• 검색 결과가 없습니다.

This research applied hydrological and hydrodynamic models for the purpose of simulating the transport of FIB, especially E. coli, from different bacterial sources (streambed sediment, nonpoint human and animal feces, and CSO from a marine outfall) to surface water and recreational beach. While simulating the FIB transports, this research conducted i) the module development in chapter 3, ii) assessment of land use change impact in chapter 4, iii) monitoring ARGs in chapter 5, and iv) scenario- based analysis in chapter 6. The main findings, limitations, and future work in each chapter are the following:

In chapter 3, the transport of E. coli from a streambed sediment to stream was studied. Main findings: The E. coli numbers in streambed sediment (range from 1.5 – 3 MPN ton-1) were released to stream (range from 0 – 3000 MPN 100mL-1). Existing SWAT model has a limitation to simulate E. coli numbers under a base flow condition. This study minimized the underestimation by additionally implementing the release of E. coli in streambed sediment via hyporheic exchange. Limitations: The hyporheic flow was assumed constant and E. coli numbers in streambed sediment was not measured but calibrated. Future works: This research will convert constant hyporheic flow to a dynamic variable based on subsurface flow. In addition, E. coli numbers in streambed sediment of the study area will be measured and the measured E. coli numbers will improve the model accuracy.

In chapter 4, the transport of E. coli from nonpoint human and animal feces on soil surface to stream was studied, with consideration of land use change. Main findings: Land use change affected the spatial distribution of feces sources and initial E. coli numbers in three phases. However, the transport of E. coli was majorly influenced by rainfall rather than by land use. Limitations: The duration of land use change in this study was short (3 years) and the change was not obvious over years. Future works:

The influence of land use change on E. coli transport will be assessed on a watershed where the land use change is distinct.

In chapter 5, the concentration of E. coli and ARGs in CSO discharged from a marine outfall and recreational beach were monitored as a preliminary work for chapter 6. Main findings: The CSO discharged during rainfall events and ebb tide levels dramatically increased the concentration of E. coli and ARGs in a recreational beach. Certain ARGs were related to E. coli while the others were possibly associated to other host bacteria rather than E. coli. Limitations: The number of samplings was not enough to generalize the conclusion. Future works: Additional samplings are ongoing and next generation sequencing (NGS) analysis is being conducted to determine host bacteria for each ARG.

In chapter 6, the transports of E. coli and ARGs in CSO discharged from a marine outfall to a recreational beach were studied. Main findings: The developed model predicted the spatiotemporal variations of E. coli and ARGs on the recreational beach. Additionally, this study estimated several

101

extend outfall scenarios with different locations and depths, thereby determining the effective design of marine outfall in reducing concentration of E. coli and ARGs in a recreational beach. Limitations: The die-off parameter for E. coli was identically used for ARGs. Future works: Using NGS result, die-off parameters will be calibrated for specified host bacteria for ARGs.

In summary, bacteria from streambed sediment were transported to stream via resuspension and hyporheic exchange. Resuspension increased the mobilization of bacteria during the wet season, while hyporheic exchange consistently released bacteria even during the dry season. Second, bacteria from nonpoint sources were transported to stream via surface runoff. The amount of runoff was more influenced by rainfall than the characteristics of land use. Last, bacteria in CSO from a marine outfall were transported to coastal area via tidal flow. CSO occurred during rainfall events and ebb tide level.

The location of a marine outfall should be carefully decided considering the surrounding terrains that affect the direction of tidal flow.

Throughout the research, E. coli, a representative FIB, was used as an alternative of bacteria pathogens. Although it have been frequently used in not only previous research but also international water quality standard, recent studies have reported a poor correlation of FIB numbers to a concentration of pathogens due to different survival rates of FIB and pathogens (Anderson et al. 2005; Horman et al.

2004; Ishii et al. 2014). In addition, the concentration of ARGs does not necessarily demonstrate the potential health risk, because ARGs can exist in both pathogenic and non-pathogenic bacteria (Darehabi et al. 2013). Therefore, quantifying pathogens should be performed in the future to determine the actual correlation between FIB and pathogens, and to conclude the resultant potential health risk.

