• 검색 결과가 없습니다.

PACS numbers: 42.15.Eq, 42.79.Kr

N/A
N/A
Protected

Academic year: 2021

Share "PACS numbers: 42.15.Eq, 42.79.Kr"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Simulation Study on the Outcoupling Efficiency and Intensity Distribution of Photonic Crystal-based Organic Light-emitting Diodes

Su Seong Jeong · Hyun-Woo Choi · Jae-Hyeon Ko

Department of Physics, Hallym University, Chuncheon 200-702, Korea (Received 30 May 2013 : revised 19 June 2013 : accepted 9 August 2013)

The outcoupling efficiency (OCE) and the intensity distribution for photonic crystal-based organic light-emitting diodes (OLEDs) were investigated by using the finite difference time domain method and a ray tracing optical simulation. The OCE increased by a factor of ∼1.3 when optimized cylindrical photonic crystals, where refractive index was set to 1.9, were formed as a square lattice between the transparent electrode layer and the substrate. The inclusion of scattering particles in the substrate was effective in extracting the substrate mode, by which the OCE could be enhanced by a factor of ∼1.46. The intensity distribution from the photonic crystal-based OLEDs exhibited a four-fold rotational symmetry, which reflected the symmetry of the square lattice structure of the photonic crystals. This peculiar intensity distribution approached the Lambertian distribution as the density of the scattering particles included in the glass substrate was increased.

PACS numbers: 42.15.Eq, 42.79.Kr

Keywords: Organic light-emitting diode, Photonic crystal, Outcoupling efficiency, Simulation, Intensity distribution

° Ë

Ñ+ s ÇX N Ë  Œ º X ì Ä “ Ó Þc Ü R – ¥M ®  o° Ë Ñ T ~ ¾© Ž8 ý ° Ë Ñ˜ ¼û s ڄ Çù o Ú õ m Í ° Ë Ñy ¢ Ä Z ؃ º; c 6 ” X ¢ S

ö o Ú7 _T  Ó Å Ž ì ŏ Œ

+ ä

¬ £) ç  · L |g ` @­ £ · z < g ` @

ô

 Ça Ë >@ /† < Ɠ § „   Ó ü t o † < Æõ , ð  r…  ; 200-702

(2013¸   5 Z 4 30{ 9  ~ à Î6 £ §, 2013¸   6 Z 4 19{ 9  à º& ñ ‘ : r ~ à Î6 £ §, 2013¸   8 Z 4 9{ 9  > F  S X ‰& ñ )

Ä

»ô  Ç ì  r r ç ß –% ò % i  ~ ½ ÓZ O õ  F g‚   Æ Ò& h  r Ó ý t Y Us ‚  \  l ì ø ÍK " f F g  & ñ s  & h 6   x ) a Ä »l µ 1 Ï F g  s š ¸

×

¼(OLED)_  F g Æ ÒØ  ¦ ´ òÖ  ¦ x 9 F g • ¸ ì  r Ÿ í\  ¦ › ¸ Ù þ ¡ . Ï ã J] X Ò  ¦ s  1.9“   SiNÜ ¼– Ð + þ A$ í  ) a " é ¶: Ÿ x+ þ A F g  & ñ

` 

¦ È Ò" î „  F G õ  Ä »o  l ó ø Í  s \  500 nm Å Òl _  & ñ  y Œ •+ þ A     + þ AI – Ð C u ô  Ç Ê ê ì ø Ít 2 £ § õ  Z  } s \  ¦ þ

j& h  oô  Ç   õ  OLED_  F g Æ ÒØ  ¦ ´ òÖ  ¦ s  €  • 1.3 C  † ¾ Ó © œ | ¨ c à º e ” 6 £ §`  ¦ S X ‰ “   % i  . Ä »o  l ó ø Í\  í ß –ê ø Í{ 9 



\  ¦ Ÿ í† < Êr &  l ó ø Í — ¸× ¼\  @ /ô  Ç Æ Ò& h “   Æ ÒØ  ¦`  ¦ r • ¸ô  Ç   õ  F g Æ ÒØ  ¦ ´ òÖ  ¦“ É r €  • 1.46 C  7 £ x  % i  .

OLED ™ è – РÒ'  Ø  ¦F g ÷ &  H y n C_  F g • ¸ ì  r Ÿ í  H F g  & ñ _     ½ ¨› ¸ t   H 4» ¡ ¤  r„   @ /g A$ í `  ¦ { “ ¦ e ”

6 £ § s  S X ‰ “  ÷ &% 3 “ ¦ s  Qô  Ç r  y Œ • : £ ¤$ í “ É r Ä »o  l ó ø Í\  Ÿ í† < Ê÷ &  H í ß –ê ø Í { 9  _  x 9 • ¸\  ¦ 7 £ x r ( ” \  _  K

 ¢ - a  o÷ &“ ¦ | à Ð! Qr î ß – ì  r Ÿ í\   0 >| 9  à º e ” 6 £ §`  ¦ S X ‰ “   % i  .

PACS numbers: 42.15.Eq, 42.79.Kr

Keywords: Ä »l µ 1 Ï F g  s š ¸× ¼, F g  & ñ , F g Æ ÒØ  ¦ ´ òÖ  ¦, r Ó ý t Y Us ‚  , F g • ¸ ì  r Ÿ í

E-mail: hwangko@hallym.ac.kr 892

(2)

I. " e  ] Ø

þ

j   H ¨ î ó ø Í n Û ¼e  ¦ Y Us  r  © œ\ " f Ä »l µ 1 Ï F g  s š ¸× ¼ (Organic Light Emitting Diode, OLED) l Õ ü t s  Å Ò3 l q`  ¦

~ Ã

Γ ¦ e ”  . ŠҖ Ð ™ è+ þ A — ¸ { 9  l l _  & ñ ˜ г ðr  ™ è – Ð   6

 

x ÷ &# Q “ : r OLED  H þ j   H @ /+ þ A TV l Õ ü t x 9 { 9 ì ø Í › ¸" î 6   x Ñ þ

˜Ò  oF g " é ¶ Ü ¼– Ð & h 6   x ÷ &l  r  Œ • €  " f 6 £ x6   x ì  r   S X ‰ @ /÷ &

#

Q “ ¦ e ”  . OLED  H y Œ •y Œ • 6 £ §F G õ  € ª œF G`  ¦ : Ÿ x K  / B N/ å L ÷ &



 H „   ü < & ñ / B N s  Å Ò{ 9 8 £ x (injection layer)`  ¦  5 g „    Ã

º5 Å x8 £ x (Electron Transport Layer, ETL) x 9 & ñ / B N à º5 Å x8 £ x (Hole Transport Layer, HTL)`  ¦ â ì É r Ê ê µ 1 Ï F g8 £ x(emission layer) \ " f   ½ + ËK  r  F g‚  `  ¦ + þ A$ í >   ) a  . Õ ª  X < s  [

þ

t Ä »l 8 £ x x 9 È Ò" î „  F G Ü ¼– Ð  6   x ÷ &  H ITO _  Ï ã J] X Ò  ¦ s  ˜ Ð :

Ÿ x 1.6 ∼ 2.0  s _  # 3 0 A\  e ” “ ¦ l ó ø ÍÜ ¼– Ð  6   x ÷ &  H Ä »o  _

 Ï ã J] X Ò  ¦ s  1.5 & ñ • ¸s Ù ¼– Ð Ä »l 8 £ x \ " f + þ A$ í  ) a r  F g

‚

 _   © œ{ © œ  Òì  r“ É r ü @ Җ Ð » 1 ÏØ  ¦ t  3 l w “ ¦ Ä »l 8 £ x/ITO ü

< Ä »o  l ó ø Í_  ? / Ò\  y Œ —y >   ) a  . >   6 £ §F G \ " f + þ A

$ í

÷ &  H ³ ð€   e  ¦  Û ¼ 7 H (surface plasmon) õ _    ½ + Ë\  _  ô

 Ç ’ < Hz  ´• ¸ µ 1 ÏÒ q t l  M :ë  H \ , µ 1 Ï F g8 £ x \ " f ë ß –[ þ t # Q”   y n C_  8

