• 검색 결과가 없습니다.

접선벡터 좌표계를 사용한 열핵 전개

N/A
N/A
Protected

Academic year: 2021

Share "접선벡터 좌표계를 사용한 열핵 전개"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

-44-

접선벡터 좌표계를 사용한 열핵 전개 II

이해원*

충북대학교 물리학과, 청주 361-763 (2009년 12월 3일 받음)

d/2 개의 2계 타원 미분 연산자들의 곱으로 만들어진 d-계 타원연산자의 열핵(heat kernel) 전개를 연구하였다. 일반적인 차원 n을 갖는 굽어진 시공간에서 계산을 수행하였다. 열핵 전개의 처음 두 항들을 계산하였는데 그 결과는 각 2계 연산자의 경우에 얻어진 항들을 단순히 더한 것과 같지 않고 추가적인 항 들이 존재하게 된다. 이러한 계산을 위하여 좌표변환의 공변성을 유지하면서 접선벡터좌표계를 사용하는 방 법을 사용하였다.

핵심어: 열핵, 타원연산자, 접선벡터

_______________________________________________________________________________

Heat Kernel Expansions Using Tangent Vector Coordinate Systems II

Haewon LEE*

Department of Physics, Chungbuk National University, Cheongju 361-763 (Received 3 December 2009)

Heat kernel expansions of the d-th order elliptic operators obtained by using a product of d/2 second order elliptic operators in curved space-time with dimension n are investigated. We calculate the first two coefficient functions of the expansions, which are not the simple sum of the coefficients for each second order elliptic operator. For the calculations, we use a method with a tangent vector coordinate system, with which our calculatins are manifestly covariant under coordinate and gauge transformations.

Keywords: Heat Kernel, Elliptic Operator, Tangent Vector PACS numbers: 03.70.+k, 04.62.+v, 11.10.+z

* E-mail: hwlee@hep.chungbuk.ac.kr

(2)

I. "eÂ]Ø

€

ªœ©œ:r\"f V,o 6 x÷&H "é¶pìrƒíߖ_ \PÙþ˜

„

>h(heat kernel expansion)\ @/ôÇ ƒ½¨H´ú§“Ér†<Æ[þt

\

 _K ƒ½¨÷&#QM®o [1,2]. :£¤y 4> ƒíߖ_ âĺH 2> ƒíߖ_ YL`¦6 x #Œ ½¨K&’HX< s ~½ÓZOܼ–ЍH

&

h

ìrÊê\ tH†½Ó[þt“Ér½¨½+É Ãº \O [2]. s„ ƒ½¨

\

"f ƒíߖ_ YL`¦6 x t ·ú§“¦ f”]X s „>h†½Ó[þt`¦

½

¨ H~½ÓZO`¦]jr %i [3,4]. s ~½ÓZO\"fH :£¤y /BN



 ]X‚ ýa³ð>\¦6 x #Œ >st¨8Šs ýa³ð¨8Š\

@

/ôÇ /BN$ís >íߖ_ yŒ• õ&ñ\"f ìr"î >  èߖ.

¢

¸ôÇ ©œ {9ìøÍ&h“ 4> ƒíߖ_ âĺ\ %ƒ6£§ ¿º „>h

†

½Ó`¦½¨ #Œ ]jr %i.

s

 7HëH\"fH 2> "鶃íߖ[þt`¦ d/2 >h YL #Œ

%

3#QtH“¦> ƒíߖ_ \PÙþ˜ „>h†½Ó[þt`¦>íߖ “¦ ôÇ



. s\¦0AK s„ 7HëH\"f ]jr)a~½ÓZO`¦6 x½+É \V&ñ s

. €ªœ©œ:r\"f ´òõŒ•6 x|¾Ó[þt\ @/K ôÇ “¦o(one- loop) H >íߖ`¦ € #Q‹" "鶃íߖ_ #3†<Êú 'Ÿ

§>

=d”(functional determinant)\ –ÐÕª(logarithm)\¦2[ôÇ

õ °ú . 'Ÿ§>=d”_ YL!lr ZOgË:\ _ €, 2> "鶃 í

ߖ[þt`¦ YLK ëߖ[þt#Q” ƒíߖ_ ´òõŒ•6 x|¾Ó“Ér yŒ•yŒ• _

 2> ƒíߖ_ Õªכ [þt`¦½+ËôÇ כ õ °ú `¦כ s. sQ ô

Ç YL!lr $í|9“Ér€ªœ©œ:r_ ü@µ1Ïíߖ(Ultra-Violet diver- gence)†½Ós 2> €ªœ©œ:r_ µ1Ïíߖ†½Ó[þt`¦½+ËôÇ כ õ °ú 



 ôǍHכ `¦_pôÇ.