102

References

Abbaspour, K. C. (2014). SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs - A User Manual (pp. 106). Duebendorf, Switzerland: EAWAG, Swiss Federal Institute of Aquatic Science and Technology.

Abbaspour, K. C., Johnson, C. A., & van Genuchten, M. T. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3(4), 1340-1352.

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Klove, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:

10.1016/j.jhydrol.2015.03.027

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., . . . Srinivasan, R. (2007).

Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT.

Journal of Hydrology, 333(2-4), 413-430. doi: 10.1016/j.jhydrol.2006.09.014

Ackerman, D., & Weisberg, S. B. (2003). Relationship between rainfall and beach bacterial concentrations on Santa Monica Bay beaches. Journal of Water and Health, 1(2), 85-89.

Ahmed, W., Zhang, Q., Lobos, A., Senkbeil, J., Sadowsky, M. J., Harwood, V. J., . . . Ishii, S. (2018).

Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Environment International, 116, 308-318. doi:

10.1016/j.envint.2018.04.005

Akinbowale, O. L., Peng, H., & Barton, M. D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology, 100(5), 1103-1113.

Al-Sarawi, H. A., Jha, A. N., Baker-Austin, C., Al-Sarawi, M. A., & Lyons, B. P. (2018). Baseline screening for the presence of antimicrobial resistance in E. coli isolated from Kuwait's marine environment. Marine Pollution Bulletin, 129(2), 893-898. doi:

10.1016/j.marpolbul.2017.10.044

Al Aukidy, M., & Verlicchi, P. (2017). Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area. Science of the Total Environment, 607, 483- 496. doi: 10.1016/j.scitotenv.2017.07.050

Alemayehu, T., Griensven, A. V., Woldegiorgis, B. T., & Bauwens, W. (2017). An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrology and Earth System Sciences, 21(9), 4449-4467. doi: 10.5194/hess-21-4449-2017

An, Y.-J., Kampbell, D. H., & Breidenbach, J. P. (2002). Escherichia coli and total coliforms in water and sediments at lake marinas. Environmental Pollution, 120, 771-778.

Anderson, M. L., Whitlock, J. E., & Harwood, V. J. (2005). Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Applied and environmental microbiology, 71(6), 3041-3048. doi: 10.1128/Aem.71.6.3041-3048.2005

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., . . . Kannan, N. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508. doi: 10.13031/2013.42256

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment - Part 1: Model development. Journal of the American Water Resources Association, 34(1), 73-89. doi: DOI 10.1111/j.1752-1688.1998.tb05961.x

Ashbolt, N. J., Schoen, M. E., Soller, J. A., & Rose, D. J. (2010). Predicting pathogen risks to aid beach management: The real value of quantitative microbial risk assessment (QMRA). Water Research, 44(16), 4692-4703. doi: 10.1016/j.watres.2010.06.048

Atwill, R., Lewis, D., Pereira, M., Huerta, M., Bond, R., Ogata, S., & Bass, P. (2007). Characterizing freshwater inflows and sediment reservoirs of fecal coliforms and E. coli at five estuaries in Northern California University of California School of Veterinary Medicine and Cooperative

103

Extension in Sonoma and Marin Counties, Davis, CA. University of California School of Veterinary Medicine and Cooperative Extension in Sonoma and Marin Counties, Davis, CA.

Auer, M. T., & Niehaus, S. L. (1993). Modeling fecal coliform bacteria?I. Field and laboratory determination of loss kinetics. Water Research, 27(4), 693-701.

Baffaut, C., & Sadeghi, A. (2010). Bacteria Modeling with Swat for Assessment and Remediation Studies: A Review. Transactions of the ASABE, 53(5), 1585-1594.

Bagnold, R. A. (1977). Bed load transport by natural rivers. Water Resources Research, 13(2), 303-312.

