• 검색 결과가 없습니다.

F. Clinical effectiveness of Clo on eosinophil count in patients with asthma

V. CONCLUSION

This thesis investigated the association of Cys-LT related pathways and platelet-eosinophil interactions in asthma. In allergic inflammation, the expression of CysLT-related receptors, including CysLTR1, CysLTR2 and P2Y12R were up-regulated at the ratio of 1:0.65:1.34, suggesting the 1:1 ratio for Clo:Mon treatment in the subsequent in vivo studies. In a secondary challenge asthma mouse model, we detected increased PEA formation, platelet and eosinophil activation status along with increased airway inflammation, which were suppressed by Clo/Mon treatment. Clo/Mon may function by inhibiting the ADP-induced PEA formation and platelet activation. In conclusion, we demonstrated the synergistic effects of Clo and Mon in suppressing platelet-eosinophil interaction in airway inflammation.

The combination of two antagonists may be potential in asthma treatment, especially in more severe eosinophilic asthma.

47 REFERENCES

1. Asthma Control and Exacerbations - Standardizing Endpoints for Clinical Asthma Trials and Clinical Practice: An An Official ATS/ERS Statement. American Thoracic Society, 2009, Accessed on

2. 2018 GINA Report, Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma 2018, Accessed on 2018, March 27th.

3. Bankova LG, Lai J, Yoshimoto E, Austen KF, Kanaoka Y, Barrett NA: The Leukotriene E4 Receptor, GPR99 Mediates Mast Cell-Dependent Mucosal Responses to the Mold Allergen, Alternaria alternata. J Allergy Clin Immunol 137: AB409, 2016.

4. Bautz F, Denzlinger C, Kanz L, Möhle R: Chemotaxis and transendothelial migration of CD34+ hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood 97: 3433-3440, 2001.

5. Benton AS, Kumar N, Lerner J, Wiles AA, Foerster M, Teach SJ, Freishtat RJ: Airway platelet activation is associated with airway eosinophilic inflammation in asthma. J Investig Med 58: 987-990, 2010.

6. Burke L, Butler CT, Murphy A, Moran B, Gallagher WM, O'Sullivan J, Kennedy BN:

Evaluation of Cysteinyl Leukotriene Signaling as a Therapeutic Target for Colorectal Cancer. Front Cell Dev Biol 4: 103, 2016.

7. Buyukyilmaz G, Soyer OU, Buyuktiryaki B, Alioglu B, Dallar Y: Platelet aggregation, secretion, and coagulation changes in children with asthma. Blood Coagul Fibrinolysis 25:

738-744, 2014.

8. Carlens J, Wahl B, Ballmaier M, Bulfone-Paus S, Forster R, Pabst O: Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine smaisotyll intestine. J Immunol 183: 5600-5607, 2009.

9. Chibana K, Ishii Y, Asakura T, Fukuda T: Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin.

J Immunol 170: 4290-4295, 2003.

10. Corrigan C, Mallett K, Ying S, Roberts D, Parikh A, Scadding G, Lee T: Expression of the cysteinyl leukotriene receptors cysLT 1 and cysLT 2 in sensitive and aspirin-tolerant chronic rhinosinusitis. J Allergy Clin Immunol 115: 316-322, 2005.

11. Coyle AJ, Uchida D, Ackerman SJ, Mitzner W, Irvin CG: Role of cationic proteins in the airway: Hyperresponsiveness due to airway inflammation. Am J Respir Crit Care Med 150:

S63-S71, 1994.

48

12. Cummings HE, Liu T, Feng C, Laidlaw TM, Conley PB, Kanaoka Y, Boyce JA: Cutting edge: Leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. J Immunol 191: 5807-5810, 2013.

13. Dahlen S-E: Pharmacological characterization of leukotriene receptors. Am J Respir Crit Care Med 161: S41-S45, 2000.

14. Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH: Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273: 252-255, 1996.

15. Dorsam RT, Kunapuli SP: Central role of the P2Y 12 receptor in platelet activation. J Clin Invest 113: 340-345, 2004.

16. Drazen JM: Leukotrienes as mediators of airway obstruction. Am J Respir Crit Care Med 158: S193-S200, 1998.

17. Duarte D, Taveira‐Gomes T, Sokhatska O, Palmares C, Costa R, Negrao R, Guimaraes J, Delgado L, Soares R, Moreira A: Increased circulating platelet microparticles as a potential biomarker in asthma. Allergy 68: 1073-1075, 2013.