ú

x | ¾ Ó ×  æ ü @ Җ Ð » 1 ÏØ  ¦   H y n C_  q Ö  ¦“ É r 20% p ë ß –\  Ô  ¦ õ  ô

 Ç z  ´& ñ s   [1]. Fig. 1“ É r C €  µ 1 Ï F g (bottom emission)+ þ A OLED _  l ‘ : r ½ ¨› ¸ x 9 y n C\  -t _  C ì  r  ⠖ Ð\  ¦ ˜ Ð# Œï  r



. 6 £ §F G \ " f_  ’ < Hz  ´ 1 p x`  ¦ “ ¦ 9 t  · ú §  H é ß –í  H ô  Ç l   F g

†

< Æ& h  > í ß –\   Ø Ô€   Ä »l 8 £ x õ  ITO\  y Œ —y   H • ¸  › ' a — ¸

×

¼ (waveguide mode)_  q ×  æ s  €  • 50%, Ä »o  l ó ø Í\  y Œ — y

  H l ó ø Í — ¸× ¼ (substrate mode)_  q ×  æ s  €  • 30%, Õ ªo 

“

¦ ü @ Җ Ð  4 R š ¸  H Æ ÒØ  ¦ — ¸× ¼ (outcoupling mode < Ê

“

É r air mode – Е ¸ Ô  ¦a Ë >)_  q ×  æ“ É r 20%  G  ÷ &t  · ú §  H  כ Ü

¼– Ð > í ß –  ) a   [2]. Fig. 1\ " f ¿ º > h_  À 1 Ïç ß –Ò  o & h ‚  “ É r y Œ • y

Œ

• / B N l ü < Ä »o _  > €  , Õ ªo “ ¦ Ä »o ü < Ä »l 8 £ x _  > €  \ 

"

f e ” > y Œ • (y Œ •y Œ • θ

air

x 9 θ

glass

– Ð ³ ðl )Ü ¼– Ð { 9     H y n C _

  ⠖ Ð\  ¦    · p . s  e ” > y Œ •˜ Ð   8  H y Œ •• ¸– Ð { 9  ÷ &



 H F g‚  [ þ t“ É r ? / Җ Ð „  ì ø Í  “ ¦ s  õ & ñ \ " f 6 £ §F G s   Ä

»l 8 £ x ? /\ " f f  ¨ à º÷ &   Ä »l 8 £ x < ʓ É r Ä »o _  8 £ ¤€  `  ¦ :

Ÿ

x K   4 R   8 £ ¤€   µ 1 Ï F g (edge emission)`  ¦ + þ A$ í ô  Ç .

ô

 Ǽ #  µ 1 Ï F g8 £ x _  Š © œF G  ü < 6 £ §F G ? /  Ä »„   _    ½ + Ë\  _  K

 µ 1 ÏÒ q t   H ³ ð€   e  ¦  Û ¼ 7 H _  # Œl  (excitation)  H ETL _

 ¿ ºa  · û ª`  ¦  â Ä º OLED_  µ 1 Ï F g ´ òÖ  ¦ _  $  \  d ” @ / ô

 Ç % ò † ¾ Ó`  ¦ z • 2 ;  [3].

Õ

ª 1 l x î ß – OLED_  F g Æ ÒØ  ¦ ´ òÖ  ¦ (Outcoupling Efficiency, OCE)`  ¦ † ¾ Ó © œr v l  0 Aô  Ç  € ª œô  Ç ” ¸§ 4 [ þ t s  ”  ' Ÿ ÷ &# Q M ® o



 [1,4,5]. • ¸  › ' a — ¸× ¼– Ð y Œ —y   H y n C`  ¦ Æ ÒØ  ¦ l  0 AK  • ¸ { 9

 ) a F g † < Æ& h  ½ ¨› ¸– Ѝ  H ì ø Í ó ø Í_    › ¸ [6], Ä »l 8 £ x õ  ITO 8

£

x _  ½ ¨› ¸    o (Ä »l 8 £ x ? / $ Ï ã J] X Ò  ¦ Õ ªo × ¼_  • ¸{ 9  [7]

<

ʓ É r ITO È Ò" î „  F G _  J ‡   o [8] 1 p x), y n C_   © œ & ñ • ¸_ 

Fig. 1. (Color online) A cross-section of a bottom- emitting OLED and the distribution of light energy into the air mode, substrate mode, waveguide mode and cou- pling to surface plasmons.

Å

Òl \  ¦ ° ú   H  r] X    _  • ¸{ 9  [9], ITOü < l ó ø Í Ä »o   s 

>

€  _    › ¸ [10–13] 1 p x`  ¦ [ þ t à º e ”  . ì ø ̀  \  Ä »o  l ó ø Í

\

 y Œ —y   H l ó ø Í — ¸× ¼\  ¦ Æ ÒØ  ¦ l  0 Aô  Ç ~ ½ ÓZ O Ü ¼– Ѝ  H l ó ø Í _

 ³ ð€  \   s ß ¼– Ð E $ ™Ý ¼\  ¦ & h 6   x    [14–17], / B N l -l  ó

ø Í_  > €  \  S X ‰ í ß –8 £ x & h 6   x   H ~ ½ ÓZ O  [18–20] 1 p x s   Ö ¸6   x ÷ &

%

3  . l ó ø ͗ ¸× ¼ü < • ¸  › ' a — ¸× ¼\  ¦ 1 l x r \  N Sè ­ q à º e ”   H 4 Ÿ ¤

½

+ Ë ½ ¨› ¸\  @ /ô  Ç ƒ  ½ ¨ % i r   Ö ¸ µ 1 Ïy  s À Ò# Q4 R M ® o   [21,22].

F

g  & ñ (Photonic Crystal) ½ ¨› ¸ê ø Í Ï ã J] X Ò  ¦ s  " f– Ð  

 É

r ¿ º Ä »„  ^ ‰ { 9 & ñ ô  Ç Å Òl \  ¦ t “ ¦ ì ø Í4 Ÿ ¤& h Ü ¼– Ð + þ A$ í

 )

a F g † < Æ& h  ½ ¨› ¸\  ¦ ´ ú ˜   H X < s \  ¦ Ä »l 8 £ x õ  l ó ø Í  s \ 

¶ ú

š{ 9  >  ÷ &€   y n C_  „    ) ‡6   x ÷ &t  · ú §  H F g  ½ ™× ¼Ì “ s (optical bandgap) _  + þ A$ í \     • ¸  › ' a — ¸× ¼_  ”  ' Ÿ s  j Ë

µ[ þ t # Qt “ ¦ l ó ø Í A á ¤ Ü ¼– Ð y n Cs  Ä »• ¸ | ¨ c à º e ”  . Lee x 9 Do 1

p

x“ É r Ï ã J] X Ò  ¦ s  1.90 ∼ 1.95“   SiN

x

ü < Ï ã J] X Ò  ¦ s  1.5 & ñ • ¸

“

  SiO

2

– Ð + þ A$ í  ) a s  " é ¶ F g  & ñ `  ¦ ITO ü < Ä »o l ó ø Í   s

\  C u K " f 1.5 C  s  © œ_  F g Æ ÒØ  ¦ ´ òÖ  ¦ † ¾ Ó © œ`  ¦ % 3 % 3 



“ ¦ ˜ Г ¦ô  Ç   e ”   [10,23]. F g  & ñ “ É r  o† < Ɣ  / B N7 £ x ‚ à ÌZ O  (CVD), „   c ”  o ™ èÕ ªA x , RIE (reactive ion etching),