Bai, J., Shen, Z., & Yan, T. (2016). Effectiveness of vegetative filter strips in abating fecal coliform based on modified soil and water assessment tool. International journal of environmental science and technology, 13(7), 1723-1730.

BEACH. (2000a). Beachs Environmental Assessment and Coastal Health Act. Public law, 106-284.

BEACH. (2000b). Beachs Environmental Assessment and Coastal Health Act, Public law. 106-284.

Beder, S. (1991). From pipe dreams to tunnel vision: Engineering decision-making and Sydney's sewerage system.

Bedri, Z., O'Sullivan, J. J., Deering, L. A., Demeter, K., Masterson, B., Meijer, W. G., & O'Hare, G.

(2015). Assessing the water quality response to an alternative sewage disposal strategy at bathing sites on the east coast of Ireland. Marine Pollution Bulletin, 91(1), 330-346. doi:

10.1016/j.marpolbul.2014.11.008

Boehm, A. B. (2007). Enterococci concentrations in diverse coastal environments exhibit extreme variability. Environmental Science & Technology, 41(24), 8227-8232. doi: 10.1021/es071807v Boehm, A. B., Grant, S. B., Kim, J. H., Mowbray, S. L., McGee, C. D., Clark, C. D., . . . Wellman, D.

E. (2002). Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. Environmental Science & Technology, 36(18), 3885-3892. doi: UNSP ES020524U 10.1021/es020524u

Boehm, A. B., & Weisberg, S. B. (2005). Tidal forcing of enterococci at marine recreational beaches at fortnightly and semidiurnal frequencies. Environmental Science & Technology, 39(15), 5575- 5583. doi: 10.1021/es048175m

Boehm, A. B., Yamahara, K. M., Love, D. C., Peterson, B. M., McNeill, K., & Nelson, K. L. (2009).

Covariation and Photoinactivation of Traditional and Novel Indicator Organisms and Human Viruses at a Sewage-Impacted Marine Beach. Environmental Science & Technology, 43(21), 8046-8052. doi: 10.1021/es9015124

Boithias, L., Choisy, M., Souliyaseng, N., Jourdren, M., Quet, F., Buisson, Y., & Pierret, A. (2016).

Hydrological regime and water shortage as drivers of the seasonal incidence of diarrheal diseases in a tropical montane environment. PLoS neglected tropical diseases, 10(12), e0005195. doi: 10.1371/journal.pntd.0005195

Booij, N. R. R. C., Ris, R. C., & Holthuijsen, L. H. (1999). A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of geophysical research: Oceans, 104(C4), 7649-7666.

Bougeard, M., Le Saux, J. C., Perenne, N., Baffaut, C., Robin, M., & Pommepuy, M. (2011a). Modeling of Escherichia coli Fluxes on a Catchment and the Impact on Coastal Water and Shellfish Quality. Journal of the American Water Resources Association, 47(2), 350-366. doi:

10.1111/j.1752-1688.2010.00520.x

Bougeard, M., Le Saux, J. C., Teillon, A., Belloir, J., Le Mennec, C., Thome, S., . . . Pommepuy, M.

(2011b). Combining modeling and monitoring to study fecal contamination in a small rural catchment. Journal of Water and Health, 9(3), 467-482. doi: 10.2166/wh.2011.189

Boughton, W. C. (1987). A review of the USDA SCS curve number method. . Soil Research, 27(3), 511-523. doi: 10.1071/SR9890511

Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., & Barnwell, T. O. (1985 ). Rates, constants, and kinetics formulations in surface water quality modeling.

EPA, 600, 3-85.

Bristow, K. L., & Campbell, G. S. (1984). On the Relationship between Incoming Solar-Radiation and Daily Maximum and Minimum Temperature. Agricultural and Forest Meteorology, 31(2), 159- 166. doi: Doi 10.1016/0168-1923(84)90017-0

104

BUSAN. (2018). Trend analysis of Busan trouist industry in 2017.

