• 검색 결과가 없습니다.

PDF Radio Technology Laboratory 1 - Seoul National University

N/A
N/A
Protected

Academic year: 2024

Share "PDF Radio Technology Laboratory 1 - Seoul National University"

Copied!
21
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Ex 4 6) the potential distribution enclosed by the electrodes Ex 4-6) the potential distribution enclosed by the electrodes

c Find B.C. first and apply to D.E.

2

0, ( , , ) ( , )

( )

V z V x y z V x y

z d Z z

= =

a) independent of and

2 2

0 0 0

2

( ) z ( ) 0, z 0 ( )

d Z z

k Z z k Z z A z B B

dz x

+ = = = + =

and

b) direction

( , ) 0 x

x→ ∞ 일때V y = V

‚

b) direction

: is decreasing

0

2 2 2 2 2 2 2

0 (0, )

0 0

x

x V y V

k k k k k k k k jk k

= =

+ = ⇒ = = = = ± >

‚ 일때

function in the direction

therefore

1 2 2

0

0 0

( ) ) (0, )

x y y x x x

kx kx kx

k k k k k k k k jk k

X x C e D e D e cf V y V

+ = ⇒ = − = = − = ± >

= + =

=

therefore, ,

then

will be applied later

(2)

Ex 4 6) the potential distribution enclosed by the electrodes

) di ti

Ex 4-6) the potential distribution enclosed by the electrodes

1 1

( , 0) 0, ( , ) 0

( ) sin cos

y

Y x Y x b

Y y A ky B ky

= = ⇒

= +

c) direction

implies sine function,

from

(0) 0, ( ) 1sin 0

( ) i

Y Y b A kb k n

b Y A n

π π

∴ = = = ∴ =

th ( ) 1sin n Y y = A π then

( ), ( ), ( )

n

b y X x Y y Z z

π

combine d

1 0 2

( , ) ( ) ( ) ( ) sin , 1, 2, 3,...

) ( )

b x n

V x y X x Y y Z z A B D e y n b

n X x

π

= = =

cf cannot be negative since should be decaying function

(3)

Ex 4 6) the potential distribution enclosed by the electrodes

( ) 0

V x y x =

e alone cannot satisfy the B C that at

Ex 4-6) the potential distribution enclosed by the electrodes

0

( , ) 0,

(0, )

( , ) ( , ), ( , )

n

n

V x y x

V y V y b

V x y V x y V x y

=

= < <

=

e alone cannot satisfy the B.C that at

for 0

let then is a solution of Laplace equation

n

f apply the last B.C

1 1

(0, ) n(0, ) n sin

n n

V y V y C n y

b π

= =

=

=

V0, 0 y b

= < <

for

0 1

sin ,

i i i

n n

n

b b

C n y V C

b

n m m

C d V d

π

π π π

=

=

∑∫ ∫

i.e) to find

0 0 0

1

sin sin sin

n n

C y ydy V ydy

b b b

=

∑∫

=

(4)

Ex 4 6) the potential distribution enclosed by the electrodes

left hand side¾

Ex 4-6) the potential distribution enclosed by the electrodes

0 0

( ) ( )

sin sin [cos cos ]

2

b b

n n

n

C

n m n m n m

C y ydy y y dy

b b b b

C b m n

π π = π + π

=

∫ ∫

for b nπ mπ

2 0

b m n

m n

=

¾

, for =

, for right hand side

For , 0bsinn sinm 0

n m y ydy

b b

π π

=

0 0

0b sin m b [ cosm ]

V ydy V y

b m b

π π

= π

0

0

[1 cos ] 0

b V b

m m m even

π π

=

=

, for

0

0

2

4

V b m odd

m

V n odd

π

⇒ ⎨⎪⎩ =

=

, for , for

0

0

( , ) sin 4 sin ,

n

n n

x x

b b

n odd

C n

n even

V

n n

V x y C e y e y

π π

π

π π

= ⎨

=

= =

∑ ∑

, for

, for

for x >0 and 0< <y b

( , )y

y

y, y
(5)