” ¸e ” á ԏ 2 ;h A (nanoimprinting) 1 p x  € ª œô  Ç ~ ½ ÓZ O Ü ¼– Ð + þ A

$ í

| ¨ c à º e ”   H X <, Cho 1 p x“ É r þ jœ í– Ð ”  / B N 7 £ x ‚ Ã Ì  © œq \  ¦ s 6   x

t  · ú §“ ¦ a % ¦- 0 q\  l ì ø Íô  Ç $ “ : r 6   xÓ  o / B N& ñ `  ¦ s 6   x K  ZnO

\

 l ì ø Íô  Ç F g  & ñ ½ ¨› ¸\  ¦ OLED ? /\  + þ A$ í ½ + É Ã º e ” 6 £ §`  ¦

˜

Ð% i   [24]. Õ ª  X < F g  & ñ `  ¦ OLED \  & h 6   x >  ÷ &€   C

u   ) a F g  & ñ _  ì  r Ÿ í t   H @ /g A$ í \  _ K  OLED _

 F g • ¸ì  r Ÿ í : £ ¤& ñ ô  Ç r  y Œ • : £ ¤$ í `  ¦ ƒ 9  à º e ” “ ¦  Ö  ¦



Q ¼ # F g _  7 á x À Ó\  _ ” > r K " f : £ ¤& ñ y Œ •• ¸\ " f F g Æ ÒØ  ¦ ´ òÖ  ¦ s

 7 £ x  >  H † d \     Û ¼& 7 ˜à Ô! 3 _     o x 9 r  y Œ •\   

 É

r Ò  o› ¸    o\  ¦ { 9 Ü ¼~  ´ à º e ”   [25]. s  Qô  Ç   õ   H F g  

(3)

Fig. 2. (Color online) Cross-sections of (a) the OLED, (b) the SiN-applied OLED, and (c) the photonic crystal- applied OLED studied by the FDTD method. (d) is the top view of the photonic crystal lattice.

&

ñ ½ ¨› ¸\  ¦ Ñ þ ˜Ò  o OLED\  & h 6   x l  0 AK " f  H & h ] X ô  Ç F g

•

¸ì  r Ÿ í_  + þ A$ í , r  y Œ •\    É r Ò  o› ¸_    1 l x ; Ÿ ¤ 1 p x \  @ /ô  Ç [

jd ” ô  Ç “ ¦ 9 € 9 כ ¹† < Ê`  ¦ ´ ú ˜K  ï  r  . ‘ : r ƒ  ½ ¨\ " f  H F g  

&

ñ _  ½ ¨› ¸ x 9 C u \     OLED_  OCE x 9 F g • ¸ ì  r Ÿ í

 # Qb  G>       H t \  ¦ & ñ | ¾ Ó& h Ü ¼– Ð › ¸  l  0 AK  Ä »ô  Ç

ì  r r ç ß –% ò % i  (finite difference time domain, FDTD) ~ ½ Ó Z O

 [26]õ  F g‚  Æ Ò& h  (ray tracing) ~ ½ ÓZ O `  ¦   ½ + ËK " f F g † < Æ r

Ó ý t Y Us ‚  `  ¦ à º' Ÿ  % i  . F g  & ñ _  Z  } s , ì ø Ít 2 £ §, C u  1

p

x _    à º\     OLED_  µ 1 Ï F g : £ ¤$ í s  # Qb  G>       H t

  © œ[ jy  › ¸  % i Ü ¼ 9 s \  ¦ F g  & ñ s  \ O   H l ‘ : r ½ ¨› ¸ _

 OLED : £ ¤$ í õ  q “ § % i  .

II. S ö o Ú7 _T  Ó Å  ºü g Å

1. S ö o Ú7 _T  Ó Å U ê s0 n É

OLED ½ ¨› ¸  H ˜ Ð: Ÿ x y n C_   © œ˜ Ð • ¸  s `›    ú ª“ É r à ºz  



” ¸p '  & ñ • ¸_  ¿ ºa \  ¦ ”    8 £ x ~ à Ì} Œ •Ü ¼– Ð ½ ¨$ í ÷ &# Q e ”

Ü ¼Ù ¼– Ð F g‚   F g † < Æ\  l ì ø Íô  Ç F g‚  Æ Ò& h  l Z O _  & h 6   x“ É r j Ë

µ[ þ t  . „   l   OLED x 9 F g  & ñ ½ ¨› ¸\  ¦ ”  ' Ÿ ½ + É M : Ò q

tl   H ‰ & ³ © œ`  ¦ & ñ S X ‰ y  > í ß – l  0 AK " f  H Ä »ô  Ç ì  r r ç ß –

% ò

% i  ~ ½ ÓZ O `  ¦  6   x K   ô  Ç  [26]. s  ~ ½ ÓZ O “ É r Ð  oÛ ¼R / ÷ ~ ½ Ó& ñ d ”

`  ¦ r ç ß – % ò % i \ " f { 9 & ñ ô  Ç r ç ß – ç ß –  Z > – Ð ì  r # Œ í  H

& h Ü ¼– Ð Ð  oÛ ¼R / ÷ ~ ½ Ó& ñ d ” `  ¦ Û  ¦ # Q   H ~ ½ ÓZ O Ü ¼– Ð+ ‹, ˜ Ð: Ÿ x

>

í ß –\  € 9 כ ¹ô  Ç B j— ¸o ü < r ç ß –s  ´ ú §s  € 9 כ ¹    H é ß –& h s  e ”

t ë ß – > í ß –_  î ß –& ñ $ í õ  & ñ S X ‰ • ¸– Ð “  K   ” ¸ Ÿ íž Ð_ ” Û ¼ 1 p

x  € ª œô  Ç ì  r  \ " f B Ä º F g# 3 0 A >   6   x ÷ &“ ¦ e ”  . ‘ : r

ƒ

 ½ ¨\ " f  H Lumerical Solutions  _  FDTD Solutions 



  H  © œ6   x  o ™ èá Ôà ÔJ ?# Q\  ¦  Ö ¸6   xÙ þ ¡ .

F

g‚  Æ Ò& h  l Z O “ É r F g " é ¶ Ü ¼– РÒ'  „   ÷ &# Q    H y n Cs  Ó

ü

t ^ ‰\   Òv 9 y €  " f ì ø Í , È Òõ  < ʓ É r Ï ã J] X ÷ &  H l   F g † < Æ

&

h “   : £ ¤$ í \  l ì ø Íô  Ç r Ó ý t Y Us ‚   l Z O s  . y n C_  S X ‰ í ß – x 9 í

ß –ê ø Í% ƒ! 3  l   F g † < Æ& h  ~ ½ ÓZ O ë ß –Ü ¼– Ð r Ó ý t Y Us ‚   l  j Ë µŽ  H

‰

&

³ © œ“ É r  7 H _ … \  ¦ – Ð (Monte Carlo) l Z O \  l ì ø Íô  Ç S X ‰Ò  ¦

&

h  ~ ½ ÓZ O s  • ¸{ 9  ) a  . s  ~ ½ ÓZ O \ " f  H F g‚  s   â > €  \ " f f

 ¨ à º, ì ø Í , È Òõ , Ï ã J] X , í ß –ê ø Í 1 p x # Œ Q F g † < Æ& h   © œ  ñ Œ •6   x

`

 ¦ ½ + É M : Ó ü t o Z O g Ë : < ʓ É r ³ ð€  _  : £ ¤$ í \     Å Ò# Qt   H F

g‚    ⠖ Ð_  S X ‰Ò  ¦ \  _ K  F g‚  _  ”  ' Ÿ s    & ñ ÷ &• ¸2 Ÿ ¤ ô  Ç



. s  ~ ½ ÓZ O “ É r S X ‰Ò  ¦& h  : £ ¤$ í  © œ ´ ú §“ É r à º_  F g‚  \  @ /ô  Ç Æ Ò

&

h

`  ¦ € 9 כ ¹– Ð  9 Æ Ò& h    H F g‚  _  > hà º ´ ú § | 9 à º2 Ÿ ¤



8 ’  ø @$ í e ”   H r Ó ý t Y Us ‚    õ    è ß – . ‘ : r ƒ  ½ ¨\ 

"

f  H BRO (Breault Research Organization)  _  ASAP

™

èá Ôà ÔJ ?# Q\  ¦  Ö ¸6   x % i  .