Carey, R. O., & Migliaccio, K. W. (2009). Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review. Environmental Management, 44(2), 205-217.

Causse, J., Billen, G., Garnier, J., Henri-des-Tureaux, T., Olasa, X., Thammahacksa, C., . . . Ribolzi, O.

(2015). Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. Journal of Hydro-Environment Research, 9(4), 496-507. doi:

10.1016/j.jher.2015.03.003

CDC. (2013). Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention.

Celico, F., Varcamonti, M., Guida, M., & Naclerio, G. (2004). Influence of precipitation and soil on transport of fecal enterococci in fractured limestone aquifers. Appl. Environ. Microbiol., 70(5), 2843-2847.

Chan, S. N., Thoe, W., & Lee, J. H. W. (2013). Real-time forecasting of Hong Kong beach water quality by 3D deterministic model. Water Research, 47(4), 1631-1647. doi:

10.1016/j.watres.2012.12.026

Chan, Y. M., Thoe, W., & Lee, J. H. W. (2015). Field and laboratory studies of Escherichia coli decay rate in subtropical coastal water. Journal of Hydro-Environment Research, 9(1), 1-14. doi:

10.1016/j.jher.2014.08.002

Chandrasekaran, R. (2011). Population structure and persistence of Escherichia coli in ditch sediments and water in the Seven Mile Creek Watershed.

Chaplot, V. A. M., Rumpel, C., & Valentin, C. (2005). Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Global Biogeochemical Cycles, 19(4). doi:

Artn Gb4004 10.1029/2005gb002493

Chen, B. W., Liang, X. M., Nie, X. P., Huang, X. P., Zou, S. C., & Li, X. D. (2015). The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China. Journal of hazardous materials, 282, 61-67. doi:

10.1016/j.jhazmat.2014.06.010

Chen, C. Q., Zheng, L., Zhou, J. L., & Zhao, H. (2017). Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China. Science of the Total Environment, 580, 1175-1184. doi: 10.1016/j.scitotenv.2016.12.075

Chen, H., & Zhang, M. (2013). Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environment International, 55, 9-14.

Chen, W. B., & Liu, W. C. (2017). Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model. Marine Pollution Bulletin, 116(1- 2), 365-384. doi: 10.1016/j.marpolbul.2017.01.031

Chenu, C., Hassink, J., & Bloem, J. (2001). Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition. Biology and Fertility of Soils, 34(5), 349-356. doi: 10.1007/s003740100419

Chin, D. A. (2011). Quantifying Pathogen Sources in Streams by Hydrograph Separation. Journal of Environmental Engineering, 137(9), 770-781. doi: 10.1061/(Asce)Ee.1943-7870.0000394 Cho, K. H., Pachepsky, Y. A., Kim, J. H., Guber, A. K., Shelton, D. R., & Rowland, R. (2010). Release

of Escherichia coli from the bottom sediment in a first-order creek: Experiment and reach- specific modeling. Journal of Hydrology, 391(3-4), 322-332. doi:

10.1016/j.jhydrol.2010.07.033

Cho, K. H., Pachepsky, Y. A., Kim, J. H., Kim, J. W., & Park, M. H. (2012a). The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water Research, 46(15), 4750-4760. doi: 10.1016/j.watres.2012.05.057

Cho, K. H., Pachepsky, Y. A., Kim, J. H., Kim, J. W., & Park, M. H. (2012b). The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water research, 46(15), 4750-4760. doi: 10.1016/j.watres.2012.05.057

Cho, K. H., Pachepsky, Y. A., Kim, M., Pyo, J., Park, M. H., Kim, Y. M., . . . Kim, J. H. (2016a).

105

Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT. Journal of Hydrology, 535, 377-385.

Cho, K. H., Pachepsky, Y. A., Oliver, D. M., Muirhead, R. W., Park, Y., Quilliam, R. S., & Shelton, D.

