• 검색 결과가 없습니다.

1. W. B-Ott, Crystallography-chapter 6

N/A
N/A
Protected

Academic year: 2022

Share "1. W. B-Ott, Crystallography-chapter 6"

Copied!
45
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Chapter 7 14 Bravais Lattice

Reading Assignment:

1. W. B-Ott, Crystallography-chapter 6

http://www.greenfacts.org/glossary/abc/crystal-lattice.htm

(2)

Contents

Space Lattice Space Lattice

Centered Lattice Centered Lattice

14 Bravais Lattice 14 Bravais Lattice 3

1 2

4

Plane Lattice Plane Lattice

5 Transformation of Coordinate SystemTransformation of Coordinate System

(3)

14 Bravais Lattice

- general space lattice- inversion center

special space lattice- rotation axis and mirror plane - restriction on the cell parameters

ex) 4z-fold rotation axis- a=b, γ=90o - simplifications in the crystal morphology

and in the physical properties

(4)

Plane Lattice

-general (oblique) lattice 2 fold axis: 1 Æ 2

lattice translation : 1 Æ 3 2 fold axis: 3 Æ 4

oblique parallelogram

a G

90

o

o o

ab γ ≠

(5)

- special lattice a)

rectangular unit mesh

two perpendicular mirror plane

90

o

o o

ab γ = 132 90

o

∠ =

Plane Lattice

W. B-Ott, Crystallography

(6)

b)

extension of the edges

centered rectangular

2-fold axis, mirror plane

13 = 23

132 60 , 90 or 120

o o o

∠ ≠

90

o

o o

ab γ =

13 and 14

Plane Lattice

(7)

c) d)

square mesh hexagonal mesh

4-fold axis, mirror plane 6-fold axis,3-fold axis mirror plane

13 = 23

132 90

o

∠ =

90

o

o o

a = b γ =

13 = 23

132 120

o

∠ =

120

o

o o

a = b γ =

Plane Lattice

W. B-Ott, Crystallography

(8)

Plane Lattice

(9)

Plane Lattice

W. B-Ott, Crystallography

(10)

Space Lattice

- general lattice (triclinic P-lattice)

oblique plane lattice lattice points of stacked plane do not coincide Æ lose 2-fold axis

o

o

c 90

o o

a b

α β γ

≠ ≠

≠ ≠ ≠

1

(x,y,0 projection)

z coordinate: 0 and 1 2

point group: 1

space group: P1

(11)

W. B-Ott, Crystallography

(12)
(13)

W. B-Ott, Crystallography

(14)
(15)

- primitive lattice

Space Lattice

W. B-Ott, Crystallography

(16)

- monoclinic P-lattice

oblique plane lattice stacking directly above 2-fold axis along

mirror

bG

&

12

, 0, & , ,

x z x z

(x,0,z projection)

(x,y,0 projection)

o

o o

c

90 , 90

o o

a b

α γ β

≠ ≠

= = >

2 2 m

point group:

space group: P

m

Mirror plane b=0 and 1/2

Space Lattice

(17)

- monoclinic P-lattice

lower symmetry

Space Lattice

W. B-Ott, Crystallography

(18)

- orthorhombic P-lattice

rectangular plane lattice stacking directly above 2-fold axis

mirror plane

2-fold axis mirror cG

&

12

, , 0 & , ,

x y x y

12 12 12 12

12 12 12 12

, 0, 0 , 0, , , , , 0, , 0 0, , , , 0 , ,

x x x o x

y y y y

(x,y,0 projection)

Space Lattice

(19)

W. B-Ott, Crystallography

(20)

- orthorhombic P-lattice

o

o

c 90

o o

a b

α β γ

≠ ≠

= = =

2 2 2 2 2 2 m

point group:

space group: P

m m m m m

Space Lattice

(21)

- tetragonal P-lattice

square plane lattice- stacking directly above 4-fold axis mirror plane

2-fold axis mirror plane 2-fold axis mirror plane

c

o

o o

a = b

cG

&

x y , , 0 & , , x y

12

aG

& bG

&

⊥ ⊥

<110 >

*glide plane, screw axis

Space Lattice

W. B-Ott, Crystallography

(22)
(23)

- tetragonal P-lattice

o

o

c 90

o o

a b

α β γ

= ≠

= = =

4 2 2 4 2 2 m

point group:

space group: P

m m m m m

Space Lattice

W. B-Ott, Crystallography

(24)

- tetragonal P-lattice

Space Lattice

(25)

-hexagonal P-lattice

hexagonal plane lattice- stacking directly above 6-fold axis mirror plane

2-fold axis mirror plane 2-fold axis mirror plane

c

o

o o

a = b

cG

&

aG

& bG

&

⊥ ⊥

< 210 >

12

, , 0 & , , x y x y

Space Lattice

W. B-Ott, Crystallography

(26)
(27)

- hexagonal P-lattice

o

o o

c

90 , 120

o o

a b

α β γ

= ≠

= = =

6 2 2 6 2 2 m

point group:

space group: P

m m m m m

Space Lattice

W. B-Ott, Crystallography

(28)

- hexagonal P-lattice

Space Lattice

(29)

-cubic P-lattice

square plane lattice- stacking directly above 4-fold axis mirror plane 3-fold axis