Ex 4 7) the potential distribution enclosed by conducting planes Ex 4-7) the potential distribution enclosed by conducting planes

) V x y z( , , ) V x y( , ), 0, kz2 0 z

= ∂ = =

¾ ∂

sol

0

2 2 2

(0, ) ( , ) 0, ( , 0) ( , ) 0 z

V y V V a y V x V x b

= = = =

¾ ,

2 2 2

0

1

( ) ,

0, ( , ) 0 ( ) sin

y x

Z z B k k k

y V x y Y y A ky

= = − =

= = → ∴ =

c d

for 0, ( , ) 0 ( ) 1sin

( , ) 0

y V x y Y y A ky

y b V x y

→ ∴

= = → ∴

for d

for , ( ) 1sin n . ) n

Y y A y i e k

b b

π π

= =

(6)

Ex 4 7) the potential distribution enclosed by conducting planes Ex 4-7) the potential distribution enclosed by conducting planes

(0 ) 0 ( ) 0

V y =V V a y = k = jk

e (0, ) 0 and ( , ) 0, not exponentially decay . )

x

kx kx

V y V V a y k jk

i e e e

e and not exponentially decay

both and should exist

2 2

2 2 2

( ) sinh cosh : , ( ) 0

( ) sinh cosh

X x A kx B kx x a X x y

X a A ka B ka B

∴ = + = =

∴ = + ∴

for for all

2 sinh

cosh A ka

= − ka

2

2

( ) [sinh sinh cosh ]

cosh

X x A kx ka kx

ka A

= −

2

2

3

[sinh cosh cosh sinh ] cosh

sinh ( ) sinh ( ) )

cosh

A kx ka kx ka

ka

A n

k x a A k x a cf k

ka b

π

= −

= − = − =

'

cosh

( , ) sinh ( )

n n

ka b

V x y C n x a

b

∴ = π −

sin n , 1, 2, 3,....

y n

b

π for =

(7)

Ex 4 7) the potential distribution enclosed by conducting planes

(0 ) V y =V f

Ex 4-7) the potential distribution enclosed by conducting planes

0

' '

0

1 1 1

(0, )

( )

(0, ) sinh sin sinh sin

n n n

n n n

V y V

n a n n a n

V V y C y C y

b b b b

π π π π

= = =

=

=

=

− = −

f

' 1

sin , sinh

4

n n n

n

n n

C y C C a

b b

V

π π

=

= = −

⎧ −

where

0

'

4 4

0

n n

V V

odd n

C n C

even n

π

⎧⎪

= ⎨ ∴ =

⎪⎩

, for

, for

0

sinh 0

odd n

n n a

b

even n

π π

⎧⎪⎪

⎨⎪

⎪⎩

, for

for

' 1

0

( , ) n sinh ( ) sin

n

even n

n n

V x y C x a y

b b

π π

=

⎪⎩

= −

, for

0 1,

4 sinh ( ) sin , 0 ,

sinh

n odd

V n n

a x y x a y b

n b b

n a

b

π π

π π

=

=

− < < < <

for 0

(8)

Boundary value problem in cylindrical coordinate Boundary value problem in cylindrical coordinate

2 2

2

1 1

V V V 0

V ∂ ⎛ ∂ ⎞ ∂ ∂

∇ ⎜ ⎟

9

General solution has a form of Bessel function

2

2 2 2

0

V r

r r r r φ z

⎛ ⎞

∇ = ∂ ⎜ ⎝ ∂ ⎟ ⎠ + ∂ + ∂ = 9

c for simplicity,

2 2

2 2 2

1 1

0 V V 0 ( , ) ( ) ( )

r V r R r

z r r r r

φ φ

φ

∂ = ∴ ∂ ⎛⎜ ∂ ⎞⎟+ ∂ = = Φ

∂ ∂ ⎝ ∂ ⎠ ∂

assume the lengthwise dimension the radius dimension

then let

2 2

( ) 1 ( )

