• 검색 결과가 없습니다.

Thermodynamics of Materials

N/A
N/A
Protected

Academic year: 2022

Share "Thermodynamics of Materials"

Copied!
24
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Thermodynamics of Materials

12th Lecture 2008. 4. 21 (Monday)

oo

-10 C water (l) -10 C ice (s)

2 7 3K ( l ) 2 7 3K ( s )

2 6 3K ( l ) 2 6 3K ( s )

Freezing of Supercooled Water

(2)

Δ = Δ =

=

=

=

=

2 2

2

m (s l)

H2O(l),298K H2O(s),298K p,H O(l) p,H O(s)

For H O

at 273 K, H H 6008 J / mol S 70. 08 J / K

S 44. 77 J / K C 75. 44 J / K C 38 J / K

Δ = =

Δ = −Δ = −

Δ = = −

273 263

m 263 273

H 75. 44dT 754. 4

H H 6008 J

H 38dT 380

ΔG(l s) = ΔH(l s) − ΔT S(l s)

∴ ΔH(l s) = ΔHi + ΔHii + ΔHiii = −5633. 6 J

(3)

Δ =

= +

+ =

Δ = = −

Δ = =

i

ii

iii

273(l) 263(l) 273 298(l) 298 p(l)

263 298(l) 298 p(l)

263(s) 273(s)

S S S

(S C d ln T)

(S C d ln T) 75. 44 ln 273 6008 263

S 22. 007

273 263

S S S 38 ln

273

Δ = Δ + Δ +

S(l s) Si Sii ΔSiii = −20. 61 J K

=

Δ

G = −5633. 6 263 2+ × 0. 61 21 3 J /mole

ΔG(l s) = ΔH(l s) − ΔT S(l s)

∴ ΔH(l s) = ΔHi + ΔHii + ΔHiii = −5633. 6 J Δ = Δ + Δ +

S(l s) Si Sii ΔSiii = −20. 61 J K

(4)

= − +

at constant P dG = − dG SdT VdP

SdT

ΔG273k 263k = −

SdT

Δ 273 263Kwater = −

273263 +

G 70. 08 75. 44 ln T dT

298

= +

=

700. 8 75. 44[(273 ln 273 273) (263 ln 263 263)] 754. 4 ln 298

620. 7

= 298k +

298T p = +

C T

S S dT 70. 08 75. 44 ln

T 298

Δ 273 263Kice = −

273263 +

G 44. 77 38 ln T dT

298

=

=

447. 7 380 ln 298

38[(263 ln 263 263) 273 ln 273 273)]

407. 4

ΔG273k 263kwater = 620. 7 J / mole

ΔG273 263Kice = 407. 4 J / mole

(5)

Δ

2 9 8

H

S S .

ⅰ ),ⅱ ) 결 과 동 일

ⅰ )의 경 우 상 전 이 시 를 알 아 야 하 고

ⅱ )의 경 우 또 는 특 정 온 도 에 서 를 알 아 야 한 다

∴ Δ = Δ − Δ

= = −

water ice ice water

273 263K

263k 273k 263k

G G G

407. 4 620. 7 21 3. 3 J / mole

∴ Δ = − G 21 3 J / mole

What would be the driving force for precipitation ( ΔG290Kvapor→water) when the water vapor saturated at 300K is supercooled to 290K?

(6)

What would be the driving force for precipitation (ΔG290Kvapor→water) when the water vapor saturated at 300K is supercooled to 290K?

Δ = Δ − ΔG H T S

= − → Δ = −

dG VdP SdT G SdT

⎛ ⎞ ⎛ ⎞

Δ = − ⎜ ⎟ = − ⎜ ⎟

⎝ ⎠ ⎝ ⎠

300eq

300 290K eq eq

290 290

P P

G RTln RTln

P P

⎛∂ ⎞ =

⎜ ∂ ⎟

⎝ ⎠ Δ

P,T P,T

Why is the critical nucleus defined by the condition of G 0 instead of

r

the condition of G =0?

(7)

Open System

dU = TdS – PdV + dUmatter dG= VdP - SdT + dGmatter

dUmatter or dGmatter? dGmatterdn → dGmatter = μdn

dG= VdP - SdT + Σμidni

= − + μ

= + + μ

= − − + μ

= − + + μ

∑ ∑

∑ ∑

i i i i

i i i i

dU TdS PdV dn dH TdS VdP dn dF SdT PdV dn dG SdT VdP dn

= μ = = =

i T,P,nj i i S,V,nj i S,P,nj i T,V,nj

G U H F

n n n n

Chemical Potential

(8)

α β

surrounding

constant T, P

Close Open

α α β β α α β β

= + = μ + μ

G G n G n n n

Equilibrium

between α and β for one component system

What is the G of α and β system ?

α β α β

G , G molar free energy of and

( )

, , ,

T P T P T P

G nG n

G G

n n n

μ = = = =

For one component system

α β β α

= + = → = −

n n n const dn dn

α α β β α α β β

= + = μ + μ

dG G dn G dn dn dn

(

α β

)

α

= G − G dn < 0

for an irreversible process

( )

α > β α < μ > μα β α <

if G G , dn 0 if , dn 0

(

α β

)

α

= μ − μ dn < 0

( )

α < β α > μ < μα β α >

if G G , dn 0 if , dn 0

α α

μ =G for one component system

(9)

α→β β α

Δμ = μ − μ <

α β

A A A

Irreversible transfer of A from to 0

α α

μ

α

=

α

A A multicomponent system chemical potential of A in

= partial molar Gibbs free energy of A in G

α β

μ = μ

α β

A A

Equilibrium condition for the transfer of A between and

Equilibrium between α and β for multi-component system

Pressure-temperature phase diagrams for compounds that may be treated as unary systems: (a) water; (b) SiO2

Find the expression describing

the boundaries.

