• 검색 결과가 없습니다.

We found that the major allele homozygotes (CC) of – 26C/T polymorphism of AMPK γ2 gene might be protective against cognitive impairment during aging while minor allele homozygotes (TT) more vulnerable to diabetes. With some inevitable limitations of a cross-sectional population study, our data

21

collectively support a hypothesis that AMPK gene polymorphism is a common contributing factor involved in both cognitive and metabolic dysfunctions in humans, and also suggest in part that cognitive impairment in diabetes might not be totally dependent on the vascular dysfunction secondary to diabetes. An extended and longitudinal study with multiple target SNPs is warranted.

REFERENCES

1. The Global Burden of Disease: 2004 Update. World Health Organization; 2008. available at: http://www.who.int/healthinfo/global_

burden_disease/2004_report_update/en/index.html.

2. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006;5:64-74.

3. Raffaitin C, Gin H, Empana JP, Helmer C, Berr C, Tzourio C, et al.

Metabolic syndrome and risk for incident Alzheimer's disease or vascular dementia: the Three-City Study. Diabetes Care 2009;32:169-74.

4. Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hanninen T, Soininen H, et al. Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology 2006;67:843-7.

5. Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, et

22

al. The metabolic syndrome, inflammation, and risk of cognitive decline.

JAMA 2004;292:2237-42.

6. Craft S. Insulin resistance syndrome and Alzheimer's disease: age- and obesity-related effects on memory, amyloid, and inflammation.

Neurobiol Aging 2005;26 Suppl 1:65-9.

7. Reijmer YD, van den Berg E, Ruis C, Kappelle LJ, Biessels GJ.

Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab Res Rev 2010;26:507-19.

8. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787-95.

9. Moreira PI, Santos MS, Seica R, Oliveira CR. Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. J Neurol Sci 2007;257:206-14.

10. Wang CH, Wang CC, Wei YH. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Ann N Y Acad Sci 2010;1201:157-65.

11. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005;1:15-25.

12. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, et al.

AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A

23 2002;99:15983-7.

13. Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev 2009;89:1025-78.

14. Narbonne P, Roy R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 2009;457:210-4.

15. Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, et al.

Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 2007;5:151-6.

16. Spasic MR, Callaerts P, Norga KK. AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. Neuroscientist 2009;15:309-16.

17. Dagon Y, Avraham Y, Magen I, Gertler A, Ben-Hur T, Berry EM.

Nutritional status, cognition, and survival: a new role for leptin and AMP kinase. J Biol Chem 2005;280:42142-8.

18. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, et al.

Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 2004;10:727-33.

19. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, et al.

AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004;428:569-74.

20. Horikoshi M, Hara K, Ohashi J, Miyake K, Tokunaga K, Ito C, et al. A

24

polymorphism in the AMPKalpha2 subunit gene is associated with insulin resistance and type 2 diabetes in the Japanese population.

Diabetes 2006;55:919-23.

21. Spencer-Jones NJ, Ge D, Snieder H, Perks U, Swaminathan R, Spector TD, et al. AMP-kinase alpha2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol in normal women. J Med Genet 2006;43:936-42.

22. Xu M, Li X, Wang JG, Du P, Hong J, Gu W, et al. Glucose and lipid metabolism in relation to novel polymorphisms in the 5'-AMP-activated protein kinase gamma2 gene in Chinese. Mol Genet Metab 2005;86:372-8.

23. Oliveira SM, Ehtisham J, Redwood CS, Ostman-Smith I, Blair EM, Watkins H. Mutation analysis of AMP-activated protein kinase subunits in inherited cardiomyopathies: implications for kinase function and disease pathogenesis. J Mol Cell Cardiol 2003;35:1251-5.

24. Kim KR, Lee KS, Kim EA, Cheong HK, Oh BH, Hong CH. The effect of the ApoE genotype on the association between head circumference and cognition. Am J Geriatr Psychiatry 2008;16:819-25.

25. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.

25

APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997;278:1349-56.

26. Park J, Kwon YC. Standardization of Korean version of the Mini-Mental State Examination (MMSE-K) for use in the elderly. Part

Ⅱ. Diagnostic validity. J Korean Neuropsychiatr Assoc

1989;28:508-13.

27. Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 1992;40:922-35.

28. Bae JN, Cho MJ. Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients.

J Psychosom Res 2004;57:297-305.

29. Kim E, Cho MH, Cha KR, Park JS, Ahn CW, Oh BH, et al. Interactive effect of central obesity and hypertension on cognitive function in older out-patients with Type 2 diabetes. Diabet Med 2008;25:1440-6.

