-58.

39. Ni ZG, Bouali-Benazzouz R, Gao DM, Benabid AL, Benazzouz A.

Intrasubthalamic injection of 6-hydroxydopamine induces changes in the firing rate and pattern of subthalamic nucleus neurons in the rat, Synapse 2001;40:145-53.

40. Plenz D, Kitai ST. A basal ganglia pacemaker formed by the

39

subthalamic nucleus and external globus pallidus. Nature 1999;400:677-82.

41. Paul ML, Graybel AM, David JC, Robertson HA. D1-like and D2-like Dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson disease. J Neurosci 1992;12:3729-42.

42. Pan HS, Walters JR. Unilateral lesion of the nigrostiratal pathway decrease the firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 1988;2: 650-6.

43. Walters JR, Bergstrom DA, Molnar L, Freeman LE, Ruskin DN.

Efects of dopamine receptor stimulation on basal ganglia activity. In:

Kultas-Ilinsky K and Ilinsky IA, editors. Basal Ganglia and Thalamus in Health and Movement Disorders. New York: Kluwer Academic/Plenum, 2001. p.135-50.

44. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: bursting firing. J Neurosci 1984;4:2866-76.

45. Beurrier C, Congar P, Bioulac B, Hammond C. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode, J Neurosci 1999;19:599-609.

40 국문요약

6-Hydroxydopamine에 의해 유도된 흰쥐 파킨슨병 모델에서 시상밑핵 손상과

도파민 수용체 작용물질의 효과

<지도교수 장 진 우>

연세대학교 대학원 의과학사업단

전 미 파

선조체의 도파민 수용체로 오는 도파민의 손실은 시상밑핵의 과도한 출 력을 유도하고 이것은 기저핵의 과도한 출력을 낳는다. 시상밑핵의 출력을 줄이는 것은 파킨슨병으로 오는 운동장애 증상을 회복시키기 때문에 연구 되어져 왔다. 시상밑핵의 손상은 그것의 과도한 출력을 줄일 수 있고 기저 핵에서 일어나는 운동조절시스템의 일시적인 장애를 정상화 시킬 수 있다.

또 다른 접근으로는 선조체에 있는 도파민 D1 수용체와 D2 수용체를 자극 하여 간접적인 시상밑핵의 출력을 감소시키는 것이있다. 이 연구에서 억제 성인 담창구를 거쳐 시상밑핵에서 나오는 출력을 감소시킨다고 생각되어 지 는 D1 수 용 체 작 용 물 질 인 S K F 3 8 3 9 3 과 D2 수 용 체 작 용 물 질 인 Quinpirole을 각각 선조체에 직접 주입하였다. 그런 후 기저핵의 출력을

41

보기위해 흑질그물부 (SNpr)와 복측외측의 시상 (VL)을 미세전극기록하 였다. 흑질그물부와 복측외측의 시상부위가 Kainic acid에 의한 시상밑핵 의 손상에 의해 어떻게 영향을 받는지 기록된 출력의 비율 (firing rate)과 형태 (firing pattern)에 따라 분석하였고, 출력의 형태는 규칙적인 형태와 (regular non bursting pattern) 불규칙한 형태 (bursting pattern) 로 분 리하여 분석하였다. 흰쥐 파킨슨모델 SKF38393는 흑질그물부의 출력을

42

은 파킨슨병의 병리생리학적 소견으로 시상밑핵에 의한 변화와 도파민 수 용체 작용물질에 의한 작용이 다른 경로로 이뤄진다는 것을 예측할 수 있

.

핵심되는 말: 6-OHDA, 파킨슨 병, 시상밑핵, 기저핵, kainic acid, 도파민

작용물질

관련 문서