• 검색 결과가 없습니다.

Holography is a very broad discipline. Since its inception in the late 1940s and its evolution in the 1960s and beyond, it has grown to become a well-researched field with many diverse applications. While there are many areas of holography, this article has focused on digital holography. The Roadmap paper is comprised of 25 sections contributed by prominent experts in the field to provide an overview of various aspects of digital holography. We start the roadmap article by presenting the origins of holography in Section2by J. W. Goodman. Then the author of each remaining section describes the progress, potential, vision, and challenges in a particular application of digital holography. A vast array of topics are covered including self-referencing digital holography, information security, lab-on-chip holography, tomographic microscopy with randomly structured illumination, automated disease identification by digital holography, label-free live cell imaging, digital holography with machine learning, disordered optics for digital holography, SLM-based incoherent digital holography, off-axis holographic spatial multiplexing, compressive sensing, single-pixel digital holography, holographic 3D reconstruction with multiple scattering models, machine-learning-enabled holographic near-eye displays for virtual and augmented reality, integration of light-field imaging and digital holography, and digital holography macro industrial applications and inspection. Table1has a list of all the sections and their corresponding author.

As in any overview paper of this nature, it is not possible to describe and represent all the possible applications, approaches, and activities in the broad field of digital holography. We apologize in advance if we have not included any relevant work in digital holography. Hopefully, the large number of cited references can aid the reader with those areas not fully discussed in this Roadmap.

Funding.National Research Foundation Singapore; Intelligence Advanced Research Projects Activity; Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2021-0-00745); National Research Foundation of Korea (2015R1A3A2066550); Office of Naval Research

(N000141712405); Army Research Office; National Science Foundation (1839974); Ford Motor Company; Euro-pean Research Council (ERC StG 678316); National Science Foundation (1846784); National Science Foundation (1813848); Universitat Jaume I (UJIB2018-68); Generalitat Valenciana (PROMETEO/2020/029); Agencia Estatal de Investigación 110927RB-I00/AEI/10.13039/501100011033); Agencia Estatal de Investigación (PID2019-104268GB-C22/AEI/10.13039/501100011033); Generalitat Valenciana (PROMETEO/2019/048); Ministerio de Ciencia, Innovacion y Universidades (RTI2018-099041-B-I00); Israel Science Foundation (1669/16); NSF PATHS-UP; Canada Excellence Research Chairs, Government of Canada; Canada Foundation for Innovation (342, 36689); Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-06198); European Commission (H2020-ICT-2016-1 MOON Grant 732969); Austrian National Science Foundation (FWF grant no. P 29093-N36); Department of Science and Technology India (IDP/MED/34/2016); Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (TEAM TECH/2016-1/4); Horizon 2020 Framework Programme (101016726);

Morphological Biomarkers for early diagnosis in Oncology (MORFEO) (MUR- PRIN 2017 Prot. 2017N7R2CJ); Hong Kong Polytechnic University (4-ZZLF, 1-W167); Board of Research in Nuclear Sciences (2013/34/11/BRNS/504);

Science and Engineering Research Board (EMR/20l7/002724).

Disclosures.Pierre Marquet declares a potential conflict as co-founder of Lyncée Tec. Rainer A. Leitgeb authors patents with Carl Zeiss Meditec. The rest of the authors declare no conflicts of interest.

Data availability.Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. D. Gabor, “A new microscopic principle,”Nature161(4098), 777–778 (1948).

2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,”J. Opt. Soc. Am.52(10), 1123–1130 (1962).

3. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,”J. Opt. Soc. Am.55(8), 981–986 (1965).

4. J. W. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,”Appl. Phys.

Lett.11(3), 77–79 (1967).

5. T. S. Huang, “Digital holography,”Proc. IEEE59(9), 1335–1346 (1971).

6. U. Schnars and W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,”Appl.

Opt.33(2), 179–181 (1994).

7. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,”Opt. Lett.22(16), 1268–1270 (1997).

8. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,”Opt.

Lett.24(5), 291–293 (1999).

9. B. Javidi and T. Nomura, “Securing information by use of digital holography,”Opt. Lett.25(1), 28–30 (2000).

10. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,”Appl. Opt.39(35), 6595–6601 (2000).

11. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,”Opt. Lett.25(9), 610–612 (2000).

12. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,”Appl. Opt.40(23), 3877–3886 (2001).

13. W. Osten, T. Baumbach, and W. Jüptner, “Comparative digital holography,”Opt. Lett.27(20), 1764–1766 (2002).

14. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,”Appl. Opt.41(1), 27–37 (2002).

15. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,”

Appl. Opt.42(11), 1938–1946 (2003).

16. D. Kim and B. Javidi, “Distortion-tolerant 3-d object recognition by using single exposure on-axis digital holography,”

Opt. Express12(22), 5539–5548 (2004).

17. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (John Wiley & Sons, 2006).

18. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,”Opt. Lett.30(5), 468–470 (2005).

19. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,”Opt. Express 13(23), 9361–9373 (2005).

20. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano,

“Extended focused image in microscopy by digital holography,”Opt. Express13(18), 6738–6749 (2005).

21. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,”Opt. Express13(22), 8693–8698 (2005).

22. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (seol) digital holography,”Opt. Express13(12), 4492–4506 (2005).

23. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,”Proc. IEEE94(3), 636–653 (2006).

24. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,”

Opt. Express14(18), 8263–8268 (2006).

25. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,”Appl. Opt.

45(5), 960–967 (2006).

26. M. DaneshPanah and B. Javidi, “Tracking biological microorganisms in sequence of 3D holographic microscopy images,”Opt. Express15(17), 10761–10766 (2007).

27. T. Nomura and B. Javidi, “Object recognition by use of polarimetric phase-shifting digital holography,”Opt. Lett.

32(15), 2146–2148 (2007).

28. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,”Nat.

Photonics2(3), 190–195 (2008).

29. B. Kemper and G. VonBally, “Digital holographic microscopy for live cell applications and technical inspection,”

Appl. Opt.47(4), A52–A61 (2008).

30. P. Langehanenberg, B. Kemper, D. Dirksen, and G. VonBally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,”Appl. Opt.47(19), D176–D182 (2008).

31. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,”Proc. IEEE97(6), 990–1010 (2009).

32. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,”Opt. Express17(15), 13040–13049 (2009).

33. Y. Rivenson, A. Stern, and B. Javidi, “Compressive fresnel holography,”J. Disp. Technol.6(10), 506–509 (2010).

34. V. Micó and J. García, “Common-path phase-shifting lensless holographic microscopy,”Opt. Lett.35(23), 3919–3921 (2010).

35. M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3d holographic imaging and trapping for non-invasive cell identification and tracking,”J. Disp. Technol.6(10), 490–499 (2010).

36. L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,”Proc. IEEE99(4), 576–589 (2011).

37. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography,”Appl. Opt.53(27), G44–G63 (2014).

38. A. K. Singh, A. Faridian, P. Gao, G. Pedrini, and W. Osten, “Quantitative phase imaging using a deep uv led source,”

Opt. Lett.39(12), 3468–3471 (2014).

39. A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-d optical imaging: a medical diagnostic tool,”Proc. IEEE105(5), 924–946 (2017).

40. A. Anand, V. Chhaniwal, N. Patel, and B. Javidi, “Automatic identification of malaria-infected rbc with digital holographic microscopy using correlation algorithms,”IEEE Photonics J.4(5), 1456–1464 (2012).

41. J. W. Goodman, Introduction to Fourier Optics (Macmillan Education, 2017), 4th ed.

42. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,”Appl. Opt.5(6), 967–969 (1966).

43. B. Javidi and J. L. Horner, Real-time optical information processing (Academic, 1994).

44. S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,”Lab Chip9(6), 777–787 (2009).

45. Y. Jo, J. Jung, M.-H. Kim, H. Park, S.-J. Kang, and Y. Park, “Label-free identification of individual bacteria using fourier transform light scattering,”Opt. Express23(12), 15792–15805 (2015).

46. Y. Jo, H. Cho, S. Y. Lee, G. Choi, G. Kim, H.-S. Min, and Y. Park, “Quantitative phase imaging and artificial intelligence: a review,”IEEE J. Sel. Top. Quantum Electron.25(1), 1–14 (2019).