18. Erb L, Weisman GA: Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal 1: 789-803, 2012.

19. Erle DJ, Sheppard D: The cell biology of asthma. J Cell Biol 205: 621-631, 2014.

20. Evangelista V, Manarini S, Dell'Elba G, Martelli N, Napoleone E, Di Santo A, Lorenzet PS:

Clopidogrel inhibits platelet-leukocyte adhesion and platelet-dependent leukocyte activation. Thromb Haemost 94: 568-577, 2005.

21. Fahy JV: Type 2 inflammation in asthma — present in most, absent in many. Nat Rev Immunol 15: 57-65, 2015.

22. Figueroa DJ, Borish L, Baramki D, Philip G, Austin CP, Evans JF: Expression of cysteinyl leukotriene synthetic and signalling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin Exp Allergy 33: 1380-1388, 2003.

23. Figueroa DJ, Breyer RM, Defoe SK, Kargman S, Daugherty BL, Waldburger K, Liu Q, Clements M, Zeng Z, O'Neill GP, Jones TR, Lynch KR, Austin CP, Evans JF: Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 163: 226-233, 2001.

24. Foster HR, Fuerst E, Branchett W, Lee TH, Cousins DJ, Woszczek G: Leukotriene E 4 is a full functional agonist for human cysteinyl leukotriene type 1 receptor-dependent gene expression. Sci Rep 6: 20461, 2016.

25. Gauvreau GM, Parameswaran KN, Watson RM, O'Byrne PM: Inhaled leukotriene E(4),

49

but not leukotriene D(4), increased airway inflammatory cells in subjects with atopic asthma. Am J Respir Crit Care Med 164: 1495-1500, 2001.

26. Grainge C, Thomas PS, Mak JC, Benton MJ, Lim TK, Ko FW: Year in review 2015:

Asthma and chronic obstructive pulmonary disease. Respirology 21: 765-775, 2016.

27. Gundel RH, Letts LG, Gleich GJ: Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J Clin Invest 87: 1470-1473, 1991.

28. Harding SA, Sarma J, Din JN, Maciocia PM, Newby DE, Fox KA: Clopidogrel reduces platelet-leucocyte aggregation, monocyte activation and RANTES secretion in type 2 diabetes mellitus. Heart 92: 1335-1337, 2006.

29. Hayashi N, Chihara J, Kobayashi Y, Kakazu T, Kurachi D, Yamamoto T, Nakajima S:

Effect of platelet-activating factor and platelet factor 4 on eosinophil adhesion. Int Arch Allergy Immunol 104 Suppl 1: 57-59, 1994.

30. Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im D-S, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R: Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275: 30531-30536, 2000.

31. Henderson Jr WR, Tang L-o, Chu S-j, Tsao S-m, Chiang GK, Jones F, Jonas M, Pae C, Wang H, Chi EY: A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 165: 108-116, 2002.

32. Henderson WR, Chiang GKS, Tien Y-t, Chi EY: Reversal of Allergen-induced Airway Remodeling by CysLT(1) Receptor Blockade. Am J Respir Crit Care Med 173: 718-728, 2006.

33. Idzko M, Pitchford S, Page C: Role of platelets in allergic airway inflammation. J Allergy Clin Immunol 135: 1416-1423, 2015.

34. Jiang L, Xu C, Yu S, Liu P, Luo D, Zhou Q, Gao C, Hu H: A critical role of thrombin/PAR-1 in ADP-induced platelet secretion and the second wave of aggregation. J Thromb Haemost 11: 930-940, 2013.

35. Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA: CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene–dependent mitogenic responses of mast cells. Blood 110: 3263-3270, 2007.

36. Johansson MW, Han S-T, Gunderson KA, Busse WW, Jarjour NN, Mosher DF: Platelet Activation, P-Selectin, and Eosinophil β(1)-Integrin Activation in Asthma. Am J Respir Crit Care Med 185: 498-507, 2012.

50

37. Kanaoka Y, Boyce JA: Cysteinyl Leukotrienes and Their Receptors; Emerging Concepts.

Allergy Asthma Immunol Res 6: 288-295, 2014.

38. Kanaoka Y, Maekawa A, Austen KF: Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 288:

10967-10972, 2013.

39. Knauer KA, Lichtenstein LM, Adkinson NF, Jr., Fish JE: Platelet activation during antigen-induced airway reactions in asthmatic subjects. N Engl J Med 304: 1404-1407, 1981.

40. Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S, Milne GL, Castells MC, Chhay H, Boyce JA: Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 119: 3790-3798, 2012.

41. Langlois A, Ferland C, Tremblay GM, Laviolette M: Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. J Allergy Clin Immunol 118: 113-119, 2006.