Equilibrium in one-component system

(10)

Equilibrium between α and β for one component system

α

=

β

α

=

β

G G dG dG

Chemical potential or molar Gibbs free energy should be the same.

α β

μ = μ

= − +

dG SdT VdP

G, S, V : molar quantity

α α α α α

β β β β β

μ = − + μ = − +

d S dT V dP d S dT V dP

α→β α→β

ΔS dT = ΔV dP

α α α α β β β β

−S dT +V dP = −S dT +V dP

βα = βα

(S S )dT (V V )dP

(11)

note conjugates of P,V and S,T Clausius-Clapeyron equation

α→β α→β

α→β α→β

Δ Δ

= → =

Δ Δ

dP S dP H

dT V dT T V

α→β α→β

= Δ Δ dP H dT T V

(12)

= Δ Δ

l s l s

dP H

dT T V

= Δ Δ

l s l s

dP H

dT T V

equilibrium vapor pressure

(13)

Equilibrium Vapor Pressure

α→ α

ΔV G = VG V VG = RT P

Δ Δ Δ

= = =

⎛ ⎞

⎜ ⎟

⎝ ⎠

2

dP H H P H

dT TV T RT RT

P

⎛ ⎞

Δ Δ

= ⎜ ⎟ =

⎝ ⎠

2 0 0

dP H dT ln P H 1 1

P RT P R T T

= Δ Δ

l s l s

dP H

dT T V

Δ Δ Δ

= =

0 0

H H H

P P exp exp Aexp

RT RT RT

Equilibrium Vapor Pressure

Boltzman distribution

⎛ ⎞ = Δ

⎜ ⎟

⎝ ⎠0 0

P H 1 1

ln P R T T

⎛ Δ ⎞

= ⎜⎝− ⎟⎠ P Aexp H

RT

(14)

⎛ ⎞= Δ

⎜ ⎟

⎝ ⎠0 0

P H 1 1

ln P R T T

⎛ ⎞ = Δ

⎜ ⎟

⎝ ⎠0 0

P H 1 1

ln P R T T

(15)

Why is P-T diagram different from P-V or T-X diagram?

Intensive parameters of P, T, and μ are the same at equilibrium.

Equilibrium along the phase boundary

P-T diagram

P : intensive parameter T : intensive parameter

(16)

P-V diagram V : extensive parameter

Alternative Representations of Unary Phase Diagrams

T

P S L

V

C

O

PL

Pα = Tα=TL

In two phase equilibrium

No tie-line

PL

Pα = VαVL

In two phase equilibrium

P

V

S L V

C Tie

Tie Line Line

Horizontal tie-line

SL

Sα Vα VL

In two phase equilibrium

S

V

S L V

C Tie Tie LineLine

Inclined tie-line Intensive-Intensive Intensive-Extensive Extensive-Extensive

Compare with T-X and Ternary diagrams.

(17)

P3

Draw G-T diagram at P = 1, 0.006 and P3.

(18)

Draw G-P diagram at temperatures above, at and below the triple point.

(19)

T2

3

T4

Draw G-X and a-X diagrams at T1, T2, T3 and T4.

(20)

What would be the volume of the mixture if half a mole of each is mixed?

The volume per one mole of pure water : 18 cm3 The volume per one mole of pure ethanol : 58 cm3

9 + 29 = 38 cm3

However, experimentally 37.1 cm3

if it is ideal.

How do we handle a non-ideal mixture?

(21)

How do we handle gas mixture or solution (solid or liquid)? ex) volume of mixture

Dickerson ideal gas, ideal solution

Dickerson

, , A , , B

B A

B P T n A P T n

V V

V V

n n

= =

(22)

Dickerson

partial pressure (ideal gas) pi = XiP partial volume (ideal solution) Vi = XiV

partial Gibbs free energy GiXiG

Gas mixture or Solution (solid or liquid)

Ao A

+

o

mixture B B

V V X V X

A Ao

+

o

mixture B B

G G X G X

partial volume (real solution) ViXiV

(23)

Rule of mixture does not hold!

How should we handle the mixture?

Vmix

Δ 6000

0

0 1

X2

X2o

P B

A

Gm

XB

0 1

Vmix

Δ

6000

0 0 1

X2

X2o

P B

C

A

V2

Δ

V1

Δ

Express ΔVmixat X2o in terms of and . ΔV1 ΔV2

(24)

partial molar volume

j

i

i P ,T ,n

V V

n

= ⎜ partial molar Gibbs free energy

j

i

i P ,T ,n

G G

n

= ⎜

partial molar quantity

partial molar operator

i P ,T ,nj

n

⎛ ∂ ⎞

⎜∂ ⎟

⎝ ⎠

참조

관련 문서

Moving from Traditional Payment Rails to Payment Networks 73 Fiat Currency Stablecoins Create More Interoperability between Ecosystems 74 Cryptocurrency and

We can compute all the thermodynamic properties relative to the ideal-gas state at 1 bat and at the same temperature and composition, provided that we have

In a classic experiment in 1843, James Joule showed the energy equivalence of heating and doing work by using the change in potential energy of falling masses to stir

Calculate the magnitudes of the shear force, bending moment, and torsional moment acting g g on a transverse section through the frame at point O, located at some distance

So, we evaluated the ideal screw fixation by setting a study model to compare a position of screw at the same time the screw diameter, number of

If we make food using materials that are produced at proper period, out intestines can circulate naturally and if we do not, we have serious disorder in

– The rate at which the temperature at a point is changing with time The rate at which the temperature at a point is changing with time is proportional to the rate at

expand equally with the same increase in temperature, indicating that thermal expansion coefficients of all permanent gases are the same.. He calculated the temperature of