47. H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A.

Ozcan, “Rapid imaging, detection and quantification of giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,”Lab Chip15(5), 1284–1293 (2015).

48. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,”Appl. Opt.52(1), A68–A80 (2013).

49. K. Jaferzadeh, B. Rappaz, F. Kuttler, B. K. Kim, I. Moon, P. Marquet, and G. Turcatti, “Marker-free automatic quantification of drug-treated cardiomyocytes with digital holographic imaging,”ACS Photonics7(1), 105–113 (2020).

50. I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of malaria-infected red blood cells via digital shearing interferometry and statistical inference,”IEEE Photonics J.5(5), 6900207 (2013).

51. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,”Opt. Lett.31(6), 775–777 (2006).

52. I. Moon and B. Javidi, “Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography,”J. Biomed. Opt.11(6), 064004 (2006).

53. S. Osten and N. Reingand, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH Verlag GmbH &

Co., 2012).

54. L. Enloe, J. Murphy, and C. Rubinstein, “Bstj briefs hologram transmission via television,”The Bell Syst. Tech. J.

45(2), 335–339 (1966).

55. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,”Math. Comput.

19(90), 297 (1965).

56. A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,”Opt. Express20(21), 23617–23622 (2012).

57. T. O’Connor, A. Anand, B. Andemariam, and B. Javidi, “Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy,”Biomed. Opt.

Express11(8), 4491–4508 (2020).

58. A. Anand, V. Chhaniwal, and B. Javidi, “Tutorial: common path self-referencing digital holographic microscopy,”

APL Photonics3(7), 071101 (2018).

59. V. Chhaniwal, A. S. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing lloyd’s mirror,”Opt. Lett.37(24), 5127–5129 (2012).

60. D. L. Marks, “A family of approximations spanning the born and rytov scattering series,”Opt. Express14(19), 8837–8848 (2006).

61. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and sparse regularization,”IEEE Transactions on Comput. Imaging2(1), 59–70 (2016).

62. A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,”Proc. Natl. Acad. Sci.116(40), 19848–19856 (2019).

63. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,”Adv. Opt. Photonics1(1), 1–57 (2009).

64. C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,”J.

Opt.20(12), 123001 (2018).

65. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,”Opt. Lett.32(24), 3549–3551 (2007).

66. V. Arrizón, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,”Opt. Lett.28(15), 1359–1361 (2003).

67. D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,”Opt. Express21(5), 5432–5439 (2013).

68. D. Maluenda, R. Martínez-Herrero, I. Juvells, and A. Carnicer, “Synthesis of highly focused fields with circular polarization at any transverse plane,”Opt. Express22(6), 6859–6867 (2014).

69. R. Martínez-Herrero, D. Maluenda, I. Juvells, and A. Carnicer, “Synthesis of light needles with tunable length and nearly constant irradiance,”Sci. Rep.8(1), 2657–2710 (2018).

70. P. Refregier and B. Javidi, “Optical image encryption based on input plane and fourier plane random encoding,”

Opt. Lett.20(7), 767–769 (1995).

71. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,”

Proc. IEEE97(6), 1128–1148 (2009).

72. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,”Adv. Opt. Photonics6(2), 120–155 (2014).

73. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,”Opt. Lett.30(13), 1644–1646 (2005).

74. L. Zhou, Y. Xiao, and W. Chen, “Learning complex scattering media for optical encryption,”Opt. Lett.45(18), 5279–5282 (2020).

75. X. Fang, H. Ren, and M. Gu, “Orbital angular momentum holography for high-security encryption,”Nat. Photonics 14(2), 102–108 (2020).

76. L. Miccio, F. Cimmino, I. Kurelac, M. M. Villone, V. Bianco, P. Memmolo, F. Merola, M. Mugnano, M. Capasso, A. Iolascon, P. L. Maffettone, and P. Ferraro, “Perspectives on liquid biopsy for label-free detection of “circulating tumor cells” through intelligent lab-on-chips,”View1(3), 20200034 (2020).

77. P. Memmolo, L. Miccio, M. Paturzo, G. DiCaprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,”Adv. Opt. Photonics7(4), 713–755 (2015).