2-fold axis mirror plane

c

o

o o

a = b =

c

& G aG

& bG

&

<111>

<110 >

Space Lattice

W. B-Ott, Crystallography

(30)
(31)

o

o

c 90

o o

a b

α β γ

= ≠

= = =

4 2 3

4 2 3

point group:

space group: P

m m m m

- cubic P-lattice

Space Lattice

W. B-Ott, Crystallography

(32)

- cubic P-lattice

Space Lattice

(33)

-trigonal lattice

hexagonal plane lattice

second plane with a lattice point on 3-fold at third plane with a lattice point on 3-fold at reduce 6-fold to 3-fold axis

remove mirrors

remove 2-fold axis

1 3 co 2

3 co

2 1 , ,

3 3

z

1 2 , ,

3 3

z

, 0, ; 0, , ; , , x z y z x x z

cG

&

1 1

2-fold axis

3 6

Space Lattice

W. B-Ott, Crystallography

(34)

- trigonal lattice

o o

c

90 120

o o

o

a b

α β γ

= ≠

= = =

' ' '

c

o

o o

a b

α β γ

= =

= =

Trigonal R-lattice

Rhombohedral P-lattice

Z = 0 1/3 2/3

Space Lattice

(35)

- trigonal lattice

Space Lattice

W. B-Ott, Crystallography

(36)

-centered lattice

monoclinic P-lattice lattice point:

new lattice point:

2 m

2

m ;

0 ;

1 1 1

2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 2 2 2

, 0, 0; 0, , 0 0, 0, ; , , 0; , , 0, , ; , ,

Space Lattice

(37)

1 1

2

, , 0

2

- monoclinic lattice

a) at Æ C-centered lattice or C-lattice

b) at Æ A-lattice Æ C-lattice

y=1/2

1 1 2 2

0, ,

Space Lattice

W. B-Ott, Crystallography

(38)

1 1 2

, 0,

2

- monoclinic lattice

(c) at Æ B-lattice (d) at Æ I-lattice Æ smaller primitive unit cell Æ C-lattice

1 1 1 2

, ,

2 2

Space Lattice

(39)

- monoclinic lattice (e) at

Æ half the cell

(f) at Æ further lattice point F-lattice Æ reduced to C-lattice

1 1 ; 1

2

, 0, 0; 0, , 0 0, 0,

2 2

1 1 1 1

2

, , 0; 0, ,

2 2 2 12

, 0,

12

Space Lattice

W. B-Ott, Crystallography

(40)

- 14 Bravais lattice

The 14 Bravais lattice represent the 14 and only way in which it is possible to fill space by a three-dimensional periodic array of points.

Space Lattice

(41)
(42)

- 14 Bravais lattice

Space Lattice

(43)

Transformation of Coordinate System

-old axis unit vector

new axis unit vector

, , a b c

' ' '

, , a b c

'

11 12 13

'

21 22 23

'

31 32 33

a p a p b p c b p a p b p c c p a p b p c

= + +

= + +

= + +

'

11 12 13

'

21 22 23

'

31 32 33

a p p p a

b p p p b

c p p p c

⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ = ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟

⎜ ⎟ ⎝ ⎠⎝ ⎠

'

⎝ ⎠

a = Pa

' ' '

11 12 13

' ' '

21 22 23

' ' '

31 32 33

a q a q b q c b q a q b q c c q a q b q c

= + +

= + +

= + +

'

11 12 13

'

21 22 23

'

31 32 33

a q q q a

b q q q b

c q q q c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ = ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

a = Qa

'

PQ = I

(44)

- bcc to rhombohedral

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

R I I I

R I I I

R I I I

a a b c

b a b c

c a b c

= − + +

= +

= +

aR

bR

cR

aI bI

cI

0 1 1

1 0 1

1 1 0

I R R R

I R R R

I R R R

a a b c

b a b c

c a b c

= + +

= + +

= + +

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

P

=

0 1 1 1 0 1 1 1 0 Q

= ⎜

Transformation of Coordinate System

(45)

- fcc to rhombohedral

Z = 0 1/3 2/3

- trigonal R-rhombohedral P

Transformation of Coordinate System

참조

관련 문서

https://quizlet.com/_8gkp6x?x=1qqt&amp;i=2tig8t 첨부한 프린트 자ㅊ ㄹㅎ료를 미리 부모님들께보내주세요.. 온라인 수업에 아이들 이

MC3T3-E1 cell morphorologies on the (a) CP-Ti surface and (b) nano-mesh surface for 20 min culturing time.. MC3T3-E1 cell morphorologies on the (a) CP-Ti surface and

 The curl of the velocity field of a rotating rigid body has the direction of the axis of the rotation,.  and its magnitude equals twice the angular speed

Absolute and Relative Velocity in Plane Motion Instantaneous Center of Rotation in Plane Motion Absolute and Relative Acceleration in Plane Motion... Analysis of Plane

* Symmetry operation symmetry element reflection mirror plane rotation rotation axis inversion inversion center..

– extra half-plane of atoms inserted in a crystal structure – b perpendicular (⊥) to dislocation line..

(b) Assuming that the allowable load, found in part a, is applied as shown at a point 0.75 in. from the geometric axis of he column, determine the horizontal deflection of the

For any axis—angle pair (AK, 0), there is another pair, namely, (_AK, —0), which results in the same orientation in space, with the same rotation matrix describing it.