OLED _  l ó ø ÍÄ »o  ½ ¨› ¸  H ˜ Ð: Ÿ x mm & ñ • ¸_  " é ¶`  ¦

t Ù ¼– Ð FDTD ~ ½ ÓZ O `  ¦ & h 6   x l   H j Ë µ[ þ t  .   " f ‘ : r

ƒ

 ½ ¨\ " f  H OLED ? /\ " f µ 1 Ï F g s  { 9 # Q   H Ä »l 8 £ x  Ò'  ITO\  ¦  4 R  ü < + þ A$ í ÷ &  H „   l  ì  r Ÿ í_    õ \  ¦ FDTD

~

½ ÓZ O `  ¦ s 6   x K  ½ ¨ô  Ç Ê ê, s  ì  r Ÿ í\  ¦ ASAP ? /– Ð 4 Rü <

OLED l ó ø Í Ä »o  ? /  © œ_  F g " é ¶ s  t   H ì  r Ÿ í– Ð & h 6   x ô

 Ç Ê ê  7 H _ … \  ¦ – Ð F g Æ Ò& h  r Ó ý t Y Us ‚   á Ԗ ÐÕ ªÏ þ ›`  ¦  6   x K

 ™ è _  F g: £ ¤$ í `  ¦ r Ó ý t Y Us ‚   % i  .

2. S ö o Ú7 _T  Ó Å { ¢¨ | 

Figure 2(a)  H FDTD Solution  © œ\  ½ ¨‰ & ³ ) a OLED — ¸ 4

S q_  l ‘ : r ½ ¨› ¸\  ¦ ˜ Ð# Œï  r  . s  — ¸4 S q“ É r s „  \  ‘ : r  7 Hë  H _ 

$

 [ þ t s  ˜ Г ¦ô  Ç OLED_  OCE † ¾ Ó © œ\  @ /ô  Ç ƒ  ½ ¨ [27–

29] \ " f ½ ¨» ¡ ¤ ô  Ç r Ó ý t Y Us ‚   — ¸4 S qõ  l ‘ : r& h Ü ¼– Ð 1 l x{ 9  



. 6 £ §F G“ É r · ú ˜À Óp ³ o u Ü ¼– Ð ÷ &# Q e ” Ü ¼ 9 „   Å Ò{ 9 8 £ x (ETL)

“ É

r Ï ã J] X Ö  ¦ 1.66 \  80 nm_  ¿ ºa – Ð, & ñ / B N Å Ò{ 9 8 £ x (HTL)“ É r Ï

ã J] X Ò  ¦ 1.82 \  50 nm_  ¿ ºa – Ð, ITO  H Ï ã J] X Ò  ¦ 1.86 \  150 nm ¿ ºa – Ð, Õ ªo “ ¦ Ä »o   H 1.48 _  Ï ã J] X Ò  ¦ – Ð [ O & ñ 

%

i  . F g • ¸ì  r Ÿ í\  ¦ S X ‰ “   l  0 Aô  Ç  Ž Ø  ¦ l   H ITO  À »€  “   Ä

»o  5 Å q \  C u ÷ &% 3  . Ä »l µ 1 Ï F g ™ è \  ¦ à ºì  r õ  / B N l – ÐÂ Ò '

 ˜ Р ñ l  0 AK  ITOü < Ä »o   s \  70 nm ¿ ºa _  SiN

~ Ã

Ì} Œ •8 £ x`  ¦ + þ A$ í ô  Ç ½ ¨› ¸ Fig. 2(b)\  ] jr ÷ &# Q e ” “ ¦ Õ ª 0

A\  F g  & ñ ½ ¨› ¸ + þ A$ í  ) a ½ ¨› ¸_  ô  Ç \ V Fig. 2(c)\  ]

jr ÷ &% 3  . s  \ V\ " f  H ì ø Ít 2 £ § s  140 nm“   " é ¶: Ÿ x+ þ A SiN s

 Å Òl  500 nm“   & ñ  y Œ •+ þ A     + þ AI – Ð Å Òl & h Ü ¼– Ð C

u ÷ &# Q e ”  . F g  & ñ ½ ¨› ¸\  ¦ 0 A\ " f   ‘ : r é ß –€  • ¸

(4)

Fig. 2(d) \  ˜ Ð# Œt “ ¦ e ”  . ‘ : r ƒ  ½ ¨\ " f  H ETL _  ¿ ºa , F

g  & ñ ½ ¨› ¸_   € ª œô  Ç   à º[ þ t, 7 £ ¤ f ”  â , Z  } s , Å Òl  1 p x _

 † < Êà º– Ð r Ó ý t Y Us ‚  `  ¦ à º' Ÿ  # Œ þ j& h _  OCE\  ¦ ˜ Ðs 



 H OLED ½ ¨› ¸\  ¦ ¹ 1 ԓ ¦  % i  .

F

g " é ¶ Ü ¼– Ѝ  H " f– Ð f ” “ §   H [ j ~ ½ ӆ ¾ ÓÜ ¼– Ð ”  1 l x   H Š © œF G



\  ¦ ETL õ  HTL_   â > €  _  ×  æ € © œ\  C u K  1 p x ~ ½ Ó& h  & h  F

g " é ¶ s  ÷ &• ¸2 Ÿ ¤ % i “ ¦ F g " é ¶ _   © œ“ É r 550 nm é ß –Ò  oF g Ü ¼

–

Ð [ O & ñ % i  . FDTD ? /  6   x ) a OLED _  V , s   H 10 × 10 µm

2

% i “ ¦, # Œl \ " f % 3 # Q”   Ø  ¦F g ì  r Ÿ í\  ¦ & h 6   x ô  Ç ASAP

?

/  © œ F g " é ¶ _  €  & h “ É r 0.5 × 0.5 mm

2

% i Ü ¼ 9 s   © œ F g

"

é

¶“ É r Ä »o  l ó ø Í_  ×  æ € © œ\   o ¸ ú š€ Œ ¤ . Ä »o l ó ø Í_  €  & h  õ

 ¿ ºa   H y Œ •y Œ • 2 × 2 mm

2

ü < 0.7 mm– Ð [ O & ñ % i  .

III. S ö o Ú7 _T  Ó Å + s ÇÊ Ý õ m Í ‚ º8 ý

1. SiN U c lT c l X ì Ä “ Ó Þ OLED S ö o Ú7 _T  Ó Å + s ÇÊ Ý

OLED  H Ï ã J] X Ò  ¦ s  " f– Ð   É r  8 £ x _  ~ à Ì} Œ •½ ¨› ¸– Ð ÷ &# Q e ”

“ ¦, ETL_  ¿ ºa \     y n Cs  Ò q t$ í ÷ &  H 0 Au ü < 6 £ §F G   s

_  ç ß –  s     l  M :ë  H \  ³ ð€   e  ¦  Û ¼ 7 H _  # Œl , 6 £ §F G õ

 ITO  s \  + þ A$ í ÷ &  H p ™ è / B N”   ´ òõ  (micro cavity effect) 1 p x _  4 Ÿ ¤ ½ + Ë& h “   ‰ & ³ © œ\  _ K  ’ < Hz  ´s  Ò q t|   . Õ ªA 

"

f ETL_  ¿ ºa \     Ø  ¦F g ÷ &  H „   l  _  F g • ¸ ì  r Ÿ í



 H ß ¼>     >   ) a   [1,30]. OLED l ‘ : r ½ ¨› ¸ x 9 # Œl \  í

ß –ê ø Í8 £ x õ  pillow E $ ™Ý ¼ & h 6   x ) a ½ ¨› ¸\  @ /K  ETL_  ¿ º a

 p u   H % ò † ¾ Óõ  › ' aº  K " f  H s p  s „  \  Ø  ¦ ç ß –  ) a  7 H ë

 H [28,29] \ " f  © œ[ jy  [ O " î ô  Ç   e ”  .   " f ‘ : r  7 Hë  H \ 

"

f  H ŠҖ Ð F g  & ñ ½ ¨› ¸ & h 6   x ) a OLED ½ ¨› ¸ x 9 s  ½ ¨

›

¸_  OCE\  ETL ¿ ºa  p u   H % ò † ¾ Ó\  @ /K   À ғ ¦  ô

 Ç .