78. L. Miccio, P. Memmolo, F. Merola, P. Netti, and P. Ferraro, “Red blood cell as an adaptive optofluidic microlens,”

Nat. Commun.6(1), 6502–6507 (2015).

79. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’ippolito, A. Sardo, A. Iolascon, A.

Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,”Light: Sci. Appl.6(4), e16241 (2017).

80. D. Pirone, P. Memmolo, F. Merola, L. Miccio, M. Mugnano, A. Capozzoli, C. Curcio, A. Liseno, and P. Ferraro,

“Rolling angle recovery of flowing cells in holographic tomography exploiting the phase similarity,”Appl. Opt.

60(4), A277–A284 (2021).

81. A. Saba, J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, “Polarization-sensitive optical diffraction tomography,”

Optica8(3), 402–408 (2021).

82. G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. Miller, and D. Psaltis, “Inference in artificial intelligence with deep optics and photonics,”Nature588(7836), 39–47 (2020).

83. R. Horisaki, Y. Ogura, M. Aino, and J. Tanida, “Single-shot phase imaging with a coded aperture,”Opt. Lett.39(22), 6466–6469 (2014).

84. R. Horisaki, R. Egami, and J. Tanida, “Single-shot phase imaging with randomized light (SPIRaL),”Opt. Express 24(4), 3765–3773 (2016).

85. R. Horisaki, K. Fujii, and J. Tanida, “Diffusion-based single-shot diffraction tomography,”Opt. Lett.44(8), 1964–1967 (2019).

86. R. Horisaki, H. Matsui, R. Egami, and J. Tanida, “Single-pixel compressive diffractive imaging,”Appl. Opt.56(5), 1353–1357 (2017).

87. R. Horisaki, Y. Okamoto, and J. Tanida, “Single-shot noninvasive three-dimensional imaging through scattering media,”Opt. Lett.44(16), 4032–4035 (2019).

88. K. Ehira, R. Horisaki, Y. Nishizaki, M. Naruse, and J. Tanida, “Spectral speckle-correlation imaging,”Appl. Opt.

60(8), 2388–2392 (2021).

89. R. Horisaki, Y. Nishizaki, K. Kitaguchi, M. Saito, and J. Tanida, “Three-dimensional deeply generated holography,”

Appl. Opt.60(4), A323–A328 (2021).

90. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,”IEEE Transactions on Medical Imaging27(12), 1782–1790 (2008).

91. I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,”

Royal Soc. Interface4(13), 305–313 (2007).

92. B. Javidi, A. Markman, S. Rawat, T. O’Connor, A. Anand, and B. Andemariam, “Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy,”Opt.

Express26(10), 13614–13627 (2018).

93. T. O’Connor, J.-B. Shen, B. T. Liang, and B. Javidi, “Digital holographic deep learning of red blood cells for field-portable, rapid covid-19 screening,”Opt. Lett.46(10), 2344–2347 (2021).

94. B. Javidi, S. Rawat, S. Komatsu, and A. Markman, “Cell identification using single beam lensless imaging with pseudo-random phase encoding,”Opt. Lett.41(15), 3663–3666 (2016).

95. T. O’Connor, C. Hawxhurst, L. M. Shor, and B. Javidi, “Red blood cell classification in lensless single random phase encoding using convolutional neural networks,”Opt. Express28(22), 33504–33515 (2020).

96. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,”Opt. Lett.38(8), 1319–1321 (2013).

97. M. Ugele, M. Weniger, M. Stanzel, M. Bassler, S. W. Krause, O. Friedrich, O. Hayden, and L. Richter, “Label-free high-throughput leukemia detection by holographic microscopy,”Adv. Sci.5(12), 1800761 (2018).

98. M. Rubin, O. Stein, N. A. Turko, Y. Nygate, D. Roitshtain, L. Karako, I. Barnea, R. Giryes, and N. T. Shaked,

“Top-gan: Stain-free cancer cell classification using deep learning with a small training set,”Med. Image Anal.57, 176–185 (2019).

99. A. Ozcan and E. McLeod, “Lensless imaging and sensing,”Annu. Rev. Biomed. Eng.18(1), 77–102 (2016).

100. H. Wang, H. C. Koydemir, Y. Qiu, B. Bai, Y. Zhang, Y. Jin, S. Tok, E. C. Yilmaz, E. Gumustekin, Y. Rivenson, and A. Ozcan, “Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning,”

Light: Sci. Appl.9(1), 118–217 (2020).