ô

Ǽ# sQôÇ ü@µ1Ïíߖ†½Ó[þt“Ér\PÙþ˜ „>h†½Ó[þt_ r/BNçߖ

&

h

ìrܼ–Ð ÅÒ#Qf”`¦˜Ð{9 ú e”. r/BNçߖ_ "é¶\"f 



 K{©œ÷&H „>h†½Ós ØÔ. \V\¦ [þt€ 4 "é¶_ âĺ



H %ƒ6£§ ¿º†½Ós ×æכ¹ . "f 2> "鶃íߖ[þt`¦ d/2>h YL #Œ %3#QtH“¦> ƒíߖ_ €ªœ©œ:r\"fH '

Ÿ§>=d”_ YL!lr $í|9\ _K ü@µ1Ïíߖ†½Ó[þts 2> ƒíߖ

–

Ð ÅÒ#QtH ©œ:r_ ü@µ1Ïíߖ†½Ó[þt`¦ 8ôÇ כ õ °ú Ü¼o



“¦ ÒqtyŒ•½+É Ãº e”. ‘:r ƒ½¨\"fH 'Ÿ§>=d”_ YL!lr $í

|9

`¦ 6 x t ·ú§“¦ f”]X \PÙþ˜„>h†½Ó[þt`¦ >íߖ #Œ s



QôÇ ëH]j\¦¶ú˜(R^¦\V&ñs.

II ©œ\"fHçߖéߖ > /BN]X‚ýa³ð>\¦6 xôÇ \PÙþ˜

„

>h\ @/K çߖéߖy ™è>h “¦ III ©œ\"fH 2> "鶃 í

ߖ[þt`¦ d/2 >h YL #Œ %3#QtH “¦> ƒíߖ_ \PÙþ˜

„

>h†½Ó[þt`¦ >íߖ½+É כ s. t}Œ•Ü¼–Ð :r\"f %3#Q

”

 õ\ @/ôÇ žÐ:r`¦½+É כ s.

II. ŒŸ«ìÅ ±nɍÒÅÒ÷ƒ»4Ñ÷ °‚Ç{¿? ¹Å4

#

Œl"fHçߖéߖy ‘:r 7HëH\"f 6 x½+É ]X‚ýa³ð>\ @/ K

 çߖéߖy ™è>h½+É כ s. [jôÇ כ “Ér ‘:r$_ s„



7HëH`¦‚ÃГ¦ l êøÍ [4]. /BNpìrƒíߖ (covariant derivative) ∇µ ü< C⁩œ(background field) [þt–Ð ³ð‰&³)a

"é¶pìrƒíߖ\¦ M s“¦ . #Œl"fH r/BNçߖ`¦ n "é¶`¦°úHoëߖ €ªœ^‰“¦ “¦ (+, · · · , +)_ ÂÒ ñ

\

¦°úHBjàÔaË: J$™"f gµν(x) \¦6 xôÇ. /BNpìrƒíߖ



 ∇µ “Ér ∇µ = ∂ν − iAµ+ Γµ õ °ú s jþt ú e”. #Œ l

"f Aµ ≡ AaµTa H Yang-Mills©œ`¦ØÔv“¦ ΓµHr /

B

Nçߖ J$™"f Û¼x-\ Œ•6 x H oëߖ connection s.

€

ªœ©œ:r\H−∇2− C ü< °ú “Ér 2> "鶃íߖ[þts  Å

Ò 1px©œôÇ. ‘:rƒ½¨\"fH sQôÇ 2> ƒíߖ_ YLܼ

–

Ð ³ð‰&³)a6£§õ °ú “Ér "鶃íߖ\¦“¦9½+É כ s.

M =

d/2

Y

k=1

(−∇2− Ck)

= (−∇2− C1) · · · (−∇2− Cd/2) (1)

#

Œl"f d H€ªœ_ ‹Œ•Ãºs.

