• 검색 결과가 없습니다.

B. METHODS

Ⅴ. CONCLUSION

Ⅴ. CONCLUSION

In conclusion, first, high-resolution imaging techniques in combination with new computer modeling techniques based on the finite-element method is a useful tool to provide insight into the structure-function relationship for trabecular bone.

Second, it was demonstrated that, not only could BMD, but also purely microstructural indices quantified by µCT imaging could well predict the mechanical

property of trabecular bone calculated by FEA. Third, a combination of microstructural parameters each other or with bone mineral measurements could provide the best prediction of mechanical property of cancellous bone. Therefore, as regards detection of osteoporosis and evaluation of the efficacy of drug treatments for osteoporosis, BMD measurement should be supplemented with assessment of bone microarchitecture in vivo.

29

REFERENCES

1. Amling M, Herden S, Posl M, Hahn M, Ritzel H, Delling G, Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res 11:36-45, 1996

2. Bohr H, Schaadt O, Bone mineral content of femoral bone and the lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Orthop 179:240-245, 1983

3. Brown TD, Ferguson AB, Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthopaedica Scandinavica 51:429-437, 1980

4. Chevalier F, Laval-Jeantet A, Laval-Jeantet M, CT image analysis of the vertebral trabecular network in vivo. Calcif Tissue Int 51:8-13, 1992

5. Ciarelli TE, Fyhrie DP, Schaffler MB, and Goldstein SA. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32-40, 2000

6. Cody DD, McCubbrey DA, Divine GW, Gross GJ, Goldstein SA. Predictive value

30

of proximal femoral bone densitometry in determining local orthogonal material properties. J Biomech 29:753-761, 1996

7. Cooper C, Barker DJP, Morris J, Briggs RSJ, Osteoporosis, falls, and age in fracture of the proximal femur. BMJ 295:13-15, 1987

8. Cooper C, The epidemiology of fragility fractures: is there a role for bone quality:

Calcif Tissue Int 53:23-26, 1993

9. Cummings SR, Are patients with hip fractures more osteoporotic? Am J Med 78:487-494, 1985

10. Dalstra M, Huiskes R, Odgaard A, Mechanical and textural properties of pelvic trabecular bone. J Biomech 26:523-535, 1993

11. Dempster DW, Ferguson-Pell MW, Mellish RW, Cochran GV, Xie F, Fey C, Herbert W, Parisien M, Lindsay R, Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int 3:90-96, 1993

12. Ding M, Odaard A., Danielsen CC, Hvid I, Mutual associations among microstructural, physical and mechanical properties of human cancellous bone. J

31

Bone Joint Surg Br. Aug;84(6):900-907, 2002

13. Faulkner KG., Cummings SR., Black D, Plermo L, Gluter CC, Genant HK, Simple measurement of femoral geometry predicts hip fracture: The study of osteoporotic fractures. J Bone Miner Res 10:1211-1217, 1993

14. Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P, Assessment of cancellous bone quality in severe osteoarthrosis: Bone mineral density, mechanics, and microdamage. Bone 22:381-388, 1998

15. Gibson LJ, Ashby MF, Cellular Solids: Structures & Properties, 2nd Edition.

Pergamon Press, Oxford, pp. 510, 1997

16. Goldstein SA, The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20:1055-1061, 1987

17. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA, The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375-389, 1994

18. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC, Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly.

32

JAMA 271:128-133, 1994

19. Harrigan TP, and Mann, R. W. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci:761-767, 1984

20. Hildebrand T, Laib A, Muller T, Dequeker J, Ruegsegger P, Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167-1174, 1999

21. Hildebrand T, Ruegsegger P, A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67-75, 1997

22. Hildebrand T, Ruegsegger P, Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15-23, 1997

23. Hodgskinson R, Currey JD, Separated effects of osteoporosis and density on the strength and stiffness of human cancellous bone. Clin Biomech 8:262-268, 1993

24. Hordon LD, Peacock M, The architecture of cancellous and cortical bone in femoral neck fracture. Bone Miner 11:335-345, 1990

33

25. Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, Fyhrie DP, Human vertebral body apparent and hard tissue stiffness. Journal of Biomechanics 31:1009-1015, 1998

26. Issever AS, Vieth V, Leter A, Meier B, Laib A, Newitt D, Majumdar S, Link TM, Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 9:1395-1406, 2002

27. Kabel J, van Rietbergen B, Dalstra M, Odgaard A, and Huiskes R, The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J Biomech 32:673-680, 1999

28. Kabel J, van Rietbergen B, Odgaard A, Huiskes R, Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25:481-486. 1999

29. Keaveny TM, Borchers RE, Gibson LJ, and Hayes WC, Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J Biomech 26:599-607, 1993

30. Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, and Lou A, Systematic

34

and random errors in compression testing of trabecular bone. J Orthop Res 15:101-110, 1997

31. Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK, Majumdar S, Impact of spatial resolution on the prediction of trabecular architecture parameters.