101. N. T. Shaked, V. Micó, M. Trusiak, A. Kuś, and S. K. Mirsky, “Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing,”Adv. Opt. Photonics12(3), 556–611 (2020).

102. B. Javidi, A. Markman, and S. Rawat, “Automatic multicell identification using a compact lensless single and double random phase encoding system,”Appl. Opt.57(7), B190–B196 (2018).

103. S. Rawat, S. Komatsu, A. Markman, A. Anand, and B. Javidi, “Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification,”Appl. Opt.56(9), D127–D133 (2017).

104. M. K. Kim, “Principles and techniques of digital holographic microscopy,”J. Photonics Energy1, 018005 (2010).

105. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,”Nat. Photonics12(10), 578–589 (2018).

106. K. Khare, P. S. Ali, and J. Joseph, “Single shot high resolution digital holography,”Opt. Express21(3), 2581–2591 (2013).

107. S. Rajora, M. Butola, and K. Khare, “Mean gradient descent: an optimization approach for single-shot interferogram analysis,”J. Opt. Soc. Am. A36(12), D7–D13 (2019).

108. M. Singh, K. Khare, A. K. Jha, S. Prabhakar, and R. Singh, “Accurate multipixel phase measurement with classical-light interferometry,”Phys. Rev. A91(2), 021802 (2015).

109. M. Singh and K. Khare, “Accurate efficient carrier estimation for single-shot digital holographic imaging,”Opt.

Lett.41(21), 4871–4874 (2016).

110. N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,”

Appl. Opt.55(9), 2418–2425 (2016).

111. V. Balasubramani, A. Kuś, H.-Y. Tu, C.-J. Cheng, M. Baczewska, W. Krauze, and M. Kujawińska, “Holographic tomography: techniques and biomedical applications,”Appl. Opt.60(10), B65–B80 (2021).

112. W. Krauze, “Optical diffraction tomography with finite object support for the minimization of missing cone artifacts,”

Biomed. Opt. Express11(4), 1919–1926 (2020).

113. H. Hugonnet, Y. W. Kim, M. Lee, S. Shin, R. H. Hruban, S.-M. Hong, and Y. Park, “Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution,”Adv. Photonics3(02), 026004 (2021).

114. J. van Rooij and J. Kalkman, “Polarization contrast optical diffraction tomography,”Biomed. Opt. Express11(4), 2109–2121 (2020).

115. K. C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, and J. A. Izatt, “Unified k-space theory of optical coherence tomography,” arXiv preprint arXiv:2012.04875 (2020).

116. M. Ziemczonok, A. Kuś, P. Wasylczyk, and M. Kujawińska, “3D-printed biological cell phantom for testing 3D quantitative phase imaging systems,”Sci. Rep.9(1), 18872–9 (2019).

117. L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko, L. M. Wurster, and R. A. Leitgeb, “Holographic line field en-face oct with digital adaptive optics in the retina in vivo,”Biomed. Opt. Express9(2), 472–485 (2018).

118. O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy,”Biomed. Opt.

Express8(2), 622–639 (2017).

119. C.-H. Liu, A. Schill, R. Raghunathan, C. Wu, M. Singh, Z. Han, A. Nair, and K. V. Larin, “Ultra-fast line-field low coherence holographic elastography using spatial phase shifting,”Biomed. Opt. Express8(2), 993–1004 (2017).

120. H. Sudkamp, D. Hillmann, P. Koch, M. Vom Endt, H. Spahr, M. Münst, C. Pfäffle, R. Birngruber, and G. Hüttmann,

“Simple approach for aberration-corrected oct imaging of the human retina,”Opt. Lett.43(17), 4224–4227 (2018).

121. D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 mhz,”Opt. Lett.39(18), 5333–5336 (2014).

122. D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,”Proc. Natl. Acad. Sci.113(46), 13138–13143 (2016).

123. E. Auksorius, D. Borycki, and M. Wojtkowski, “Crosstalk-free volumetric in vivo imaging of a human retina with fourier-domain full-field optical coherence tomography,”Biomed. Opt. Express10(12), 6390–6407 (2019).