"鶃íߖ M \ @/K \PÙþ˜“Ér6£§_ d”ܼ–Ð &ñ_)a



.

hx0τ |xi ≡ hx0| e−τ M|xi (2)

“

¦>ƒíߖ_ âĺ\•¸ x0= x “ âĺ\HAü< °ú  s

 „>h 0px  [3].

hxτ |xi = 1 τn/d

a0(x) + a1(x)τ2/d+ a2(x)τ4/d+ · · · , (3) a0, a1, 1px“Ér ×æ§4 J$™"f gµν,>st©œ AµÕªo“¦ Õª ü@ _

 Ér C⁩œ[þt–Ð ³ð‰&³÷&H ²DG™è †½Ód”_ g1J`¦t

“

¦ e”.

s

]j ýa³ð x0 @/’\ ]X‚ 7˜' X \¦6 x #Œ ƒíߖ



 C⁩œ[þt`¦ —¸¿º x ü< X –Ð ³ð‰&³ôÇ. pìr ƒíߖ M “Ér /BNpìrƒíߖ ∇µ ü< C⁩œ(background field) φ–Ð ³ð‰&³÷&#Q M(∇0, φ(x0))ü< °ú s  è­q ú e”. s ]

j ¨î'Ÿs1lx 'Ÿ§>=`¦6 x #Œ Dh–Ðîrƒíߖ Mx\¦6£§ õ

 °ú s &ñ_ .

Mx≡ I(x, x0)M (∇0, φ0)I(x0, x) = M (∇, φ). (4)

#

Œl"f I(x, x0)H&h x\"f &h x0t_ þjéߖâ–Ð\¦ '

Ÿ #Œ” ¨î'Ÿs1lx'Ÿ§>=`¦ ·p. 0A_ &ñ_–ÐÂÒ' hx| e−τ M|xi = h0| e−τ Mx|0i (5)

\

¦˜Ð{9 ú e”.

ô

Ǽ# MxH {9ìøÍ&hܼ–Ð Xµü< ∂Xµ \¦6 x #Œ A ü

< °ú s „>h)a.

Mx= Σ aα···βµ···ν(x)Xα···β

∂Xµ· · · ∂

∂Xν, (6)

(3)

#

Œl"f Xα···β ≡ Xα· · · Xβ s“¦ aα···βµ···ν(x) H /BN&h

“

 x _ J$™"f 'Ÿ§>= †<Êús. ƒíߖ_ order  d s

€

 X \ @/ôÇ pìrƒíߖ_ order •¸ d \¦Åt ·ú§`¦כ s

. 0A_ yŒ• †½Ó\"f /BN†<Êú aα···βµ···ν _ |9|¾Ó "é¶`¦ Dim(a)–Ð  ?/“¦, X\ @/ôÇ order \¦ #(X)–Ð∂Xµ

@

/ôÇ order \¦ #(∂)–Ð  ·p€ d = Dim(a) − #(X) +

#(∂))a. ¢¸ôÇ sp ƒ/åLôÇ@/–Ð #(∂) ≤ d s.

X \ @/ôÇ 4  †½Ót_ õ\¦ &h#Q˜Ð€ 6£§õ °ú 



.

µ = ∂

∂Xµ

+1

2XνRνµ−1

6XνλRδλµν

∂Xδ

+1

3XνδδRνµ− 1

12XνλββRδλµν

∂Xδ

+Xνλβ 1

8∇λβRνµ+ 1

24RγνλµRβγ



−1

40XνλβξξβRµλδν

∂Xδ

+ 7

360XνλβξRµλνRξδβ

∂Xδ

+O(X5). (7)

φµ = φµ+ Xννφµ+1

2Xνλλνφµ

+1

6Xνλδδλνφµ

+1

24Xνλδξξδλνφµ+ O(X5). (8)

#

Œl"f Rαβγδ H oëߖ/BGÒ¦J$™"fs. s õ\¦ ƒíߖ M \ &h6 x € Mx \¦ d” (6)\ ÅÒ#Q” +þAI–Ð  è­q Ã

º e”. #Œl"f 6£§`¦ 0AK Y> t &ñ_\¦ #ŒéH.