42. Lazarinis N, Bood J, Gomez C, Kolmert J, Lantz AS, Gyllfors P, Davis A, Wheelock CE, Dahlen SE, Dahlen B: Leukotriene E4 induces airflow obstruction and mast cell activation via the CysLT1 receptor. J Allergy Clin Immunol, 2018.

43. Lee TH, Woszczek G, Farooque SP: Leukotriene E4: perspective on the forgotten mediator.

J Allergy Clin Immunol 124: 417-421, 2009.

44. Liu J-N, Suh D-H, Yang E-M, Lee S-I, Park H-S, Shin YS: Attenuation of airway inflammation by simvastatin and the implications for asthma treatment: is the jury still out?

Exp Mol Med 46: e113, 2014.

45. Liverani E, Rico MC, Garcia AE, Kilpatrick LE, Kunapuli SP: Prasugrel metabolites inhibit neutrophil functions. J Pharmacol Exp Ther 344: 231-243, 2013.

46. Lussana F, Di Marco F, Terraneo S, Parati M, Razzari C, Scavone M, Femia E, Moro A, Centanni S, Cattaneo M: Effect of prasugrel in patients with asthma: results of PRINA, a randomized, double‐blind, placebo‐controlled, cross‐over study. J Thromb Haemost 13:

136-141, 2015.

47. Maekawa A, Kanaoka Y, Xing W, Austen KF: Functional recognition of a distinct receptor preferential for leukotriene E(4) in mice lacking the cysteinyl leukotriene 1 and 2 receptors.

Proc Natl Acad Sci U S A 105: 16695-16700, 2008.

48. Mamedova L, Capra V, Accomazzo MR, Gao Z-G, Ferrario S, Fumagalli M, Abbracchio MP, Rovati GE, Jacobson KA: CysLT(1) leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol 71: 115-125, 2005.

51

49. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A: Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13: 1400-1412, 2014.

50. Mitsui C, Kajiwara K, Hayashi H, Ito J, Mita H, Ono E, Higashi N, Fukutomi Y, Sekiya K, Tsuburai T, Akiyama K, Yamamoto K, Taniguchi M: Platelet activation markers overexpressed specifically in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 137: 400-411, 2016.

51. Muniz VS, Baptista-dos-Reis R, Benjamim CF, Mata-Santos HA, Pyrrho AS, Strauch MA, Melo PA, Vicentino AR, Silva-Paiva J, Bandeira-Melo C: Purinergic P2Y12 Receptor Activation in Eosinophils and the Schistosomal Host Response. PloS one 10: e0139805, 2015.

52. Neves JS, Radke AL, Weller PF: Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J Allergy Clin Immunol 125: 477-482, 2010.

53. O’Brien KA, Gartner TK, Hay N, Du X: ADP-Stimulated Activation of Akt During Integrin Outside-in Signaling Promotes Platelet Spreading by Inhibiting Glycogen Synthase Kinase-3β. Arterioscler Thromb Vasc Biol 32: 2232-2240, 2012.

54. Owen W, Rothenberg ME, Silberstein D, Gasson J, Stevens R, Austen K, Soberman R:

Regulation of human eosinophil viability, density, and function by granulocyte/macrophage colony-stimulating factor in the presence of 3T3 fibroblasts. J Exp Med 166: 129-141, 1987.

55. Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O'byrne PM: Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med 166: 738-742, 2002.

56. Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA: Leukotriene E4–induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 206: 2543-2555, 2009.

57. Pelaia G, Vatrella A, Busceti MT, Gallelli L, Calabrese C, Terracciano R, Maselli R:

Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm 2015, 2015.

58. Pitchford SC, Yano H, Lever R, Riffo-Vasquez Y, Ciferri S, Rose MJ, Giannini S, Momi S, Spina D, O'Connor B, Gresele P, Page CP: Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol 112: 109-118, 2003.

52

59. Profita M, Sala A, Bonanno A, Siena L, Ferraro M, Di Giorgi R, Montalbano AM, Albano GD, Gagliardo R, Gjomarkaj M: Cysteinyl leukotriene-1 receptor activation in a human bronchial epithelial cell line leads to signal transducer and activator of transcription 1-mediated eosinophil adhesion. J Pharmacol Exp Ther 325: 1024-1030, 2008.

60. Rovati GE, Capra V: Cysteinyl-leukotriene receptors and cellular signals.

ScientificWorldJournal 7: 1375-1392, 2007.

64. Shah SA, Page CP, Pitchford SC: Platelet–eosinophil interactions as a potential therapeutic target in allergic inflammation and asthma. Front Med 4: 129, 2017.