( ) ( ) 0

z r r r r

r d dR r d

R r dr r dr d

φ φ

φ φ

∂ ∂ ⎝ ∂ ⎠ ∂

⎛ ⎞ + Φ =

⎜ ⎟ Φ

⎝ ⎠

d then

( ) 1 2 ( )

r ddR rd Φ

φ

function of onlyr function of onlyφ

let ( ) 2 1 ( )2 2

( ) ( )

r d dR r d

r k k

R r dr dr d

φ

φ φ

φ

⎛ ⎞ = Φ = −

⎜ ⎟ Φ

⎝ ⎠

then ( periodic in for the most of case)

(9)

Boundary value problem in cylindrical coordinate Boundary value problem in cylindrical coordinate

2 ( )

d Φ φ 2

0 0 1 2

2

( ) ( ) 0, jk jk

d k A B C e D e

d

φ φ

φ φ φ

φ

Φ + Φ = ( Φ = + or Φ = + )

but for circular cylindrical configurations, potential functions and

h f d d

e

( )φ φ k n

therefore Φ are periodic in and is an integer ∴Φ( )φ = Aφ sinnφ + Bφ cosnφ

2

2 2

2

( ) ( )

( ) 0 ( ) r n r n

d R r dR r

r r n R r R r A r B r

d d

+ − = → = +

for radial function,

f

2

2 '' '

0

dr dr

x y +axy +by = cf) Cauchy equation(Euler equation) :

2 (

y xm

m a

=

⇒ +

then form

−1)m b+ =0 ∴m = m1 or then m2 y = C x1 m1 +C x2 m2

(10)

Boundary value problem in cylindrical coordinate Boundary value problem in cylindrical coordinate

' '

( , ) n( sin cos ) n( sin cos ), 0

V r φ = r A nφ +B nφ +r A nφ + B nφ n

g ( , ) ( sin cos ) ( sin cos ), 0

0,

n n n n n

n

V r r A n B n r A n B n n

r r

φ φ φ φ φ

+ + + ≠

=

‚

g

cf) if region of interest includes the cylindrical axis where the terms containing the factor cannot exist.

,

( , ) ( , )

n

n n

r r

V r φ V r φ

= ∞

‚

‚

if region include the terms cannot exist

depending on the boundary condition, may be is

2

0 0

2

0

0, ( ) 0 ( )

0

k d A B

d

B k

φ φ φ

φ

φ

= Φ = → Φ = +

Φ =

h for

if no variation along , = g φ 0 for ( .i e A 00 = 0)

0 0

1 2

( )

[ ( )] 0, ( ) ln 0

( ) ( ) ( ) ( ) ln ,

d dR r

r R r C r D k

dr dr

V r R r φ V r C r C z φ

= = + =

= Φ ∴ = + →

for

independent of

1 2

( ) ( ) ( ) ( ) ln ,

V r R r Φ φ ∴V r C r +Cz φ

independent of

(11)

Ex 4 8) a very long coaxial cable Ex 4-8) a very long coaxial cable

z z

sol) c very long in : no variation

0

0 0

( ) 0

( ) ln

( ) 0

B k

R R r C r D

V b

φ → Φ φ = =

→ = +

⎧ d

e

) y g

by symmetry, no variation and potential is only a function of

0

( ) 0 ( )

( )

V b V a V

V φ C

⎧ =

⎨ =

f ⎩

boundary condition,

1 2 0

( ) ln

l V a C a C V

C ⎧ = + =

very long coaxial cable's cross-section

< >V r( , )φ =C1 2 1 2 0

1 2

ln , ( )

( ) ln 0

r C

V b C b C

+ ⎨⎩ = + =

0 0

1lna 0 1 V V

C V C

a b

b = = = −

⎛ ⎞ ⎛ ⎞

¾

0

2 1

ln ln

ln ln

a b

b

b a

V b

C C b

b

⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= − =

¾ ⎛ ⎞

0 0 0

ln ( ln

, ) ( ) ln ln

l l l

b a

V V b V b

V r V r r

b b b r

φ

⎛ ⎞⎜ ⎟

⎝ ⎠

= = − ⎛ ⎞ + ⎛ ⎞ = ⎛ ⎞ ⎝ ⎠⎛ ⎞⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

ln⎛ ⎞b ln⎛ ⎞b ln⎛ ⎞ ⎝ ⎠b r

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

(12)