R. (2016b). Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities. Water Research, 100, 38-56.

Choi, K., Kim, Y., Park, J., Park, C. K., Kim, M., Kim, H. S., & Kim, P. (2008). Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment, 405(1-3), 120-128. doi:

10.1016/j.scitotenv.2008.06.038

Choi, S. H., Lee, S. M., Kim, G. S., Kim, M. H., Ji, H. S., Jeong, Y. N., & Cho, J. G. (2016). Effects of rainfall on microbial water quality on Haeundae and Gwangan swimming beach. Journal of Bacteriology and Virology, 46(2), 71-83.

Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232-+. doi: Doi 10.1128/Mmbr.65.2.232-260.2001

Coffey, R., Benham, B., Wolfe, M. L., Dorai-Raj, S., Bhreathnach, N., O’Flaherty, V., & Cummins, E.

(2016). Sensitivity of streamflow and microbial water quality to future climate and land use change in the West of Ireland. Regional environmental change, 16(7), 2111-2128. doi:

10.1007/s10113-015-0912-0

Coffey, R., Cummins, E., Bhreathnach, N., Flaherty, V. O., & Cormican, M. (2010). Development of a pathogen transport model for Irish catchments using SWAT. Agricultural Water Management, 97(1), 101-111. doi: 10.1016/j.agwat.2009.08.017

Collins, R., & Rutherford, K. (2004). Modelling bacterial water quality in streams draining pastoral land. Water Research, 38(3), 700-712. doi: 10.1016/j.watres.2003.10.045

Cox, P., Griffith, M., Angles, M., Deere, D., & Ferguson, C. (2005). Concentrations of pathogens and indicators in animal feces in the Sydney watershed. Appl. Environ. Microbiol., 71(10), 5929- 5934.

Crabill, C., Donald, R., Snelling, J., Foust, R., & Southam, G. (1999). The impact of sediment fecal coliform reservoirs on seasonal water quality in Oak Creek, Arizona. Water Research, 33(9), 2163-2171.

Craun, G. F., Calderon, R. L., & Craun, M. F. (2005). Outbreaks associated with recreational water in the United States. International Journal of Environmental Health Research, 15(4), 243-262.

doi: 10.1080/09603120500155716

Czekalski, N., Diez, E. G., & Burgmann, H. (2014). Wastewater as a point source of antibiotic- resistance genes in the sediment of a freshwater lake. Isme Journal, 8(7), 1381-1390. doi:

10.1038/ismej.2014.8

D'Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., . . . Wright, G. D.

(2011). Antibiotic resistance is ancient. Nature, 477(7365), 457-461. doi: 10.1038/nature10388 Darehabi, H. K., Naseri, M. H., Menbari, S., Mobaleghi, J., & Kalantar, E. (2013). Antibiotic Resistance Pattern of Escherichia coli Groups A, B1, B2 and D Isolated from Frozen Foods and Children with Diarrhea. Int J Enteric Pathog, 1(1), 1-4.

Davies-Colley, R., Nagels, J., Donnison, A., & Muirhead, R. (2004). Flood flushing of bugs in agricultural streams. Water and Atmosphere, 12(2), 18-20.

de Brauwere, A., de Brye, B., Servais, P., Passerat, J., & Deleersnijder, E. (2011). Modelling Escherichia coli concentrations in the tidal Scheldt river and estuary. Water Research, 45(9), 2724-2738. doi: 10.1016/j.watres.2011.02.003

de Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7(3), 260-272. doi: 10.1016/j.ecocom.2009.10.006

de Rouw, A., Soulileuth, B., & Huon, S. (2015). Stable carbon isotope ratios in soil and vegetation shift with cultivation practices (Northern Laos). Agriculture Ecosystems & Environment, 200, 161- 168. doi: 10.1016/j.agee.2014.11.017

Department of Geology and Mines. (1990). Geologic Map of Lao PDR, Scale 1:1 000000 and

106 Photogeological Map, Scale 1:250 000.

Desai, A., Rifai, H. S., Petersen, T. M., & Stein, R. (2011). Mass balance and water quality modeling for load allocation of Escherichia coli in an urban watershed. Journal of Water Resources Planning and Management, 137(5), 412-427.