Ricci J$™"fH Rαβ= Rµαβµs“¦ Û¼ºú˜ /BGÒ¦“Ér R = Rµµ s

.

r

/BNçߖs ÏãL#Q4R e”t ·ú§“¦ ¢¸ôÇ C⁩œs \O€ ƒ í

ߖ MxH

Mx(0)=



−gµν(x) ∂

∂Xµ

∂Xν

d/2

. (9)

 |¨cכ s. z´ Mx \¦ d” (6) õ °ú s „>h½+É M: /BN



†<Êú aα···βµ···ν _ |9|¾Ó "é¶Dim(a)s 0 “ †½Ós –Ð Mx(0) s.

Mx(0) _ \PÙþ˜“Ér ~1> >íߖ½+É Ãº e”.

hX| e−τ Mx|0i = τndΦ(X2

d2), (10)

#

Œl"f Φ(z) H z = 0 H%ƒ\"f K$3&h“ †<Êús. s

\

 @/ôÇ ½¨^‰&h“ ³ð‰&³“Ér /BIÅÒ#Q|9 כ s.

s

]j Mx_ \PÙþ˜ „>h\¦>íߖ HX< 6£§_›'a>d”`¦



6 xôÇ.

hX| e−τ Mx|0i = 

e−τ Mxe+τ Mx(0)

hX| e−τ Mx(0)|0i

= τnde−τ mx Φ(X2

2d), (11)

#

Œl"f ƒíߖ mx H e−τ mx ≡ e−τ Mxe+τ Mx(0) \"f 

&

ñ)a. mx H Campbell-Hausdorf /BNd”`¦6 x #Œ > í

ߖ½+É Ãº e”HX< sH Mx(0) ü< Mx çߖ_ [þv÷&H “§¨8Š



(commutator)[þt_ ½+Ëܼ–Ð  ?/#Q ”. x0 = x {9 M

:_ \PÙþ˜ „>hH

h0| e−Mx|0i = lim

X→0e−mx Φ(X2

2 ). (12)

\

¦ 6 x #Œ >íߖ½+É Ãº e”. 0A\"f >íߖ_ ¼#_\¦ 0A K

 τ = 1 –Ð 2[ %i.

ƒ

íߖ mx •¸ d” (6) õ °ú “Ér g1J–Ð ³ð‰&³)a. d” (12)

`

¦>íߖ½+É M: ÅÒ Aü< °ú “Ér³ð‰&³`¦ëߖ>)a.

X→0lim

∂Xµ· · · ∂

∂Xν Φ(X2

2 ). (13)

†

<Êú Φ(X22) H

Φ(X2 2 ) =

Z dnp

(2π)neipµXµ−(p2)d/2. (14)

–

Ð ÅÒ#QtHX< s\¦6 x #Œ

X→0lim

∂Xµ1 · · · ∂

∂Xµ2j Φ(X2 2 )

= 1 Cj

(−1)jΓ(n+2jd )

(4π)n2d2 Γ(n2)gµ1···µ2j, (15) e”

`¦ ˜Ð{9 ú e”. 0A\"f Cj = 2jQj

i=1(n2 + i − 1) s

“

¦ gµ1···µ2j HAü< °ú “ÉrF) &h“›'a>d”ܼ–Ð &ñ_÷&



H J$™"fs.

gµ1···µk=

k

X

j=2

gµ1µjgµ2···µj−1µj+1···µk . (16)

III. Qd/2

k=1(−∇2− Ck)8ý ßO˖¤

s

]j Eq.(1)\ ÅÒ#Q” ƒíߖ_ \PÙþ˜ „>h\¦ >íߖ  l

 0AôÇ —¸ŽH ïrq ÷&%3. €$ K ½+É {9“Ér Mx ≡ Qd/2

k=1(−∇2− Ck) \¦ d” (6) õ °ú “Ér³ðïr+þAܼ–Ð  ?/



H כ s. yŒ• †½Ó\"f aα···βµ···ν(x) _ |9|¾Ó "é¶Dim(a) s

 ±ú“Ér íHܼ–Ð &ño € ¼#o . ¢¸ôÇ am t_ „

(4)

>

h†<Êú\¦>íߖ “¦ z·€ Dim(a) ≤ 2m“ †½Ó[þtëߖ “¦9

€)a. >íߖ ×æ\H†½Ó©œ Dim > 2m “ †½Ó[þt“ÉrÁºr ô

Ç. 0A\"f C⁩œ C _ âĺH Dim(C) = 2 e”\ Ä» _

 .

