• 검색 결과가 없습니다.

l

Theoretical modeling of FinHEMT operation

Atomistic modeling and experiments of channel mobility by SRS.

Analytical modeling of VT and ID based on the unique band structure.

l

Reliability evaluation window development

Analyze the effect of device parameters on reliability.

Comparing with experimental data, enhance the effectiveness of the evaluation window.

Extend it to circuit level.

REFERENCES

[1] C. C. Wu, D. W. Lin, A. Keshavarzi, C. H. Huang, C. T. Chan, C. H. Tseng, C. L. Chen, C.

Y. Hsieh, K. Y. Wong, M. L. Cheng, T. H. Li, Y. C. Lin, L. Y. Yang, C. P. Lin, C. S. Hou, H. C. Lin, J. L. Yang, K. F. Yu, M. J. Chen, T. H. Hsieh, Y. C. Peng, C. H. Chou, C. J. Lee, C. W. Huang, C. Y. Lu, F. K. Yang, H. K. Chen, L. W. Weng, P. C. Yen, S. H. Wang, S. W.

Chang, S. W. Chuang, T. C. Gan, T. L. Wu, T. Y. Lee, W. S. Huang, Y. J. Huang, Y. W.

Tseng, C. M. Wu, Eric Ou-Yang, K. Y. Hsu, L. T. Lin, S. B. Wang, T. M. Kwok, C. C. Su, C. H. Tsai, M. J. Huang, H. M. Lin, A. S. Chang, S. H. Liao, "High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme,"2010 International Electron Devices Meeting, San Francisco, CA, 2010, pp. 27.1.1-27.1.4, doi:

10.1109/IEDM.2010.5703430.

[2] J. Singh, A. Bousquet, J. Ciavatti, K. Sundaram, J. S. Wong, K. W. Chew, A. Bandyopadhyay, S.

Li, A. Bellaouar, S. M. Pandey, B. Zhu, A. Martin, C. Kyono, J.-S. Goo, H. S. Yang, A. Mehta, X.

Zhang, O. Hu, S. Mahajan, E. Geiss, S. Yamaguchi S. Mittal, R. Asra, P. Balasubramaniam, J. Watts, D. Harame, R. M. Todi, S. B. Samavedam and D. K. Sohningh, "14nm FinFET technology for analog and RF applications,"2017 Symposium on VLSI Technology, Kyoto, 2017, pp. T140-T141, doi: 10.23919/VLSIT.2017.7998154.

[3] R. Singh , K. Aditya, S. S. Parihar, Y. S. Chauhan , R. Vega, T. B. Hook, and A. Dixit, "Evaluation of 10-nm Bulk FinFET RF Performance—Conventional Versus NC-FinFET," inIEEE Electron Device Letters, vol. 39, no. 8, pp. 1246-1249, Aug. 2018, doi: 10.1109/LED.2018.2846026.

[4] Q. Huo, Z. Wu , X. Wang, W. Huang, J. Yao, J. Bu, F. Zhang, L. Li, and M. Liu, "Physics-Based Device-Circuit Cooptimization Scheme for 7-nm Technology Node SRAM Design and Beyond,"

inIEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 907-914, March 2020, doi:

10.1109/TED.2020.2964610.

[5] G. Yeap, S.S. Lin, Y.M. Chen, H.L. Shang, P.W. Wang, H.C. Lin, Y.C. Peng, J.Y. Sheu, M. Wang, X. Chen, B.R. Yang, C.P. Lin, F.C. Yang, Y.K. Leung, D.W. Lin, C.P. Chen, K.F. Yu, D.H. Chen, C.Y. Chang, H.K. Chen, P. Hung, C.S. Hou, Y.K. Cheng, J. Chang, L. Yuan, C.K. Lin, C.C. Chen, Y.C. Yeo, M.H. Tsai, H.T. Lin, C.O. Chui, K.B. Huang, W. Chang, H.J. Lin, K.W. Chen, R. Chen, S.H. Sun, Q. Fu, H.T. Yang, H.T. Chiang, C.C. Yeh, T.L. Lee, C.H. Wang, S.L. Shue, C.W. Wu, R. Lu, W.R. Lin, J. Wu, F. Lai, Y.H. Wu, B.Z. Tien, Y.C. Huang, L.C. Lu, Jun He, Y. Ku, J. Lin, M. Cao, T.S. Chang, and S.M. Jang "5nm CMOS Production Technology Platform featuring full- fledged EUV, and High Mobility Channel FinFETs with densest 0.021µm2 SRAM cells for Mobile

55

Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 36.7.1-36.7.4, doi:

10.1109/IEDM19573.2019.8993577.