Di Cesare, A., Eckert, E. M., Rogora, M., & Corno, G. (2017). Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community. Environmental Pollution, 226, 473-478. doi: 10.1016/j.envpol.2017.04.036

Donovan, E., Unice, K., Roberts, J. D., Harris, M., & Finley, B. (2008). Risk of gastrointestinal disease associated with exposure to pathogens in the water of the Lower Passaic River. Appl. Environ.

Microbiol., 74(4), 994-1003.

Drummond, J. D., Larsen, L. G., González‐Pinzón, R., Packman, A. I., & Harvey, J. W. (2017). Fine particle retention within stream storage areas at base flow and in response to a storm event.

Water Resources Research, 53(7), 5690-5705.

DSI. (2017). The Environmental Fluid Dynamics Code: Theoretical & Computational Aspects of EFDC+, Dynamic Solutions – International, LLC, Edmonds, WA, USA, 2017.

Dwivedi, D., Mohanty, B. P., & Lesikar, B. J. (2016). Impact of the Linked Surface Water-Soil Water- Groundwater System on Transport of E. coli in the Subsurface. Water Air and Soil Pollution, 227(9). doi: ARTN 35110.1007/s11270-016-3053-2

E.L., P., & J.M., L. (1971). A procedure to determine sediment deposition in a settling basin. Section E: Intake work and desilting basins. Sedimentation section, Division of planning coordination, Bureau of reclamation, US Department of Interior.

Eaton, B. C., & Millar, R. G. (2004). Optimal alluvial channel width under a bank stability constraint.

Geomorphology, 62(1), 35-45.

Eaton, T., O'Mullan, G. D., & Rouff, A. A. (2013). Assessing continuous contamination discharge from a combined sewer outfall (CSO) into a tidal wetland creek: bacteriological and heavy metals indicators.

Eganhouse, R. P., & Sherblom, P. M. (2001). Anthropogenic organic contaminants in the effluent of a combined sewer overflow: impact on Boston Harbor. Marine Environmental Research, 51(1), 51-74.

Einstein, H. A. (1965). Spawning Grounds, Final report, University of California, Hydraulic Engineering Laboratory, 16p.

Enns, A. A., Vogel, L. J., Abdelzaher, A. M., Solo-Gabriele, H. M., Plano, L. R. W., Gidley, M. L., . . . Fleming, L. E. (2012). Spatial and temporal variation in indicator microbe sampling is influential in beach management decisions. Water Research, 46(7), 2237-2246. doi:

10.1016/j.watres.2012.01.040

EP/CEU. (2006). 7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. . Official Journal of the European Union, 2013.

EPA, U. S. (2012). Recreational water quality criteria.

Eregno, F. E., Tryland, I., Tjomsland, T., Kempa, M., & Heistad, A. (2018). Hydrodynamic modelling of recreational water quality using Escherichia coli as an indicator of microbial contamination.

Journal of Hydrology, 561, 179-186.

Eregno, F. E., Tryland, I., Tjomsland, T., Myrmel, M., Robertson, L., & Heistad, A. (2016). Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events. Science of the Total Environment, 548, 270- 279. doi: 10.1016/j.scitotenv.2016.01.034

Evrard, O., Laceby, J. P., Huon, S., Lefèvre, I., Sengtaheuanghoung, O., & Ribolzi, O. (2016).

Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbxs) to investigate temporal sediment source dynamics in tropical, ephemeral riverine systems. Journal of Soils and Sediments, 16(3), 1130-1144.

Fang, H., Han, L., Zhang, H., Long, Z., Cai, L., & Yu, Y. (2018). Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Journal of hazardous materials, 357, 53-62.

107

Ferguson, C. M., Coote, B. G., Ashbolt, N. J., & Stevenson, I. M. (1996). Relationships between indicators, pathogens and water quality in an estuarine system. Water Research, 30(9), 2045- 2054. doi: Doi 10.1016/0043-1354(96)00079-6

Fernandes, M. R., Sellera, F. P., Esposito, F., Sabino, C. P., Cerdeira, L., & Lincopan, N. (2017).