‘

:r ƒ½¨\"fH a1 õ a2 _ ¿º €ªœ`¦>íߖ “¦ ôÇ.



"f Mx\¦ |9|¾Ó "é¶\  „>h\¦ €

Mx= Mx(0)+ Mx(2)+ Mx(3)+ Mx(4)· · · (17) 0

A\"f () îߖ_ ÕüwH |9|¾Ó "é¶`¦  ·p. d” (7- 8) \¦ ¶ú˜(R˜Ð€ d” (1) –Ð ÅÒ#Q” ƒíߖ_ âĺ\H Mx(1)=0 e”`¦ ~1> ·ú˜ ú e”. d” (11) \ &ñ_)a mx

•

¸ q5pw > „>h÷&#Q

mx= m(2)x + m(3)x + m(4)x · · · (18)

)a. ‘:r>íߖ\"fH Mx(3)ü< m(3)x H>íߖõ\ %ò†¾Ó

`

¦ÅÒt ·ú§l\ ÁºrK•¸)a. m(2)x ü< m(4)x \¦ Hausdorf /

BNd”`¦6 x #Œ ½¨ € 6£§õ °ú .

m(2)x =

 1 + L

2



Mx(2) (19)

m(4)x =

 1 + L

2 +L2 6 +L3

24



Mx(4)− 1 12

h

Mx(2), LMx(2)i

#

Œl"f L ≡ [−Mx(0), ]–Ð+‹ \V\¦ [þt€ LA = [− fM0, A]s“¦ L2A = [−Mx(0), [−Mx(0), A]]s. 0A d”\

"

f k ≥ j {9 M: LkMx(j)= 0 “ $í|9`¦6 x %i. ôǼ# d”

 (12) ܼ–ÐÂÒ' „>h >ú a0, a1 Õªo“¦ a2 H6£§õ

° ú

 s jþtú e”.

a0(x) = lim

X→0Φ a1(x) = lim

X→0

−m(2)x  Φ a2(x) = lim

X→0

 1

2m(2)x m(2)x − m(4)x



Φ (20) m(2)x ü< m(4)x _ ³ð‰&³`¦%3l 0AK 2> ƒíߖ ∇2+ Ck

\

¦6£§õ °ú s  ?/.

2+ Ck = A + (B + Ck) + (D + Fk), (21) 0

A\"f A = ∂2 B = −1

3Xτ ραβRαρβτ−2

3XταRατ + Xτατ α

D = Xτ ρηξαβ



−1

20Rβρατ ;ηξ+ 1

15RβρστRσξαη



+Xτ ρηα



−3

20Rατ ;ρη+ 4

25Rβτ σρRσηαβ



+1

4Xτ ρτ σρσ Fk = 1

2Xτ ρCk;τ ρ. (22)

`¦ çߖéߖ > æ¼l0AK ∂Xα· · ·∂Xβ \¦ ∂α···β –Ð ³ðl

%i. ¢¸ôÇ J$™"f ³ð‰&³\"f ”;” \¦ØԍH '‘H /BN p

ìr`¦_pôÇ. \V\¦ [þt#Q Ck;τ ρ= ∇ρτCk \¦_pôÇ



. ¢¸ôÇ Ωαβ ≡ [∇α, ∇β] s. 0A_ †½Ó[þt\"f A _ |9

|

¾Ó "鶓Ér 0, Bü< CkH 2 ,Õªo“¦ Dü< Fk H 4s.

 (22) _ &ñ_\¦ 6 x #Œ Mx ≡Qd/2

k=1(−∇2− Ck)

\

¦ d” (17)õ °ú s „>h € 6£§õ °ú .

Mx(0) = (−1)dAd Mx(2) = (−1)dX

k

[BAd−1+ (k − 1)GAd−2+ CkAd−1] LMx(2) = −d2GA2d−2

Mx(4) = (−1)dX

k

[Ak−1DAd−k+ Ak−1FkAd−k] +(−1)d X

k0>k

[B2Ad−2+ (k − 1)GBAd−3

+(k0− 2)BGAd−3+ (k − 1)(k0− 3)G2Ad−4 +CkBAd−2+ BCkAd−2+ CkCk0Ad−2 +(k − 1)GCk0Ad−3+ (k0− 2)GCkAd−3] (23)

#

Œl"f G = [A, B] = −23αβRαβ s“¦ d = d2s.