[6] K. Liu and E. Chen, "Investigation of the Effects and the Random-Dopant-Induced Variations of Source/Drain Extension of 7-nm Strained SiGe n-Type FinFETs," inIEEE Transactions on Electron Devices, vol. 66, no. 2, pp. 847-854, Feb. 2019, doi: 10.1109/TED.2018.2884246.

[7] S. Natarajanet al., "A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size,"2014 IEEE International Electron Devices Meeting, San Francisco, CA, 2014, pp. 3.7.1-3.7.3, doi:

10.1109/IEDM.2014.7046976.

[8] H. -. Choet al., "Si FinFET based 10nm technology with multi Vt gate stack for low power and high performance applications,"2016 IEEE Symposium on VLSI Technology, Honolulu, HI, 2016, pp. 1-2, doi: 10.1109/VLSIT.2016.7573359.

[9] W. Xiong, C. Rinn Cleavelin, P. Kohli, C. Huffman, T. Schulz, K. Schruefer, G. Gebara, K.

Mathews, P. Patruno, Yves-Matthieu Le Vaillant, I. Cayrefourcq, M. Kennard, C. Mazure, K. Shin, and T.-J. King Liu, "Impact of strained-silicon-on-insulator (sSOI) substrate on FinFET mobility,"

inIEEE Electron Device Letters, vol. 27, no. 7, pp. 612-614, July 2006, doi:

10.1109/LED.2006.877714.

[10] O. Badami, F. Driussi, P. Palestri, L. Selmi and D. Esseni, "Performance comparison for FinFETs, nanowire and stacked nanowires FETs: Focus on the influence of surface roughness and thermal effects,"2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 13.2.1-13.2.4, doi: 10.1109/IEDM.2017.8268382.

[11] J. Yang, P. M. Zeitzoff and H. Tseng, "Highly Manufacturable Double-Gate FinFET With Gate- Source/Drain Underlap," inIEEE Transactions on Electron Devices, vol. 54, no. 6, pp. 1464-1470, June 2007, doi: 10.1109/TED.2007.896387.

[12] A. B. Sachid, C. R. Manoj, D. K. Sharma and V. R. Rao, "Gate Fringe-Induced Barrier Lowering in Underlap FinFET Structures and Its Optimization," inIEEE Electron Device Letters, vol. 29, no. 1, pp. 128-130, Jan. 2008, doi: 10.1109/LED.2007.911974.

[13] A. B. Sachid, M. Chen and C. Hu, "FinFET With High-k Spacers for Improved Drive Current,"

inIEEE Electron Device Letters, vol. 37, no. 7, pp. 835-838, July 2016, doi:

10.1109/LED.2016.2572664.

[14] T. Grasser, W. Gos and B. Kaczer, "Dispersive Transport and Negative Bias Temperature Instability: Boundary Conditions, Initial Conditions, and Transport Models," inIEEE Transactions on Device and Materials Reliability, vol. 8, no. 1, pp. 79-97, March 2008, doi:

10.1109/TDMR.2007.912779.

[15] O. Penzin, A. Haggag, W. McMahon, E. Lyumkis and K. Hess, "MOSFET degradation kinetics and its simulation," inIEEE Transactions on Electron Devices, vol. 50, no. 6, pp. 1445-1450, June 2003, doi: 10.1109/TED.2003.813333.

[16] V. Barralet al., "Evidences on the Physical Origin of the Unexpected Transport Degradation in Ultimate n-FDSOI Devices," inIEEE Transactions on Nanotechnology, vol. 8, no. 2, pp. 167-173, March 2009, doi: 10.1109/TNANO.2008.2010128.

[17] A. W. Dey, C. Thelander, E. Lind, K. A. Dick, B. M. Borg, M. Borgström, P. Nilsson, and L.-E.

Wernersson, "High-Performance InAs Nanowire MOSFETs," inIEEE Electron Device Letters, vol.

33, no. 6, pp. 791-793, June 2012, doi: 10.1109/LED.2012.2190132.

[18] T. K. Agarwal, M. Rau, I. Radu, M. Luisier, W. Dehaene and M. Heyns, "Performance Comparison of s-Si, In0.53Ga0.47As, Monolayer BP, and WS2-Based n-MOSFETs for Future Technology Nodes—Part I: Device-Level Comparison," inIEEE Transactions on Electron Devices, vol. 66, no.

8, pp. 3608-3613, Aug. 2019, doi: 10.1109/TED.2019.2912005.

[19] K.-S Im, C.-H. Won, Y.-W. Jo, J.-H. Lee, M. Bawedin, S. Cristoloveanu, and J.-H Lee, "High- Performance GaN-Based Nanochannel FinFETs With/Without AlGaN/GaN Heterostructure,"

inIEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3012-3018, Oct. 2013, doi:

10.1109/TED.2013.2274660.