30. Waldstein SR, Manuck SB, Ryan CM, Muldoon MF.

Neuropsychological correlates of hypertension: review and methodologic considerations. Psychol Bull 1991;110:451-68.

31. Dickerson BC, Sperling RA, Hyman BT, Albert MS, Blacker D.

Clinical prediction of Alzheimer disease dementia across the spectrum of mild cognitive impairment. Arch Gen Psychiatry 2007;64:1443-50.

32. Sun MW, Lee JY, de Bakker PI, Burtt NP, Almgren P, Rastam L, et al.

26

Haplotype structures and large-scale association testing of the 5' AMP-activated protein kinase genes PRKAA2, PRKAB1, and PRKAB2 [corrected] with type 2 diabetes. Diabetes 2006;55:849-55.

33. Tschape JA, Hammerschmied C, Muhlig-Versen M, Athenstaedt K, Daum G, Kretzschmar D. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J 2002;21:6367-76.

34. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N. Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells.

Biochem Biophys Res Commun 2009;380:98-104.

35. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, et al.

AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 2010;285:9100-13.

36. Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, et al.

Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 2009;65:650-7.

37. Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S. AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 2009;109 Suppl 1:17-23.

38. Poels J, Spasic MR, Callaerts P, Norga KK. Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy.

27 Bioessays 2009;31:944-52.

39. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 2005;366:1640-9.

40. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J Neural Transm 1998;105:423-38.

41. Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP, Jr., Yaffe K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 2005;330:1360.

42. Kim E, Park DW, Choi SH, Kim JJ, Cho HS. A preliminary investigation of alpha-lipoic acid treatment of antipsychotic drug-induced weight gain in patients with schizophrenia. J Clin Psychopharmacol 2008;28:138-46.

43. Savitha S, Sivarajan K, Haripriya D, Kokilavani V, Panneerselvam C.

Efficacy of levo carnitine and alpha lipoic acid in ameliorating the decline in mitochondrial enzymes during aging. Clin Nutr 2005;24:794-800.

44. Suh JH, Shigeno ET, Morrow JD, Cox B, Rocha AE, Frei B, et al.

Oxidative stress in the aging rat heart is reversed by dietary supplementation with (R)-(alpha)-lipoic acid. FASEB J 2001;15:700-6.

28

ABSTRACT(IN KOREAN)

인지기능 및 당뇨병과 관련된 AMPK 감마2 유전자 PRKAG2의 유전다형성

<지도교수 오 병 훈>

연세대학교 대학원 의학과

김 어 수

대사장애 및 인지장애는 서로 깊이 연관되어 있는 것으로 밝혀지고 있으나, 그 연관성에 대한 구체적인 기전에 대해서는 논란 중이다.

AMP-활성 단백질 인산화효소(AMP-activated protein kinase, AMPK)는

에너지대사의 중추적 조절 효소다. 에너지대사의 이상은

알츠하이머병을 포함한 인지감퇴와 대사질환, 양쪽 모두에 중요한 병인론으로 주목받고 있다. 따라서 본 연구에서는 AMPK 감마2 유전자의 단일유전다형성(PRKAG2 -26 C/T polymorphism)이 대한민국 지역사회 노인(60세 – 80세)의 인지기능 및 당뇨병과 관련되는지를 조사하였다. 나이, 성별, 교육연수, 흡연력, 음주력, 우울점수, 허리둘레, APOE e4 유전자형의 개수 등을 통제한 다변량 로지스틱 회귀분석에서 -26 C/T 유전다형성은 인지장애와 유의한 관계가 있음이 밝혀졌다(CC 대 CT/TT, OR, 1.6; 95% CI, 1.1-2.2). 더 나아가, 이는

29

당뇨병의 존재와도 연관된 것으로 밝혀졌다 (CC/CT 대 TT, OR, 1.8;

95% CI, 1.2-2.8). 중요한 것은, 당뇨가 없는 노인들을 대상으로 분석을 반복했을 때도 이 유전다형성과 인지기능과의 관계가 유의하게 관찰되었다는 것이다. 추가적인 소그룹 분석에서 CC 유전형을 가진 사람들은 CT/TT군 보다 언어 및 시각 즉각/지연 회상과 주의력 검사에서 유의하게 높은 평균점수를 보였다. 본 연구결과는 AMPK가

당뇨에 의한 이차적인 인지감퇴를 배제하더라도, 인지장애와

대사장애에 동시에 영향을 미치는 공통인자라는 것을 시사한다. 향후 더 큰 집단에서 전향적 연구를 통해 이러한 결과를 확인해야 할 것이다.

---

핵심되는 말: AMPK, 유전다형성, 인지기능, 당뇨

관련 문서