Ex 4 9) Infinitely long thin conducting circular tube Ex 4-9) Infinitely long, thin, conducting circular tube.

d 0 d = sol)

( )

( )

0 0

( , ) dz

V b V

V

φ φ π

π φ π

= ≤ ≤

= − ≤ ≤ 2

)

for 0

(

for

)

. . i e

a) Inside tube

( ) ( )

( )

0 sin

sin

n r

n

r b R r A r r

A n

V r A r n

φ φ φ φ

φ φ

< → = =

Φ =

∴ =

is included.

odd function in

1 2

( )

, sin

n n

V r φ A r nφ

∴ =

In order to satisfy the pe3

( )

φ =

n φ

riodic boundary condition,

( )

φ =

φ

,

(13)

Boundary Value Problems in Cylindrical Coordinates Boundary-Value Problems in Cylindrical Coordinates

r =b i.e. at

0

1 0

sin ,

, 2

n n n

A b n V

V φ φ π

π φ π

=

<

= ⎨ <

rectangular periodic wave can be represented by Fourier Sine Series for 0<

for <

( ) ( )

1 0 ,

: (

n

f x f x L

= φ

= −

odd function and period Non-radia

0

( )

2 2

L sin

n n

A b f x n x dx

L L

π

=

n)

( )

0

0 0 0

0

2

2 cos

sin

L L

V n

V n d

n

π φ φ φ π

π π

= =

[ ]

0

0 0

2 1 cos

4 4

, ,

n

V n

n

V V

A b A

π π

=

for odd n for odd n

, ,

,

n n

n n

A b = nπ A = n bπ

⎪⎩

0 for even n ,

⎪⎩ 0 for even n

(14)

Boundary Value Problems in Cylindrical Coordinates Boundary-Value Problems in Cylindrical Coordinates

r =b i.e. at

sin 0 n n

A b n V

V φ φ π

π φ π

⎧ <

= ⎨⎩

rectangular periodic wave is represented by Fourier Sine Series for 0<

for < <2

1 0

0 0 0

1

sin sin sin

n n

n n

V

A b n m d V n d

π π

π φ π

φ φ φ φ φ

=

=

⎩−

=

∫ ∫

for < <2

sin sin

n

A bn nφ m dφ φ

=

( )

( ) ( )

0

1 0 0

0

cos 1 2

0

n

n

V n

n

A b d V if dd if

π π

π

φ

φ

=

= −

⎡ ⎤

∑∫

∑∫

0 0

(

for n=m

) (

=0

)

0

1

0

cos cos , , 0

2

2 1

2 2 2

n n n

n n

n

n n n

A b n m n m d if n odd if n even

n V

b b

A b A A

n

π π φ

π π

π

=

⎡ ⎤

= ⋅ − − + = =

⎣ ⎦

= ⋅ = ⋅ =

∑∫

,

0

2 2 2

4 ,

n n

n A V for odd n

n bπ

⎧ =

⎪⎨

⎪ =

⎪ =

(15)

Boundary Value Problems in Cylindrical Coordinates Boundary-Value Problems in Cylindrical Coordinates

( )

4V0 1 r n i

V

( ) φ ∑

⎛ ⎞⎜ ⎟

φ

f b

( )

, 0 sin ,

n odd

n

V r n for r b

n b r b

R B

φ φ

π

=

= ⎛ ⎞⎜ ⎟⎝ ⎠ <

>

b) out-side the tube

( )

( )

'

1

, sin

n n

n n n

R r B r

V r

φ

B r n

φ

=

∴ =

∴ =

( )

1

' 0

1 0

, , sin

n

n n n

at r b V b B b n V

V

φ φ φ π

π φ π

=

=

= = = ⎧

⎩−

⎨ for 0< <

for < <2

ll h h d f d ff f

Following

0 '

4 n

n

V b

B n

π

⎧⎪

= ⎨

the same method to find coefficients of Fourier series.