[20] R. Zhang, P. Huang, J. Lin, N. Taoka, M. Takenaka and S. Takagi, "High-Mobility Ge p- and n- MOSFETs With 0.7-nm EOT Using HfO2/Al2O3/GeOx/Ge Gate Stacks Fabricated by Plasma Postoxidation," inIEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 927-934, March 2013, doi: 10.1109/TED.2013.2238942.

[21] H. Liu, G. Han, Y. Xu, Y. Liu, T. K. Liu and Y. Hao, "High-Mobility Ge pMOSFETs With Crystalline ZrO2 Dielectric," inIEEE Electron Device Letters, vol. 40, no. 3, pp. 371-374, March 2019, doi: 10.1109/LED.2019.2895856.

[22] I. Ok, K. Akarvardar, S. Lin, M. Baykan, C. D. Young, P.Y. Hung, M. P. Rodgers, S. Bennett, H.

O. Stamper, D. L. Franca, J. Yum, J. P. Nadeau, C. Hobbs, P. Kirsch, P. Majhi, and R. Jammy,

"Strained SiGe and Si FinFETs for high performance logic with SiGe/Si stack on SOI,"2010 International Electron Devices Meeting, San Francisco, CA, 2010, pp. 34.2.1-34.2.4, doi:

10.1109/IEDM.2010.5703474.

[23] M. Togo, J. W. Lee, L. Pantisano, T. Chiarella, R. Ritzenthaler, R. Krom, A. Hikavyy, R. Loo, E.

Rosseel, S. Brus, J. W. Maes, V. Machkaoutsan, J. Tolle, G. Eneman, A. D. Keersgieter, G. Boccardi, G. Mannaert, S. E. Altamirano, S. Locorotondo, M. Demand, N. Horiguchi, and A. Thean,

"Phosphorus doped SiC Source Drain and SiGe channel for scaled bulk FinFETs,"2012 International Electron Devices Meeting, San Francisco, CA, 2012, pp. 18.2.1-18.2.4, doi:

57

[24] S. Takagi and M. Takenaka, "III-V/Ge CMOS technologies on Si platform,"2010 Symposium on VLSI Technology, Honolulu, 2010, pp. 147-148, doi: 10.1109/VLSIT.2010.5556205.

[25] C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita and A. Toriumi, "Record-high electron mobility in Ge n-MOSFETs exceeding Si universality,"2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424323.

[26] Yosuke Nakakita, Ryosho Nakane, Takashi Sasada, H. Matsubara, Mitsuru Takenaka and S.

Takagi, "Interface-controlled self-align source/drain Ge pMOSFETs using thermally-oxidized GeO2 interfacial layers,"2008 IEEE International Electron Devices Meeting, San Francisco, CA, 2008, pp. 1-4, doi: 10.1109/IEDM.2008.4796838.

[27] F. Schäffler, “High-mobility Si and Ge structures,” in Semicond. Sci. Technol. vol. 12, pp. 1515- 1549, December 1997, doi: 10.1088/0268-1242/12/12/001.

[28] A. Kasamatsu, K. Kasai, K. Hikosaka, T. Matsui, and T. Mimura, “60 nm gate-length Si/SiGe HEMT,” in Appl. Surf. Sci.vol. 224, pp. 382-385, March 2004, doi: 10.1016/j.apsusc.2003.08.064.

[29] J. Welser, J. L. Hoyt and J. F. Gibbons, "Electron mobility enhancement in strained-Si n-type metal- oxide-semiconductor field-effect transistors," inIEEE Electron Device Letters, vol. 15, no. 3, pp.

100-102, March 1994, doi: 10.1109/55.285389.

[30] D. Laroche, S.-H. Huang, E. Nielsen, Y. Chuang, J.-Y. Li, C. W. Liu, and T. M. Lu, “Scattering mechanisms in shallow undoped Si/SiGe quantum wells,” AIP Advances. 5, 107106, 2015, doi:

10.1063/1.4933026.

[31] S. Kim, J. Y. Park and K. R. Kim, "FinHEMT: FinFET-based high electron mobility transistor with strained silicon channel,"2015 IEEE 15th International Conference on Nanotechnology (IEEE- NANO), Rome, 2015, pp. 905-908, doi: 10.1109/NANO.2015.7388761.

[32] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors,” J. Appl.

Phy. 97, 011101, 2005, doi: 10.1063/1.1819976.