 (20) \¦6 x #Œ a1õ a2\¦>íߖ HX< Aü< °ú 

“ É

r>íߖ`¦ÅÒ >)a.

lim

X→0(∂2)iXα1···αpγ1···γq(∂2)jΦ (24) s

_ >íߖ õHAü< °ú s כ¹€•|¨cú e”.

[p/2]

X

r=0

S2rpq(i, j)gα2r1···αp1···γq, (25)

#

Œl"f g2rα1···αp1···γq H 6£§õ °ú s &ñ_)a J$™"fs“¦ S2rpq(i, j)HÕª_ >ús.

g2rα1···αp1···γq ≡ gα1α2gα3α4· · · gα2r−1α2rgα2r+1···γq + gα1α3gα2α4· · · gα2r−1α2rgα2r+1···γq+ · · ·

¢

¸ôÇ S2rpq(i, j) H6£§õ °ú .

S2rpq(i, j) = i!

(i − p + r)!

2p−r Cp+q

2 −r

×(−1)i+j+q−p2 Γ(n+2i+2j+q−p

d )

(4π)n2d2 Γ(n2) (26)

#

Œl"f i ≥ p − r ≥ r s  âĺH 0_ °úכ`¦°úH.

S2rpq(i, j)\¦ iü< j \›'a> H†<Êú–Ð ‘:r€

Xα1···αpγ1···γq

[p/2]

X

r=0

S2rpqg2rα1···αp1···γq (27)

(5)

ü

< °ú s jþt ú e”`¦ כ s. ôǼ# d” (26) \"f Spq2r = S2r−2s(p−s)(q−s)e”`¦˜Ð{9 ú e”. ¢¸ôÇ ·ú¡Ü¼–ЍH Spq≡ Spq0

–

Ð ³ðl½+É כ s.

 (27)`¦6 x € >íߖõ #Q‹" J$™"f[þt_ ½+˓t p

o f”Œ•½+É Ãº e”. Óüt:ryŒ• J$™"f_ >úH S2rpq\ (i, j)

° ú

כ`¦ @/{9K ·ú˜ ú e”. >íߖ\ 1px©œ H#ŒQ €ªœ[þt

\

 @/K s\¦&h6 x #Œ ˜Ð€ 6£§õ °ú .

B ∼ −1 3S11R G ∼ −2

3S02R D ∼ −1

5(S20+ S31)Rβ− 1

45(S31+ S20)(RαβRαβ +3

2RαβγδRαβγδ) +1

4(S20+ S220)Ωαβαβ B2 ∼ 1

9S22R2+2

9(S22+ S11)RαβRαβ GB ∼ 2

9S13(2RαβRαβ+ R2) +4

9S02RαβRαβ BG ∼ 2

9S13(2RαβRαβ+ R2) G2 ∼ 4

9S04(2RαβRαβ+ R2) Fk ∼ 1

2(S20+ S220)Ck;ββ (28) 0

A_ d”[þt`¦6 x #Œ >ú a1, a2 Õªo“¦ a3 \¦½¨½+É Ã

º e”HX< õ\¦&ño € 6£§õ °ú .

a0 = Γ(nd) (4π)n2d2 Γ(n2) a1 = Γ(n+d−2d )

(4π)n2d2 Γ(n2) X

k

( 2

3nR + Ck) a2 = Γ(n+d−4d )

(4π)n2d2 Γ(n2)[X

k

(n − 2)( 1

60Rα+ 1 144R2

− 1

360RαβRαβ+ 1

360RαβγδRαβγδ+ 1

24Ωαβαβ) +X

k

(1

6+(n − 4)(n + d)

48 )RCk+1 2

X

k0>k

[Ck0, Ck]

+1 2

X

k

Ck2+n − 4 2d (X

k

Ck)2

+X

k

(n − 2

6 −f (d, k) 12n )Ck;αα] 0

A\"f f(d, k) = (d + 2)(d + 4 − 12k) + 24k2 –Ð"f P

kf (d, k) = 0s.