Figure 3“ É r SiN ~ à Ì} Œ •8 £ x s  & h 6   x ) a OLED \ " f ETL ¿ ºa 

\

    ITO\  ¦ È Òõ  # Œ Ä »o  l ó ø Í A á ¤ Ü ¼– Ð  “ : r y n C_  -„   l

 © œ [ jl _  ] jY  L \  q Y V   H- " é ¶  o  © œ (far-field) F g • ¸ ì

 r Ÿ í\  ¦    · p . ETL 0 A µ 1 Ï F g8 £ x \ " f f ” ] X  Ä »o \  ¦ † ¾ Ó 



 H y n Cõ  x 9 €  _  6 £ §F G \ " f 180• ¸– Ð 0 A © œs   Ÿ ÷ ¶ Ê ê ì ø Í 

÷

&# Q `  ¦  š ¸  H y n C  s _  p ™ è / B N”   ´ òõ \  _ K  & ñ €  `  ¦

†

¾ Ó   H F g • ¸_  [ jl  ‰ & ³$ y       H  כ `  ¦ S X ‰ “  ½ + É Ã º e ” 



. ETL_  ¿ ºa  100 nm Â Ò   H{ 9  M : & ñ €  Ü ¼– Ð ˜ Ðy © œç ß – [ O

s  { 9 # Q €  " f s  ~ ½ ӆ ¾ ÓÜ ¼– Ð  © œ{ © œy  y © œ o  ) a y n C_  [ jl  ì

 r Ÿ í\  ¦ S X ‰ “  ½ + É Ã º e ”   H X < ì ø ÍK , 160 ∼ 180 nm Â Ò   H \ " f



 H  © œ Wç ß –[ O \  _ K  & ñ €   ~ ½ ӆ ¾ ÓÜ ¼– Ð † ¾ Ó   H y n C_  € ª œs  / å L

 

y  ×  ¦ # Q[ þ t # Q e ” 6 £ §`  ¦ · ú ˜ à º e ”  . s  Qô  Ç   õ   H OLED

?

/ ) ‡6   x ÷ &  H • ¸  — ¸× ¼_  > hà º_     oü < › ' aº  ÷ &# Q e ” “ ¦, s

„  \  ˜ Г ¦  ) a r Ó ý t Y Us ‚     õ  [30]ü < & ñ $ í & h Ü ¼– Ð { 9 u 

Fig. 3. (Color online) The far-field intensity distribution of the light emitted from the ITO electrode as a function of the ETL thickness, which was detected in the glass substrate by using the FDTD method. SiN layer was applied to the OLED without photonic crystals.

  H   õ s  . Fig. 4  H Fig. 3 _  F g • ¸ ì  r Ÿ í\  ¦ ASAP ? /

\

 [ O & ñ  ) a  © œ F g " é ¶ _  C  F g ì  r Ÿ í– Ð • ¸{ 9 ô  Ç Ê ê, F g‚  Æ Ò& h  l

Z O Ü ¼– Ð ½ ¨ô  Ç OLED Ä »o  l ó ø Í 0 A_  F g • ¸ ì  r Ÿ í\  ¦ ETL _

 ¿ ºa \        · p  כ s  . Fig. 3\  ] jr   ) a ITO 0 A Ä

»o  l ó ø Í 5 Å q _  F g • ¸ ì  r Ÿ í ×  æ €  • 50• ¸ s  © œ_  “ ¦r  y Œ •

`

 ¦ † ¾ Ó   H F g‚  [ þ t“ É r „  ì ø Í \  _ K  l ó ø Í — ¸× ¼– Ð y Œ —y  9

’

< Hz  ´ ) a  . s – Ð “  K  OLED µ 1 Ú_  F g • ¸ ì  r Ÿ í  H Ä »o  l  ó

ø Í ? / F g • ¸ ì  r Ÿ íü <  © œ{ © œy  ´ ú §s   2 £ §`  ¦ · ú ˜ à º e ” “ ¦ l ‘ : r

&

h Ü ¼– Ð “ ¦r  y Œ •`  ¦ † ¾ Ó   H y n C_  q ×  æ“ É r B Ä º  Œ • & ’ 6 £ §

`

 ¦ · ú ˜ à º e ”  . Fig. 5  H ETL _  ¿ ºa \     > í ß –  ) a y n C\ 



-t _  C ì  r q Ö  ¦ s  . À 1 Ïy © œ " é ¶ l   ñ  H y Œ • › ¸| Z >  ü @ Җ Ð Æ

ÒØ  ¦ ) a OCE _  q ×  æ`  ¦   ? /“ ¦,  Ž & ñ Ò  o  y Œ • l   ñ  H ü @ Â

Җ Ð Æ ÒØ  ¦ ) a y n Cõ  Ä »o  l ó ø Í\  y Œ —˜ 2 ³ y n C_  ½ + Ë`  ¦ ³ ð‰ & ³ Ù ¼

–

Ð ¿ º € ª œ  s _  s  l ó ø Í — ¸× ¼– Ð y Œ —˜ 2 ³ y n C_  q ×  æ`  ¦ _

p ô  Ç .   Qt  q ×  æ“ É r Ä »l 8 £ x õ  ITO\  • ¸  — ¸× ¼– Ð y

Œ

—˜ 2 ³ y n C_   © œ@ /& h  q ×  æ s  . ETLs  100 nm { 9  M :  H µ 1 Ï F

g8 £ x \ " f l ó ø Í — ¸× ¼– Ð  Å # Qš ¸  H y n C_  q ×  æ s  60.7%, s 

×

 æ ü @ Җ Ð » 1 ÏØ  ¦   H y n C_  q ×  æ s  26.6%e ” `  ¦ · ú ˜ à º e ”  .

s

 Qô  Ç Ã ºu   H Fig. 2(a) \ " f ] jr   ) a l ‘ : r ½ ¨› ¸_    õ 

(5)

Fig. 4. (Color online) The far-field intensity distribu- tion emitted from the OLED as a function of the ETL thickness, which was detected in the air by using the ray tracing method. SiN layer was applied to the OLED without photonic crystals.

[29] ü < q “ §K  ^  ¦ M : l ó ø Í — ¸× ¼  H 2.4% 7 £ x \  ¦ % i t ë ß – OCE  H 2.3% y Œ ™™ è  ) a   õ s  . s  Qô  Ç   õ   H   É r 8 £ x

˜

Ð  Ï ã J] X Ò  ¦ s   8 Z  }“ É r SiN ~ à Ì} Œ •8 £ x s  Ä »o  l ó ø Í ? / F g • ¸ ì

 r Ÿ í\  ¦  8 V , “ É r y Œ •• ¸– Ð ì  r í ß –r v €  " f s [ þ t s  ü @ Җ Ð  

`

 ¦ M : e ” > y Œ •˜ Ð   8  H y Œ •• ¸– Ð { 9     H F g‚  _  q ×  æ`  ¦ 7

£

x r (  l  M :ë  H“    כ Ü ¼– Ð K $ 3  ) a  .