[33] J. M. Hartmann, B. Gallas, R. Fergusion, J. Fernandez, J. Zhang, and J. J. Harris, “Gas-source molecular beam epitaxy of SiGe virtual substrates: I. Growth kinetics and doping,” Semicond. Sci.

Technol., vol. 15, no. 4, pp. 362-369, 2000.

[34] H. Klauk, T. N. Jackson, S. F. Nelson, and J. O. Chu, “Thermal stability of undoped strained Si channel SiGe heterostructures,” Appl. Phy. Lett.68 (14), 1996, doi: 10.1063/1.115644.

[35]International Technology Roadmap for Semiconductors. Accessed: Jul. 2017. [Online]. Available:

https://www.dropbox.com/sh/qz9gg6uu4kl04vj/AADD7ykFdJ2ZpCR1LAB2XEjIa?dl=0&previe w=PIDS_2013Tables.xlsx

[36] M. V. Fischetti, and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” Journal of Applied Physics 80, 2234 (1996).

[37] G. Tsutsuiet al., "Leakage aware Si/SiGe CMOS FinFET for low power applications,"2018 IEEE Symposium on VLSI Technology, Honolulu, HI, 2018, pp. 87-88, doi:

10.1109/VLSIT.2018.8510639.

[38]Synopsys Sentaurus Device User Guide Version D-2010.03, Synopsys,Mountain View, CA, USA, 2010.

[39] A. Paul, S. Mehrotra, M. Luisier and G. Klimeck, "Performance Prediction of Ultrascaled SiGe/Si Core/Shell Electron and Hole Nanowire MOSFETs," inIEEE Electron Device Letters, vol. 31, no.

4, pp. 278-280, April 2010, doi: 10.1109/LED.2010.2040577.

[40] Y. -F. Wu, B. P. Keller, S. Keller, N. X. Nguyen, M. Le, C. Nguyen, T. J. Jenkins, L. T. Kehias, S.

P. Denbaars, and U. K. Mishra, "Short channel AlGaN/GaN MODFET's with 50-GHz fTand 1.7- W/mm output-power at 10 GHz," inIEEE Electron Device Letters, vol. 18, no. 9, pp. 438-440, Sept.

1997, doi: 10.1109/55.622522.

[41] S. Mittal, S. Gupta, A. Nainani, M. C. Abraham, K. Schuegraf, S. Lodha, and U. Ganguly,

"Epitaxially Defined FinFET: Variability Resistant and High-Performance Technology," inIEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2711-2718, Aug. 2014, doi:

10.1109/TED.2014.2329993.

[42] P. K. Pal, B. K. Kaushik and S. Dasgupta, "Asymmetric Dual-Spacer Trigate FinFET Device-Circuit Codesign and Its Variability Analysis," inIEEE Transactions on Electron Devices, vol. 62, no. 4, pp. 1105-1112, April 2015, doi: 10.1109/TED.2015.2400053.

[43] T. Matsukawaet al., "Suppressing Vt and Gm variability of FinFETs using amorphous metal gates for 14 nm and beyond,"2012 International Electron Devices Meeting, San Francisco, CA, 2012, pp. 8.2.1-8.2.4, doi: 10.1109/IEDM.2012.6479002.

[44] A. Sudarsanan, S. Venkateswarlu and K. Nayak, "Impact of Fin Line Edge Roughness and Metal Gate Granularity on Variability of 10-nm Node SOI n-FinFET," inIEEE Transactions on Electron Devices, vol. 66, no. 11, pp. 4646-4652, Nov. 2019, doi: 10.1109/TED.2019.2941896.

[45] S. J. Mason, “Power gain in feedback amplifiers,” IRE Trans. Circuit Theory, 1954.

[46] C. Fiegna, F. Venturi, M. Melanotte, E. Sangiorgi and B. Ricco, "Simple and efficient modeling of EPROM writing," inIEEE Transactions on Electron Devices, vol. 38, no. 3, pp. 603-610, March 1991, doi: 10.1109/16.75172.

[47] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degradation,”

Microelectronics Reliability, vol. 45, no. 1, pp. 71-81, 2005.

[48] A. Gnudi, D. Ventura, G. Baccarani and F. Odeh, "Two-dimensional MOSFET Simulation by means of Multidimensional Spherical Harmonics Expansion of the Boltzmann Transport Equation,"ESSDERC '92: 22nd European Solid State Device Research conference, Leuven,

59

[49] A. Makarovet al., "Bi-Modal Variability of nFinFET Characteristics During Hot-Carrier Stress: A Modeling Approach," inIEEE Electron Device Letters, vol. 40, no. 10, pp. 1579-1582, Oct. 2019, doi: 10.1109/LED.2019.2933729.

관련 문서