65. Shin IS, Jeon WY, Shin HK, Lee MY: Effects of montelukast on subepithelial/peribronchial fibrosis in a murine model of ovalbumin induced chronic asthma. Int Immunopharmacol 17:

867-873, 2013.

66. Shirasaki H, Kanaizumi E, Seki N, Kikuchi M, Himi T: Expression and Localization of Purinergic P2Y12 Receptor in Human Nasal Mucosa. Allergol Int 62: 239-244, 2013.

67. Steinke JW, Negri J, Payne SC, Borish L: Biological Effects of Leukotriene E(4) on Eosinophils. Prostaglandins Leukot Essent Fatty Acids 91: 105-110, 2014.

68. Suh DH, Trinh HKT, Liu JN, Pham LD, Park SM, Park HS, Shin YS: P2Y12 antagonist attenuates eosinophilic inflammation and airway hyperresponsiveness in a mouse model of asthma. J Cell Mol Med 20: 333-341, 2016.

69. Sullivan P, Jafar Z, Harbinson P, Restrick L, Costello J, Page C: Platelet dynamics following allergen challenge in allergic asthmatics. Respiration 67: 514-517, 2000.

70. Sun DS, Lo SJ, Tsai WJ, Lin CH, Yu MS, Chen YF, Chang HH: PI3-kinase is essential for ADP-stimulated integrin alpha(IIb)beta3-mediated platelet calcium oscillation, implications for P2Y receptor pathways in integrin alpha(IIb)beta3-initiated signaling cross-talks. J Biomed Sci 12: 937-948, 2005.

71. Szczeklik A, Milner P, Birch J, Watkins J, Martin J: Prolonged bleeding time, reduced platelet aggregation, altered PAF-acether sensitivity and increased platelet mass are a trait

53

of asthma and hay fever. Thromb Haemost 56: 283-287, 1986.

72. Takeda K, Miyahara N, Kodama T, Taube C, Balhorn A, Dakhama A, Kitamura K, Hirano A, Tanimoto M, Gelfand E: S-carboxymethylcysteine normalises airway responsiveness in sensitised and challenged mice. Eur Respir J 26: 577-585, 2005.

73. Takeda T, Morita H, Saito H, Matsumoto K, Matsuda A: Recent advances in understanding the roles of blood platelets in the pathogenesis of allergic inflammation and bronchial asthma. Allergol Int pii: S1323-8930(1317)30169-30167, 2017.

74. Takeda T, Unno H, Morita H, Futamura K, Emi-Sugie M, Arae K, Shoda T, Okada N, Igarashi A, Inoue E: Platelets constitutively express IL-33 protein and modulate eosinophilic airway inflammation. J Allergy Clin Immunol 138: 1395-1403. e1396, 2016.

75. Tarkowski M, Vanoirbeek JA, Vanhooren HM, De Vooght V, Mercier CM, Ceuppens J, Nemery B, Hoet PH: Immunological determinants of ventilatory changes induced in mice by dermal sensitization and respiratory challenge with toluene diisocyanate. Am J Physiol Lung Cell Mol Physiol 292: L207-L214, 2007.

76. Thivierge M, Staňková J, Rola-Pleszczynski M: IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages. J Immunol 167:

2855-2860, 2001.

77. von Hundelshausen P, Weber C: Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100: 27-40, 2007.

78. Xiao Z, Théroux P, Frojmovic M: Modulation of platelet-neutrophil interaction with pharmacological inhibition of fibrinogen binding to platelet GPIIb/IIIa receptor. Thromb Haemost 81: 281-285, 1999.

79. Yamamoto H, Nagata M, Tabe K, Kimura I, Kiuchi H, Sakamoto Y, Yamamoto K, Dohi Y:

The evidence of platelet activation in bronchial asthma. J Allergy Clin Immunol 91: 79-87, 1993.

80. Yeaman MR, Yount NY, Waring AJ, Gank KD, Kupferwasser D, Wiese R, Bayer AS, Welch WH: Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochim Biophys Acta 1768: 609-619, 2007.