IV. +sÇÂ]Ø

/

BN ]X‚ 7˜' ýa³ð>\¦ 6 x #Œ \PÙþ˜ „>h ©œÃº a1

õ

 a2 \¦ ½¨ %i. sQôÇ \PÙþ˜ „>h†½Ó[þts _p H

[þts #ŒQt e”’xtëߖ #Œl"fH€ªœ©œ:r\"f_



ü@µ1Ïíߖ(Ultra-violet divergence)ü<›'aº)a ëH]j\ @/K

¶ ú

˜(R˜Ð“¦ ôÇ. õ\¦˜Ð€ a1_ âĺH d = 2_  õ

_ éߖíH ½+Ëõ °ú . ÕªQ a2 _ âĺH ÕªXOt ·ú§



. [Ck0, Ck]s Ck;ααõ °ú “Ér†½Ó[þt“Érr/BNçߖýa³ð\ @/ ô

Ç &hìrõ ?/ÂÒ/BNçߖ\ @/ôÇ ½+Ë`¦>íߖ € \O#QtH†½Ó [

þ

ts. sQôÇ divergence †½Ó[þt`¦]jü@ #Œ•¸ a2H d = 2 {9M: %3H õ_ éߖíH ½+Ës m. n = 4 “ âĺ



H ÉrX< sH 4 "é¶ r/BNçߖ\"f &ñ_)a ©œ:r_ âĺ

\

Hü@µ1Ïíߖ†½Ó[þts a2\ _K &ñ÷&l M:ëHs. ¢¸ ô

Ç 2 "é¶ r/BNçߖ_ âĺ\H ü@µ1Ïíߖ †½Ó[þts a1 ܼ–Ð



&ñ÷&#Q, Õª s©œ_ †½Ó“ a2 \ @/K"fH :£¤Z>ôÇ ›'a> d”

`¦ ÅÒtH ·ú§H. ÕªQ õ\¦ ÅÒ_U·> ¶ú˜(R˜Ð€ n = 2 “ âĺ r/BNçߖ_ /BGÒ¦J$™"fëߖ`¦Ÿí†<Ê H†½Ó[þts

—

¸¿º t“¦ Ck \¦Ÿí†<Ê H†½Ó[þt“Ér¶ú˜zŒ™H. ÕªQ



 s âĺ\•¸ d = 2“ âĺ\H divergence †½Ó[þt`¦Ÿí

†

<ÊôÇ —¸ŽH†½Ó[þts ©œW÷&#Q 0)a.

P

cp8ý òk>

s

 7HëH“Ér 2008†<Ƹ•¸ Øæ·¡¤@/†<Ɠ§ †<ÆÕütƒ½¨t"é¶\O _

 ƒ½¨qt"é¶\ _ #Œ ƒ½¨÷&%3_þvm.

Y

cp wŠ ÃUØ ”ô

[1] B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordan and Breach, New York, 1965); Phys.

Rep. 19C, 295(1975).

[2] A. O. Barvinsky and G. A. Vilkovisky, Phys. Rep.

119, 1(1985); and references therein.

[3] Haewon Lee, Pong Youl Park and Hyun Kuk Shin, Phys. Rev. D 35, 2440 (1987).

[4] Haewon Lee and Sang Won Lee, Sae Mulli 58, 654 (2009).

참조

관련 문서

The key issue is whether HTS can be defined as the 6th generation of violent extremism. That is, whether it will first safely settle as a locally embedded group

If both these adjustments are considered, the resulting approach is called a bootstrap-BC a -method (bias- corrected-accelerated). A description of this approach

③ A student who attended Korean course at KNU Korean Language Program and holds TOPIK Level 3 or a student who completed Korean course Level 4 at the KNU Korean Language

주식회사 카스 회사소개서 미국 독일 폴란드 터키 인도 방글라데시 베트남

· 50% exemption from tuition fee Ⅱ for the student with a TOPIK score of level 3 or higher or completion of level 4 or higher class of the Korean language program at the

웹 표준을 지원하는 플랫폼에서 큰 수정없이 실행 가능함 패키징을 통해 다양한 기기를 위한 앱을 작성할 수 있음 네이티브 앱과

_____ culture appears to be attractive (도시의) to the

- quadriceps tendon 이 슬개골 하연에서 tibial tuberocity에 부착.