Bone 22:437-443, 1998

32. Laib A, Hauselmann HJ, Ruegsegger P, Ridge number density: A new parameter for in vivo bone structure analysis. Bone 21:541-546, 1997

33. Laib A, Ruegsegger P, Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-um-resolution microcomputed tomography. Bone 24:35-39, 1999

34. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK, Volumetric quantitative computed tomography the proximal femur: precision and relation to bone strength. Bone 21:101-108, 1997

35. Linde F, Hvid I, The effect of constraint on the mechanical behaviour of trabecular bone specimens. J Biomech 22:485-490, 1989

36. Link TM, Vieth V, Langenberg R, Veier N, Lotter A, Newitt D, Majumdar S,

35

Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156-165, 2003

37. Lorensen WE, Cline HE, Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21:163-169, 1987

38. Lotz JC, Gerhart TN, Hayes WC, Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J comput Assist Tomogr 14:107-114, 1990

39. Lotz JC, Hayes WC, The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg AM 72:689-700, 1990

40. Louis O, Boulpaep F, Wilnecker J, Vanden Winkel P, Osteaux M, Cortical mineral content of the radius assessed by peripheral QCT predicts compressive strength on biomechanical testing. Bone 16:375-379, 1995

41. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A, Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: In vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111-118, 1997

36

42. Matthews S, Pearcy MJ, Fazzalari NL, Parkinson IH, Manthey BA, Schultz CG., Howie DW, Correlations between the mechanical properties, radiology, and histomorphometry of human femoral bone. Clin Biomech 7:153-160, 1992

43. McNamara LM, Prendergast PJ, Lyons CG., Ederveen AG.H, Weinans H, Strength of single trabeculae in normal, ovariectomized and drug treated bone during aging. 50th Annual Meeting of the Orthopaedic Research Society, 2004

44. Mosekilde L, Age-related changes in vertebral trabecular bone architecture-assessed by a new method. Bone 9:247-250, 1988

45. Muller R, Koller B, Hildebrand T, Laib A, Gianolini S, Ruegsegger P, Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mutomography. Technol Health Care 4:113-119, 1996

46. Muller R, Gerber SC, Hayes WC, Micro-compression: a novel technique for the nondestructive assessment of local bone failure. Technology and Health Care 6:433-444, 1998

47. Muller R, Ruegsegger P, Microtomographic imaging for the nondestructive evaluation of trabecular bone architecture. In: Lowet G, Ruegsegger P, Weigags H,

37

Meunier A, editors. Bone research in biomechanics. Amsterdam: IOS Press, pp.61-79, 1997

48. Muller R, van campenbout H, van damme B, van perre G., Dequeler J, hilerbrand T, Ruegsegger P, Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography.

Bone 23:59-66, 1998

49. Nikolaus J, Wachter, Peter Augat, Ingolf P, Hoellen, Gert D, Krischak, Michael R, Sarkar, Martin Mentzel, Lothar Kinzl, Lutz Claes, Predictive value of Singh index and bone mineral density measured by quantitative computed tomography in determining the local cancellous bone quality of the proximal femur. Clinical Biomechanics 16:257-262, 2001

50. Odgaard A, Linde F, The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. J Biomech 24:691-698, 1991

51. Riggs BL, Melton LJ 3d, The worldwide problem of osteoporosis: Insights afforded by epidemiology. Bone 17 (suppl 5):505-511, 1995

52. Recker RR, Architecture and vertebral fracture. Calcif Tissue Int 53(Suppl 1):139-142, 1993

38

53. Reckoff SD, Sweet E, Bleustein J, Relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163-175, 1969

54. Ruegsegger P, Koller B, Muller R, A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24-29, 1996

55. Thomsen JS, Ebbesen EN, Mosekilde L, Zone-dependent changes in human vertebral trabecular bone: clinical implication. Bone 30:664-669, 2002

56. Turner C, Cowin SC, Rho JY, Ashman RB, Rice JC, The fabic dependence of the orthotropic elastic constants of cancellous bone. J Biomech 23:549-561, 1990

57. Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi HE, Hara T, A morphometric comparison of trabecular structure of human ilium between microcomputed tomography and conventional his tomorphometry. Calcif Tissue Int 61:493-498, 1997

58. Uitewaal PJM, Lips P, Netelenbos JC, An analysis of bone structure in patients with hip fracture. Bone Miner 3:63-73, 1987

39

59. Ulrich D, Rietbergen Bv, Weinans H, Ruegsegger P, Finite element analysis of trabecular bone structure: a comparison of image based meshing techniques. J Biomech 31:1187-1192, 1998

60. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P, The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone.

Bone 25:55-60, July 1999

61. van Rietbergen B, Odgaard A, Kabel J, Huiskes R, Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16:23-28, 1998

62. van Rietbergen B, Weinans H, Huiskes R, Odgaard A, A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28:69-81, 1995

63. Vesterby A, Mosekilde L, Gundersen HJ, Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12:219-224, 1991

64. Waarsing JH, Day JS, Ederveen AG.H, Weinans H, Trabecular thickness increases due to bone loss in aging, ovx and tibolone-treated rats. 50th Annual Meeting of the Orthopaedic Research Society, 2004

40

65. Wicks M, Garrett R, Vernon-Roberts B, Fazzalari N, Absence of metabolic bone disease in the proximal femur of patients with fracture of the femoral neck. J Bone Joint Surg Br 64:319-322, 1982

66. Zhu M, Keller TS, Spengler DM, Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials. J Biomech 27:57-66, 1994

41

42 결론결론결론

결론:::: 골밀도와 미세구조지수를 이용한 분석은 전자부에서 탄성계수를 예측하는데 가장 좋은 방법이다.

핵심어: 골밀도, 미세구조, 기계적 성질, 유한요소분석

관련 문서