2. ° Ë Ñ+ s ÇX N Ë X ì Ä “ Ó Þ OLED8 ý S ö o Ú7 _T  Ó Å + s ÇÊ Ý

OLED ½ ¨› ¸\ " f 550 nm  © œ_  y n C“ É r F g  & ñ _  Å Òl 

 €  • 500 nm“   › ¸| \ " f Z  }“ É r F g Æ ÒØ  ¦ ´ òÖ  ¦`  ¦ ˜ Г    כ Ü

¼– Ð ˜ Г ¦  ) a   e ”   [23]. III.A_    õ \  _  €   OCE

\

 ¦ Z  } s   H ETL _  þ j& h  ¿ ºa   H 100 nm% i  . s \    

‘

: r r Ó ý t Y Us ‚  \ " f  H Ä º‚   ETL_  ¿ ºa \  ¦ 100 nm, " é ¶: Ÿ x + þ

A F g  & ñ Å Òl \  ¦ 500 nm – Ð “ ¦& ñ r (  `  ¦ M : þ j& h _  F g Æ

ÒØ  ¦ ´ òÖ  ¦`  ¦   ? /  H F g  & ñ _  ì ø Ít 2 £ §`  ¦ ½ ¨ “ ¦  % i 



. F g  & ñ _  Height  H Ä º‚   e ” _ – Ð 150 nm– Ð [ O & ñ % i 

Fig. 5. (Color online) The dependence of the ratio of light energy in each of the three modes as a function of the ETL thickness. SiN layer was applied to the OLED without photonic crystals.

Fig. 6. (Color online) The ratio of the light escaped from the ITO into the glass substrate as a function of (a) the radius and (b) the height of the photonic crystals. See the text for details. The ETL thickness and the period of the photonic crystals were fixed to 100 and 500 nm, respectively. The radius of the photonic crystals was fixed to be 130 nm for the case (b).



. Fig. 6(a)“ É r " é ¶: Ÿ x+ þ A F g  & ñ _  ì ø Ít 2 £ §    o\     Ä » l

8 £ x/ITO \ " f Ä »o  l ó ø ÍÜ ¼– Ð  Å # Q“ : r y n C_  q ×  æ`  ¦ ³ ð‰ & ³ ô

 Ç . F g  & ñ _  ì ø Ít 2 £ § \     l ó ø ͗ ¸× ¼_  q ×  æ s  ”  1 l x

(6)

Fig. 7. (Color online) The far-field intensity distribution of the light emitted from the ITO electrode as a function of the ETL thickness, which was detected in the glass substrate by using the FDTD method. The period, the radius and the height of the photonic crystals were fixed to 500, 130, and 60 nm, respectively.

  H  כ `  ¦ ^  ¦ à º e ” Ü ¼ 9 ì ø Ít 2 £ § s  130 nm { 9  M : l ó ø Í

—

¸× ¼– Ð  Å # Qš ¸  H y n C_  q ×  æ s  60.7%– Ð  © œ Z  }    H  כ

`

 ¦ · ú ˜ à º e ”  .  Ö  ¦  Q ì ø Ít 2 £ § s  130 nm“    â Ä ºü < 200 nm“    â Ä º y Œ •y Œ •\  @ /ô  Ç " é ¶  o  © œ F g • ¸ ì  r Ÿ í• ¸ † < Êa  ³ ð r

÷ &# Q e ”  . & ñ  y Œ •+ þ AÜ ¼– Ð C u   ) a F g  & ñ _  4» ¡ ¤  r„  

@

/g A$ í s  F g • ¸ì  r Ÿ í\ • ¸ Õ ª@ /– Ð ì ø Í% ò ÷ &# Q e ” 6 £ §`  ¦ · ú ˜ à º e ”

 . Fig. 6(a)_    õ \     F g  & ñ _  ì ø Ít 2 £ §`  ¦ 130 nm – Ð “ ¦& ñ r †   Ê ê F g  & ñ _  Z  } s \  ¦    or v €  " f l ó ø Í

—

¸× ¼– Ð  Å # Qš ¸  H y n C_  q ×  æ`  ¦ Æ Ò& h  % i  . Fig. 6(b)  H Õ

ª   õ \  ¦ ˜ Ð# Œï  r  . ì ø Ít 2 £ § \  q  €   F g  & ñ _  Z  } s 

l

ó ø ͗ ¸× ¼\  p u   H % ò † ¾ Ós   Œ •l   H t ë ß – F g  & ñ _  Z  } s

 50 ∼ 110 nm“   › ¸| \ " f q “ §& h  Z  }“ É r à ºu \  ¦ ˜ Ðs 

“

¦ e ” 6 £ §`  ¦ · ú ˜ à º e ”  . Z  } s  60 nm“    â Ä º l ó ø ͗ ¸× ¼– Ð

 Å

# Q  H y n C_  q ×  æ s  64.5%\  s Ø Ô>  ÷ &“ ¦, F g • ¸ ì  r Ÿ í



 H F g  & ñ _  @ /g A$ í s  ì ø Í% ò ÷ &# Q e ” 6 £ § • ¸ S X ‰ “  ½ + É Ã º e ”  .

s

 © œ_    õ \  l ì ø ÍK  F g  & ñ _  Å Òl \  ¦ 500 nm, ì ø Ít  2

£

§`  ¦ 130 nm, Z  } s \  ¦ 60 nm – Ð [ O & ñ ô  Ç Ê ê\  ETL_  ¿ ºa 



  o\    É r F g Æ ÒØ  ¦ ´ òÖ  ¦`  ¦ › ¸ K  ˜ Ѐ Œ ¤ . Fig. 7“ É r ITO

Fig. 8. (Color online) The far-field intensity distribu- tion emitted from the OLED as a function of the ETL thickness, which was detected in the air by using the ray tracing method. The period, the radius and the height of the photonic crystals were fixed to 500, 130, and 60 nm, respectively.

0

A\  + þ A$ í ÷ &  H " é ¶  o  © œ_  F g • ¸ ì  r Ÿ í\  ¦ ETL _  ¿ ºa \ 



     · p  כ s  . Fig. 8“ É r Fig. 7 _    õ \    H  K  F g

‚

 Æ Ò& h  l Z O Ü ¼– Ð ½ ¨ô  Ç OLED Ä »o  l ó ø Í 0 A_  F g • ¸ ì  r Ÿ í

\

 ¦ ETL _  ¿ ºa \        · p  כ s  . F g  & ñ \  _ ô  Ç y n C _

 Æ ÒØ  ¦ õ & ñ “ É r • ¸  › ' a — ¸× ¼– Ð ”  ' Ÿ    H y n C_  à º 7 ˜'  (wave vector) \  F g  & ñ _  Å Òl & h “   ½ ¨› ¸\  _ K  Æ Ò& h 

“

  à º 7 ˜'   8K t   H õ & ñ Ü ¼– Ð K $ 3 s  0 p x   [23, 31]. s  M : s  Æ Ò& h “   à º 7 ˜' _  ß ¼l   H 2π\  ¦ F g  & ñ _

 Å Òl – Ð  è  H ° ú כÜ ¼– Ð   & ñ ÷ &  H X <, Fig. 2(d)\ " f ^  ¦ à º e ”

  H  כ % ƒ! 3  F g  & ñ _  Å Òl $ í “ É r ~ ½ ӆ ¾ Ó\     B Ä º ß ¼> 

² ú

˜ t >  ÷ &Ù ¼– Ð F g  & ñ \  _ K  s À Ò# Qt   H F g Æ ÒØ  ¦ † ¾ Ó



© œ ´ òõ   H r  y Œ • ~ ½ ӆ ¾ Ó\  ‰ & ³$  >  _ ” > r ½ + É  כ Ü ¼– Ð \ V © œ

½

+ É Ã º e ”  . Fig. 7õ  Fig. 8“ É r & ñ  y Œ •+ þ AÜ ¼– Ð C u   ) a F g  

&

ñ    ½ ¨› ¸_  4» ¡ ¤  r„   @ /g A$ í s  OLED_  F g • ¸ ì  r Ÿ í\  Õ

ª@ /– Ð ì ø Í% ò ÷ &# Q e ” 6 £ §`  ¦ ˜ Ð# ŒÅ ҍ  H  כ s  . F g  & ñ `  ¦ ¹ ¢ ¤ y

Œ

•+ þ AÜ ¼– Ð C u ô  Ç  â Ä º\   H OLED – РÒ'  % 3 # Qt   H F g • ¸ ì

 r Ÿ í % i r  F g  & ñ _  6» ¡ ¤  r„  @ /g A$ í `  ¦ Õ ª@ /– Ð ì ø Í% ò > 

(7)

Fig. 9. (Color online) The dependence of the ratio of light energy in each of the three modes as a function of the ETL thickness. The period, the radius and the height of the photonic crystals were fixed to 500, 130, and 60 nm, respectively.