Colistin-Resistant mcr-1-Positive Escherichia coli on Public Beaches, an Infectious Threat Emerging in Recreational Waters. Antimicrobial Agents and Chemotherapy, 61(7). doi: ARTN e00234-17

10.1128/AAC.00234-17

Foppen, J. W., Van Herwerden, M., & Schijven, J. (2007). Measuring and modelling straining of Escherichia coli in saturated porous media. Journal of Contaminant Hydrology, 93(1), 236-254.

doi: 10.1016/j.jconhyd.2007.03.001

Foppen, J. W. A., & Schijven, J. F. (2006). Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions.

Water Research, 40(3), 401-426. doi: 10.1016/j.watres.2005.11.018

Frey, S. K., Gottschall, N., Wilkes, G., Grégoire, D. S., Topp, E., Pintar, K. D. M., & Lapen, D. R.

(2015). Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution. Journal of Environmental Quality, 44(1), 236-247.

Fuentefria, D. B., Ferreira, A. E., & Corcao, G. (2011). Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water Are they genetically related? Journal of Environmental Management, 92(1), 250-255. doi: 10.1016/j.jenvman.2010.09.001

Gagliardi, J. V., & Karns, J. S. (2000). Leaching of Escherichia coli O157: H7 in diverse soils under various agricultural management practices. Applied and environmental microbiology, 66(3), 877-883. doi: 10.1128/AEM.66.3.877-883.2000

Gao, G., Falconer, R. A., & Lin, B. L. (2015a). Modelling the fate and transport of faecal bacteria in estuarine and coastal waters. Marine Pollution Bulletin, 100(1), 162-168.

Gao, G. H., Falconer, R. A., & Lin, B. L. (2015b). Modelling the fate and transport of faecal bacteria in estuarine and coastal waters. Marine Pollution Bulletin, 100(1), 162-168. doi:

10.1016/j.marpolbul.2015.09.011

Garner, E., Benitez, R., von Wagoner, E., Sawyer, R., Schaberg, E., Hession, W. C., . . . Pruden, A.

(2017). Stormwater loadings of antibiotic resistance genes in an urban stream. Water Research, 123, 144-152. doi: 10.1016/j.watres.2017.06.046

Ghaffari, G., Keesstra, S., Ghodousi, J., & Ahmadi, H. (2010). SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrological processes, 24(7), 892-903. doi: 10.1002/hyp.7530

Gibs, J., Heckathorn, H. A., Meyer, M. T., Klapinski, F. R., Alebus, M., & Lippincott, R. L. (2013).

Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, 2008. Science of the Total Environment, 458, 107-116.

Giddings, E. M., Oblinger, C. J., Soil, B. C., & District, W. C. (2004). Fecal-indicator bacteria in the Newfound Creek watershed, western North Carolina, during a high and low streamflow condition, 2003: United States Geological Survey Scientific Investigations Report 2004–5257.

Website: http://pubs. water. usgs. gov/sir2004-5257.

Goto, D. K., & Yan, T. (2011). Effects of Land Uses on Fecal Indicator Bacteria in the Water and Soil of a Tropical Watershed. Microbes and Environments, 26(3), 254-260. doi:

10.1264/jsme2.ME11115

Goyal, S. M., Gerba, C. P., & Melnick, J. L. (1977). Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast. Appl. Environ. Microbiol., 34(2), 139-149.

Grant, S. B., Litton‐Mueller, R. M., & Ahn, J. H. (2011). Measuring and modeling the flux of fecal bacteria across the sediment‐water interface in a turbulent stream. Water Resources Research, 47(5).

Griffin, D. W., Benzel, W. M., Fisher, S. C., Focazio, M. J., Iwanowicz, L. R., Loftin, K. A., & Jones, D. K. (2019). The presence of antibiotic resistance genes in coastal soil and sediment samples