, for odd n

4 0 1

( , ) sin ,

n

n

n

V b

V r n r b

π

φ

φ

⎨⎪⎩

= ⎛ ⎞⎜ ⎟ >

∴ ⎠

0 , for even n

( , ) sin ,

V r

φ

n

φ

r b

π

⎜ ⎟ >

(16)

Boundary Value Problem in spherical Coordinates Boundary-Value Problem in spherical Coordinates

( )

2

2 1 2 1 1

i 0

V V V

θ φ θ

9 2

(

, ,

)

12 2 2 1 sin 2 1 2 2 0

sin sin

0

V V V

V r r

r r r r r

θ φ θ

θ θ θ θ φ

φ φ

∂ ⎛ ∂ ⎞ ∂ ⎛ ∂ ⎞ ∂

∇ = ∂ ⎜⎝ ∂ ⎟⎠+ ∂ ⎜⎝ ∂ ⎟⎠+ ∂ =

∂ = Assuming symmetry in , then ∂

9

2 2

2 2

1 1

sin 0

sin

V V

V r

r r r r

φ

θ θ θ θ

∂ ⎛ ∂ ⎞ ∂ ⎛ ∂ ⎞

∇ = ∂ ⎜⎝ ∂ ⎟⎠+ ∂ ⎜ ∂ ⎟ =

∴ ⎝ ⎠

( )

,

( ) ( )

V r θ = R r Θ θ let

¾

( ) ( )

1 2 1

sin 0

( ) i

d dR d d

R d r d d d

θ θ

θ θ θ θ

⎡ Θ ⎤

⎡ ⎤ + ⎢ ⎥ =

⎢ ⎥ Θ

⎣ ⎦ ⎣ ⎦

then,

( )

( )

2 2

( ) sin

1 1

:

R r dr dr d d

r dR k R r dr dr

θ θ θ θ

⎢ ⎥ Θ

⎣ ⎦ ⎣ ⎦

⎡ ⎤ =

⎢ ⎥

⎣ ⎦

let separation constant

( )

2

2 2

2 2 0

d R dR

r r k R

dr dr

→ + − = ⇒ Cauchy's or

Euler's equation

(17)

Boundary Value Problem in spherical Coordinates Boundary-Value Problem in spherical Coordinates

2

2 2

sin ( ) ( )

0 ( 1)

d d

d d k

R α k k

θ θ

θ θ θ θ

⎡ Θ ⎤ = −

⎢ ⎥

Θ ⎣ ⎦

then 1

sin

cf) assume let

( )

2 2

, 0, ( 1),

1

R r k k n n

n or n

α α α

α

= + − = = +

= − +

cf) assume let

then

( )

( 1)

( )

n n

n n

R r

R r = A r + B r− +

General solution of will be as follows

where n

(

+1

)

k2 d 0 1 2 positive integer

where

( )

2

2

2 2

1 0, 1, 2,

0 ( ) n n

n k and n

d R dR

r r k R R r A r B r

+ = = ⋅⋅⋅

+ − = = + →

positive integer

Cauchy's or cf) r 2 r k R 0, then R r( ) A rn B rn

dr + dr = = + →

cf) then,

Euler's equation

(18)

Boundary Value Problem in spherical Coordinates Boundary-Value Problem in spherical Coordinates

( )

n P cosθ

(

1x2

)

y'' 2 xy'+n n

(

+1

)

y = 0

cf) Legendre's D.E.