H

†

d • ¸ S X ‰ “   % i  . Fig. 7õ  Fig. 8“ É r ¢ ¸ô  Ç ETL_  ¿ ºa    



o\    É r ç ß –[ O  › ¸| _     o (7 £ ¤ Ä »l 8 £ x ? / ) ‡6   x ÷ &  H • ¸

 — ¸× ¼ à º_     o)– Ð & ñ €   ~ ½ ӆ ¾ Ó F g • ¸ [ jl  ‰ & ³$ y     1

l

x “ ¦ e ” 6 £ § • ¸ ˜ Ð# ŒÅ ғ ¦ e ”  . F g  & ñ s  & h 6   x ) a OLED _

 OCE\  ¦ ETL _  ¿ ºa \     › ¸ ô  Ç   õ  Fig. 9\  ]

jr ÷ &# Q e ”  . ETL_  ¿ ºa  100 nm{ 9  M : SiN~ à Ì} Œ •ë ß –

&

h

6   x ) a OLED \  q K  l ó ø Í — ¸× ¼– Ð  Å # Qš ¸  H y n C_  q ×  æ s

 4.5%  8 † ¾ Ó © œ  ) a 65.2% _  à ºu \  ¦ ˜ Ðs “ ¦ e ” “ ¦, þ j7 á x& h  Ü

¼– Ð ü @ Җ Ð » 1 ÏØ  ¦ ô  Ç y n C_  q ×  æ“ É r 7.6% † ¾ Ó © œ  ) a 34.2%e ” 

`

 ¦ · ú ˜ à º e ”  .

Õ

ªX O t ë ß – Fig. 7õ  Fig. 8\  ] jr   ) a F g • ¸ ì  r Ÿ í  H z  ´] j OLED _  µ 1 ßl  r  y Œ •\     B Ä º   y Œ ™ >   † 1   כ s 



  H & h `  ¦ ˜ Ð# ŒÅ ғ ¦ e ”  . s  Qô  Ç r  y Œ • : £ ¤$ í s  OLED _

 ™ è  $ í 0 p x \  a % ~ t  · ú §“ É r % ò † ¾ Ó`  ¦ p u o    H & h “ É r  

"

î  . s \  ¦ ¢ - a  or ~  ´ à º e ”   H ~ ½ ÓZ O  ×  æ    H Ä »o  l  ó

ø Í 5 Å q \  í ß –ê ø Í8 £ x`  ¦ + þ A$ í K " f y n C_  Á º Œ •0 A& h “   ~ ½ ӆ ¾ Ó „  ¨ 8 Š

`

 ¦ Ä »• ¸   H  כ s  . ì ø Ít 2 £ § s  500 nm“   p  í ß –ê ø Í (Mie scattering) { 9  \  ¦ 10

4

∼ 10

9

mm

−3

_  x 9 • ¸ # 3 0 A ? /\ 

"

f Ä »o  l ó ø Í\  Ÿ í† < Êr †    â Ä º_  y Œ • › ¸| Z >  F g • ¸ ì  r Ÿ í

Fig. 10 \  ] jr ÷ &# Q e ”  . { 9  _  x 9 • ¸ & | 9 à º2 Ÿ ¤ F g  

&

ñ _  @ /g A$ í \  _ K  + þ A$ í ÷ &  H r  y Œ • : £ ¤$ í s  & h & h  ¢ - a  o

÷ &€  " f | à Ð! Qr î ß – ì  r Ÿ í\    H] X  >  H † d`  ¦ · ú ˜ à º e ”  . s  Q ô

 Ç   õ   H í ß –ê ø Í { 9  `  ¦  Ö ¸6   x † < ÊÜ ¼– Ð+ ‹ F g  & ñ & h 6   x \   

 É

r r  y Œ •Z >  6 f• ¸ x 9 Ò  o• ¸    o\  ¦ ] j# Q½ + É Ã º e ”    H  כ

`

 ¦ _ p ô  Ç . Fig. 11“ É r p  í ß –ê ø Í{ 9  _  ì ø Ít 2 £ § x 9 x 9 • ¸_ 

†

< Êà º– Ð › ¸ ô  Ç OLED_  OCEs  . F g  & ñ ë ß – & h 6   x ½ + É  â Ä

º 34.2%\  Ô  ¦ õ  ~   OCE p  í ß –ê ø Í { 9  _  & h 6   x`  ¦ : Ÿ x K

 38.5% t  † ¾ Ó © œ | ¨ c à º e ” 6 £ §`  ¦ · ú ˜ à º e ”  . s  Qô  Ç    õ

  H F g  & ñ \  _ ô  Ç • ¸  › ' a — ¸× ¼_  Æ ÒØ  ¦ \  í ß –ê ø Í{ 9  \ 

Fig. 10. (Color online) The far-field intensity distribution emitted from the photonic crystal-applied OLED as a function of the density of Mie scattering particles with a radius of 500 nm included in the glass substrate. The period, the radius and the height of the photonic crystals were fixed to 500, 130, and 60 nm, respectively.

Fig. 11. (Color online) The outcoupling efficiency of the photonic crystal-applied OLED as a function of the den- sity and the radius of Mie scattering particles included in the glass substrate. The period, the radius and the height of the photonic crystals were fixed to 500, 130, and 60 nm, respectively.

_

ô  Ç l ó ø Í — ¸× ¼_  Æ ÒØ  ¦ ´ òõ   8K ”    כ Ü ¼– Ð K $ 3  ) a  .

s

 Qô  Ç ½ ¨› ¸\ " f Ä »o  l ó ø Í_  ³ ð€  \   s ß ¼– Ð E $ ™Ý ¼ C 

\ P

s   S X ‰ í ß –8 £ x`  ¦ + þ A$ í >  ÷ &€   Æ Ò& h “   Æ ÒØ  ¦ ´ òÖ  ¦ _ 

†

¾ Ó © œs  % 3 # Q| 9   כ Ü ¼– Ð l @ /  ) a  . z  ´] j– Ð ‚ à Г ¦ë  H‰  ³ 28õ  29 \ " f OLED\  & h 6   xÙ þ ¡~   pillow lens\  ¦ F g  & ñ ½ ¨› ¸\  Æ

ÒK  OLED\  & h 6   x   H  â Ä º\   H OCE  34.2%\ " f

50.1% – Ð ß ¼>  7 £ x † < Ê`  ¦ S X ‰ “   % i  .