124. Y.-Z. Liu, F. A. South, Y. Xu, P. S. Carney, and S. A. Boppart, “Computational optical coherence tomography,”

Biomed. Opt. Express8(3), 1549–1574 (2017).

125. L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,”Cytom. Part A91(5), 470–481 (2017).

126. T. O’Connor, S. Rawat, A. Markman, and B. Javidi, “Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices,”Appl. Opt.57(7), B197–B204 (2018).

127. L. V. Croft, J. A. Mulders, D. J. Richard, and K. O’Byrne, “Digital holographic imaging as a method for quantitative, live cell imaging of drug response to novel targeted cancer therapies,” in Theranostics, (Springer, 2019), pp.

171–183.

128. G. Di Caprio, M. A. Ferrara, L. Miccio, F. Merola, P. Memmolo, P. Ferraro, and G. Coppola, “Holographic imaging of unlabelled sperm cells for semen analysis: a review,”J. Biophotonics8(10), 779–789 (2015).

129. B. Rappaz, P. Jourdain, D. Banfi, F. Kuttler, P. Marquet, and G. Turcatti, “Image-based marker-free screening of gabaa agonists, antagonists, and modulators,”SLAS DISCOVERY: Adv. Sci. Drug Discov.25(5), 458–470 (2020).

130. K. Oe and T. Nomura, “Twin-image reduction method using a diffuser for phase imaging in-line digital holography,”

Appl. Opt.57(20), 5652–5656 (2018).

131. Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. De Haan, and A. Ozcan, “Bright-field holography:

cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram,”

Light: Sci. Appl.8(1), 25–27 (2019).

132. Y. Rivenson, T. Liu, Z. Wei, Y. Zhang, K. de Haan, and A. Ozcan, “Phasestain: the digital staining of label-free quantitative phase microscopy images using deep learning,”Light: Sci. Appl.8(1), 23 (2019).

133. Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,”Light: Sci. Appl.7(2), 17141 (2018).

134. Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,”Light: Sci. Appl.8(1), 85–98 (2019).

135. Z. Göröcs, M. Tamamitsu, V. Bianco, P. Wolf, S. Roy, K. Shindo, K. Yanny, Y. Wu, H. C. Koydemir, Y. Rivenson, and A. Ozcan, “A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples,”Light: Sci. Appl.7, 1–12 (2018).

136. Y.-C. Wu, A. Shiledar, Y.-C. Li, J. Wong, S. Feng, X. Chen, C. Chen, K. Jin, S. Janamian, Z. Yang, Z. S. Ballard, Z.

Göröcs, A. Feizi, and A. Ozcan, “Air quality monitoring using mobile microscopy and machine learning,”Light:

Sci. Appl.6(9), e17046 (2017).

137. J.-H. Park, J. Park, K. Lee, and Y. Park, “Disordered optics: Exploiting multiple light scattering and wavefront shaping for nonconventional optical elements,”Adv. Mater.32(35), 1903457 (2020).

138. H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,”Nat. Photonics11(3), 186–192 (2017).

139. J. Park, K. Lee, and Y. Park, “Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve,”Nat. Commun.10(1), 1304–1308 (2019).

140. S. Shin, K. Lee, Y. Baek, and Y. Park, “Reference-free single-point holographic imaging and realization of an optical bidirectional transducer,”Phys. Rev. Appl.9(4), 044042 (2018).

141. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,”Nat. Photonics6(5), 283–292 (2012).

142. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,”Nat. Photonics7(6), 454–458 (2013).

143. K. Lee and Y. Park, “Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor,”Nat. Commun.7(1), 13359–7 (2016).

144. G. Pedrini, Y. Zou, and H. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,”J.

Mod. Opt.42(2), 367–374 (1995).

145. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,”Appl. Opt.38(34), 7056–7062 (1999).

146. T. Yoshizawa, Handbook of Optical Metrology: Principles and Applications (CRC, 2009).

147. G. Pedrini, I. Alekseenko, W. Osten, J. Gaspar, M. E. Schmidt, and O. Paul, “Measurement of nano/micro out-of-plane and in-plane displacements of micromechanical components by using digital holography and speckle interferometry,”Opt. Eng.50(10), 101504 (2011).