54

-국문요약-

천식에서 몬테루카스트와 클로피 도그렐의 치료효능

Trinh Hoang Kim Tu

(지도교수: 박해

심)

배경

Cysteinyl leukotrienes (LT), C4, D4, E4는 면역관련 세포들에서 배출되는 지질 매개물질로써 cysteinyl leukotriene 수용체인 CysLTR1, CysLTR2, P2Y12R과 결합하여 기도염증, 기도과민성, 알레르기 염증에서 혈관 투과성의 증가 에 관여한다. 혈소판과 호산구 표면에 존재하는 P2Y12R은 세포의 활성 화에 관여한다고 알려져 있으며, 또한 혈소판은 호산구의 이동과 활성을 증가시킬 수 있는 세포내 과립을 배출하고 호산구와 혈소판을 응집시켜 천식 염증을 조절할 수 있다고 알려져 있다. 특히 호산구와 응집된 혈소 판은 CysLT 과생산의 주요한 원인이 되기 때문에 염증반응을 증가시키 는 원인이 된다. 최근까지 여러 동물 실험과 임상 연구를 통해서 prasugrel이나 clopidogrel 같은 항 혈소판제재는 기도 과민성, 혈소판 활성, 호산구의 탈 과립화를 억제하는 것이 밝혀졌다.

따라서, 우리는 CysLTR1의 길항제인 montelukast와 P2Y12R의 길항제인 clopidogrel을 복합요법이 마우스를 이용한 천식 모델에서 기도 염증을 억제하는데 상승작용을 할 것이라고 가설을 세우고 이 연구를 진행하였

55 다.

목적

첫째, 마우스 천식 모델에서 CysLT와 관련된 수용체들의 분포와 특성을 조사하였다. 둘째, 마우스 천식 모델에서 montelukast와 clopidogrel 복합요 법의 상승작용을 평가하였고, 이 복합요법 상승작용의 기전을 밝히는 것 을 목적으로 하였다. 마지막으로 clopidogrel을 사용한 천식 환자들에서 그 효과에 대한 임상적 관찰을 진행하였다.

재료 및 방법

CysLT와 관련된 수용체들 발현과 상호작용 평가를 위하여 난황단백으로 천식을 유도한 BALB/c 마우스를 이용하였다. 각 수용체의 역할을 알아 보기 위하여 CysLTR1의 길항제인 montelukast, CysLTR2의 길항제인 HAMI 3379, P2Y12R의 길항제인 clopidogrel을 각각 주입하고 폐조직과 염 증 세포의 수용체 발현을 보기 위하여 western blot, flow cytometry, double

fluorescence staining의 방법으로 평가하였다.

Montelukast와 clopidogrel 복합요법의 치료 효과 평가를 위하여 BALB/c 마우스에실험 제 0일과 14일에 난황단백으로 감작을 시킨 뒤 실험 28일 부터 30일에 0.2% 난황단백으로 1차 유발을 시키고 실험 42일부터 44일

56

까지 2차로 난황단백으로 유발을 시킨 호산구 천식 모델을 이용하였다. 2 차 난황단백 유발 30분전에 clopidogrel (10mg/kg), montelukast (10mg/kg),

clopidogrel (10mg/kg)과 montelukast (10mg/kg) 동시 투여 또는 dexamethasone (1 mg/kg)을 투여하여 약제의 효과를 판단하였다.

마우스의 기도과민성 측정을 위하여 메타콜린을 사용하여 Flexivent시스 템으로 측정하였고, 폐포세척액에서 인터루킨-4, -5, -13, 인터페론 감마, platelet factor 4, 호산구 페록시다아제를 ELISA를 이용하여 측정하였다.

폐 조직을 이용하여 조직학적 변화를 관찰하였다. 또한 혈소판과 호산구 를 분리하여 복합 배양으로 adenosine diphosphate (ADP) 10µM, LTC4 (200 nM), LTE4 (200 nM), Montelukast (1 µM), Clopidogrel (1 µM), Montelukast &

Clopidogrel (1 µM)의 효과를 in vitro방법으로 분석하였다. 혈액과 폐포세 척액에서 혈소판-호산구의 응집과 P-selection의 발현은 flow cytometry와

immunohistochemistry을 이용하여 관찰하였다.

Clopidogrel을 사용한 천식 환자들의 효과 판정을 위하여 1998년부터 2015년까지 아주대병원 전자 의무 기록이 있는 환자들을 후향적으로 분 석하였다. 포함기준으로 천식, 알레르기 비염이 있으면서 clopidogrel을 7 일 이상 사용한 환자를 대상으로 하였고, 연구기간 동안 호산구 측정을 하지 않은 환자들은 제외하였다. 총 596명의 환자를 포함하여 환자들에 서 호산구 수와 혈중 호산구 분획을 비교하였다.

57 결과

난황단백으로 감작 후 유도한 마우스 천식 모델의 폐 조직에서 CysLTR1 과 P2Y12R는 통계적으로 유의하게 발현이 상승하였다 (P<0.05).

난황단백으로 감작 후 유도한 마우스 천식 모델의 폐 조직에서 CysLTR1 과 P2Y12R는 통계적으로 유의하게 발현이 상승하였다 (P<0.05).

관련 문서