( )

n cos

0 1

1 cos

Pn θ

θ

( ) ( )

sin ( ) 1 sin 0

d d

d d n n

θ θ θ θ

θ θ

⎡ Θ ⎤

∴ ⎢⎣ ⎥⎦+ + Θ =

Turns out to be a Legendre's equation form

( )

( )

2

3

2 1 3cos 1

2

3 1 5 cos 3cos

2

θ

θ θ

cos d

x d

θ θ

= =

Turns out to be a Legendre s equation form c.f.) let , then

( )

sin d

θ

dw

( )

2

( )

( ) ( )

cos

cos .

n n

P

n P Legendre Polynomials

θ

θ θ

Θ = →

Solution of Legendre's equation : Legendre's functions When is integer

( )

, n (n 1)

(

cos

)

n n n n

V r

θ

A r + B r− + P

θ

∴ = ⎦

(19)

Ex 4 10) Conducting sphere in a uniform electric field Ex 4-10) Conducting sphere in a uniform electric field

™

( ) ( )

( )

0 ˆ 0. , , ?

b

E = zE V r

θ

E r

θ An uncharged conducting sphere of radius is placed

in an initially uniform electric field Find and

l) ( )

1

S f f th h i i t i d i t ti l

sol) a Surface of the sphere is maintained equipotential

1

E

i.e. Separation of charges and redistribution take place.

inside the sphere is zero

2 E

inside the sphere is zero.

Outside the sphere ;

the field line on the suface is normal t

2

3

o the surface

φ

The field intensity at points for away from the sphere No change.

Potential is independent of

4

5

φ

Potential is independent of

5

(20)

Boundary Value Problem in spherical Coordinates Boundary-Value Problem in spherical Coordinates

( )

,

V r θ r b

( )

for

( )

,

( , ) 0 ( 0

cos

V b V

V r E z E r r b

θ

θ θ

= =

B.C.

i.e. Assuming (may not be 0) in the equipotential plane)

( )

0 0 for

0

, cos

V r E z E r r b

E

θ = − = − θ

for

( is not distributed at points for awa

( )

, n n n (n 1) n

(

cos

)

V r θ =

A r + B r − + P θ

y from the sphere.)

6

( ) ( )

( )

0 0

1 0

, cos

, , cos

n n n

n

n

V

r b V r E r

A E A

θ θ

θ θ

=

= −

∴ = −

and all other 's are zero.

( ) ( ) ( )

( )

( 1)

0 1

0

1 2 ( 1)

, cos n n n cos

n

n

V r E rP B r P

B B E B P

θ θ θ

θ

− +

=

+

= − +

(

θ

)

( )

1 2 ( 1)

0 1 0 cos n n n c

B r B r E r θ B r− + P

= + +

( )

2

0

os

0.

n

Q B

θ

πε

=

=

form of Charged sphere form. But we have uncharged sphere πε

(21)

Boundary Value Problem in spherical Coordinates Boundary-Value Problem in spherical Coordinates

( )

, B21 0 cos n (n 1) n

(

cos

)

,

( )

, 0

V r E r B r P r b V b

θ =r⎟ θ + − + θ = θ =

⎝ ⎠

and at

( )

( )

2 1 1

2 0

2 3

0 cos cos

n n

n n

n

r

B E b B b P

b θ θ

=

− +

=

⎝ ⎠

⎛ ⎞

∴ =⎜⎝ − ⎟⎠ +

( )

3

1 0

0, 2

n

B E b

B n

b

∴ =

= ≥

⎡ ⎛ ⎞3

⎢ ⎥

( )

, 0 1 b V r θ = −E

∴ −

( )

cos , ˆ ˆ

r r b

r

V V

E V r

θ θθ

⎛ ⎞ ≥

⎢ ⎜ ⎟ ⎥

⎢ ⎝ ⎠ ⎥

⎣ ⎦

∂ ∂

= −∇ = − −

∂ ∂

b

( )

3

0 1 2 cos ,

r

r r

V b

E E r b

r r

θ

θ

∂ ∂

⎡ ⎤

∂ ⎛ ⎞

= − ∂ = ⎢⎢⎣ + ⎜ ⎟⎝ ⎠ ⎥⎥⎦ ≥

3

0 1 sin ,

V b

E E

r r

θ θ

∴ = − ∂∂θ = − ⎡⎢⎢⎣ −⎛ ⎞⎜ ⎟⎝ ⎠ ⎤⎥⎥⎦

( )

3

r b

E E

θ θ

( )

E 3 E cos

ρ θ =ε = ε θ

참조

관련 문서