148. I. Alekseenko, G. Pedrini, V. Martinez-Garcia, A. Mora, A. Killinger, A. Kozhevnikova, S. Schmauder, R. Gadow, and W. Osten, “Residual stress evaluation in ceramic coating under industrial conditions by digital holography,”

IEEE Transactions on Ind. Informatics16(2), 1102–1110 (2019).

149. G. Pedrini, P. Fröning, H. J. Tiziani, and M. E. Gusev, “Pulsed digital holography for high-speed contouring that uses a two-wavelength method,”Appl. Opt.38(16), 3460–3467 (1999).

150. G. Pedrini, I. Alekseenko, G. Jagannathan, M. Kempenaars, G. Vayakis, and W. Osten, “Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the international thermonuclear experimental reactor tokamak,”Appl. Opt.58(5), A147–A155 (2019).

151. P. Picart, New Techniques in Digital Holography (John Wiley & Sons, 2015).

152. T. Biewer, J. Sawyer, C. Smith, and C. Thomas, “Dual laser holography for in situ measurement of plasma facing component erosion,”Rev. Sci. Instrum.89(10), 10J123 (2018).

153. M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, C. Nemeth, and D. Carl, “Inline application of digital holography,”Appl. Opt.58(34), G120–G126 (2019).

154. M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2lasers and diffuse illumination applied to large space reflector metrology,”Appl. Opt.

52(1), A102–A116 (2013).

155. E. Meteyer, F. Foucart, M. Secail-Geraud, P. Picart, and C. Pezerat, “Full-field force identification with high-speed digital holography,”Mech. Syst. Signal Process.164, 108215 (2022).

156. L. Lagny, M. Secail-Geraud, J. Le Meur, S. Montresor, K. Heggarty, C. Pezerat, and P. Picart, “Visualization of travelling waves propagating in a plate equipped with 2D ABH using wide-field holographic vibrometry,”J. Sound Vib.461, 114925 (2019).

157. L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, and P. Zolliker, “Thz coherent lensless imaging,”

Appl. Opt.58(34), G256–G275 (2019).

158. R. Horisaki, R. Takagi, and J. Tanida, “Deep-learning-generated holography,”Appl. Opt.57(14), 3859–3863 (2018).

159. S. Montresor, M. Tahon, A. Laurent, and P. Picart, “Computational de-noising based on deep learning for phase data in digital holographic interferometry,”APL Photonics5(3), 030802 (2020).

160. V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, and P. Ferraro,

“Strategies for reducing speckle noise in digital holography,”Light: Sci. Appl.7(1), 48 (2018).

161. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,”Opt. Lett.22(19), 1506–1508 (1997).

162. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,”Appl. Opt.48(34), H120–H136 (2009).

163. J. Rosen and G. Brooker, “Digital spatially incoherent fresnel holography,”Opt. Lett.32(8), 912–914 (2007).

164. J. Rosen, A. Vijayakumar, M. Kumar, M. R. Rai, R. Kelner, Y. Kashter, A. Bulbul, and S. Mukherjee, “Recent advances in self-interference incoherent digital holography,”Adv. Opt. Photonics11(1), 1–66 (2019).

165. R. Kelner and J. Rosen, “Spatially incoherent single channel digital fourier holography,”Opt. Lett.37(17), 3723–3725 (2012).

166. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography–a new type of incoherent digital holograms,”Opt. Express24(11), 12430–12441 (2016).

167. A. Bulbul and J. Rosen, “Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time,”Photonics Res.9(7), 1172–1181 (2021).

168. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms,”Appl. Opt.38(34), 6994–7001 (1999).

169. K. W. Seo, Y. S. Choi, E. S. Seo, and S. J. Lee, “Aberration compensation for objective phase curvature in phase holographic microscopy,”Opt. Lett.37(23), 4976–4978 (2012).

170. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C.

Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,”J. Opt. Soc. Am. A23(12), 3177–3190 (2006).

171. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, P. Andrés, and J. Garcia-Sucerquia, “Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging,”Opt. Lett.38(8), 1352–1354 (2013).

172. E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,”J. Opt. Soc. Am. A28(7), 1410–1417 (2011).

관련 문서