(8)

IV. + s Ç Â ] Ø

‘

: r ƒ  ½ ¨\ " f  H & ñ  y Œ •+ þ A     + þ AI _  F g  & ñ s  C €   µ

1 Ï F g+ þ A OLED_  F g Æ ÒØ  ¦ ´ òÖ  ¦ õ  F g • ¸ ì  r Ÿ í\  p u   H % ò

†

¾ Ó`  ¦ Ä »ô  Ç % ò % i  r ç ß – ì  r ~ ½ ÓZ O  x 9 F g‚   Æ Ò& h  l ì ø Í F g † < Æ r

Ó ý t Y Us ‚  `  ¦   ½ + ËK  › ¸  % i  . OLED_  È Ò" î „  F G õ  Ä

»o  l ó ø Í  s \  Ï ã J] X Ò  ¦ s  1.9“   " é ¶: Ÿ x+ þ A F g  & ñ `  ¦ 500 nm _  Å Òl _   y Œ •     + þ AI – Ð + þ A$ í ô  Ç   õ  ETL_  ¿ º a

 x 9 F g  & ñ _  ì ø Ít 2 £ § õ  Z  } s  þ j& h  o | ¨ c  â Ä º F g Æ ÒØ  ¦

´

òÖ  ¦ s  €  • 1.3C  † ¾ Ó © œ H † d`  ¦ S X ‰ “   % i  . Ä »o  l ó ø Í 5 Å q \  p

 í ß –ê ø Í { 9  \  ¦ Ÿ í† < Êr †   ½ ¨› ¸\  ¦ Æ Ò& h Ü ¼– Ð & h 6   x > 

÷

&€   OLED_  F g Æ ÒØ  ¦ ´ òÖ  ¦“ É r €  • 1.46C  7 £ x  % i  . F g  

&

ñ ½ ¨› ¸ & h 6   x ) a OLED  H F g  & ñ _  C u  t   H @ / g A$ í s  F g • ¸ì  r Ÿ í\  Õ ª@ /– Ð ì ø Í% ò ÷ &% 3 “ ¦ s   H OLED ™ è



_  µ 1 ßl  r  y Œ •\     ß ¼>     >  H † d`  ¦ _ p ô  Ç .

Ä

»o  l ó ø Í\  Ÿ í† < Ê÷ &  H í ß –ê ø Í{ 9  _  x 9 • ¸ 7 £ x   H s  Qô  Ç r

 y Œ • : £ ¤$ í `  ¦ ¢ - a  or v   H X < • ¸¹ ¡ §`  ¦ Šғ ¦ OLED_  F g • ¸ ì

 r Ÿ í\  ¦ | à Ð! Qr î ß –\  ¾ ú š>  ë ß –[ þ t à º e ”    H & h s  S X ‰ “  ÷ &

% 3  .

REFERENCES

[1] W. Brutting, J. Frischeisen, T. D. Schmidt, B. J.

Scholz and C. Mayr, Phys. Status Solidi A 201, 44 (2013).

[2] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh and S. R. Forrest, Opt. Lett. 22, 396 (1997).

[3] R. Meerheim, M. Furno, S. Hofmann, B. Lussem and K. Leo, Appl. Phys. Lett. 97, 253305 (2010).

[4] K. Saxena, V. K. Jain and D. S. Mehta, Opt. Mater.

32, 221 (2009).

[5] K. Hong and J.-L. Lee, Electron. Mater. Lett. 7, 77 (2011).

[6] S. Okutani, N. Kamiura, H. Sano, T. Sawatani and D. Fujita et al., in SID’07 Tech. Digest (2007), p.

173.

[7] Y. Sun and S. R. Forrest, Nat. Photonics 2, 483 (2008).

[8] T. -W. Koh, J. -M. Choi, S. Lee and S. Yoo, Adv.

Mater. 22, 1849 (2010).

[9] W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa and S. Nishimura et al., Nat. Photonics 4, 222 (2010).

[10] Y. -J. Lee, S. -H. Kim, J. Huh, G. -H. Kim and Y.

-H. Lee et al., Appl. Phys. Lett. 82, 3779 (2003).

[11] T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano and M. Yokoyama, Adv. Mater. 13, 1149 (2001).

[12] H. J. Peng, Y. L. Ho, X. J. Yu and H. S. Kwok, J.

Appl. Phys. 96, 1649 (2004).

[13] K. Hong, H. K. Yu, I. Lee, K. Kim and S. Kim et al., Adv. Mater. 22, 4890 (2010).

[14] C. F. Madigan, M. -H. Lu and J. C. Sturm, Appl.

Phys. Lett. 76, 1650 (2000).

[15] S. Moller and S. R. Forrest, J. Appl. Phys. 91, 3324 (2002).

[16] M. -L. Chen, A. -C. Wei and H. -P. Shieh, Jpn. J.

Appl. Phys. 46, 1521 (2007).

[17] C. -J. Yang, S. -H. Liu, H. -H. Hsieh, C. -C. Liu and T. -Y. Cho et al., Appl. Phys. Lett. 91, 253508 (2007).

[18] Y. -H. Cheng, J. -L. Wu, C. -H. Cheng, K. -C. Syao and M. -C. M. Lee, Appl. Phys. Lett. 90, 091102 (2007).

[19] C. -C. Liu, S. -H. Liu, K. -C. Tien, M. -H. Hsu and H. -W. Chang et al., Appl. Phys. Lett. 94, 103302 (2009).

[20] N. Nakamura, N. Fukumoto, F. Sinapi, N. Wada and Y. Aoki et al., in SID’09 Tech. Digest (2009), p. 603.

[21] J. -H. Jang, K. -J. Kim, J. -H. Kim and M. -C. Oh, Korean J. Opt. Photon. 18, 441 (2007).

[22] S. Reineke, F. Lindner, G. Schwartz, N. Seidler and K. Walzer et al., Nature (London) 459, 234 (2009).

[23] Y. R. Do, Y.-C. Kim, Y.-W. Song and Y.-H. Lee, J.

Appl. Phys. 96, 7629 (2004).

[24] H.-H. Cho, B. Park, H.-J. Kim, S. Jeon and J.-H.

Jeong et al., Appl. Opt. 49, 4024 (2010).

[25] U. Geyer, J. Hauss, B. Riedel, S. Gleiss and U. Lem- mer et al., J. Appl. Phys. 104, 093111 (2008).

[26] Y.-J. Lee, S.-H. Kim, G.-H. Kim, Y.-H. Lee and S.- H. Cho et al., Opt. Express 13, 5864 (2005).

[27] S. S. Jeong and J. -H. Ko, J. Inf. Disp. 13, 139 (2012).

[28] S. S. Jeong and J.-H. Ko, J. Inf. Disp. 14, 67 (2013).

[29] S. S. Jeong and J.-H. Ko, J. Opt. Soc. Korea 17, 269 (2013).

[30] A. Chutinan, K. Ishihara, T. Asano, M. Fujita and S. Noda, Org. Electron. 6, 3 (2005).

[31] J. R. Lawrence, P. Andrew, W. L. Barnes, M. Buck

and G. A. Turnbull et al., Appl. Phys. Lett. 81, 1955

(2002).

수치

Fig. 1. (Color online) A cross-section of a bottom- bottom-emitting OLED and the distribution of light energy into the air mode, substrate mode, waveguide mode and  cou-pling to surface plasmons.
Fig. 2. (Color online) Cross-sections of (a) the OLED, (b) the SiN-applied OLED, and (c) the photonic  crystal-applied OLED studied by the FDTD method
Fig. 3. (Color online) The far-field intensity distribution of the light emitted from the ITO electrode as a function of the ETL thickness, which was detected in the glass substrate by using the FDTD method
Fig. 5. (Color online) The dependence of the ratio of light energy in each of the three modes as a function of the ETL thickness
+3

참조

관련 문서

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

The stain field associated with a dislocation can in certain cases provide a favorable interaction with the strain field of the martensite nucleus, such that one of the

To obtain the local concentration and distribution of soot particles formed within the flame, laser-backlit images produced with a 635 nm light source

Model performances in the stations of Nam river monitoring data 42 Table 15... List

 A power series with a nonzero radius of convergence R represents an analytic function at every point interior to its circle of convergence..  The derivatives of this

The stereoscopic microscope image of gold particles in the leaching residue from Geumsan sample as a function of nitric acid concentration on the filter papers by lead

_____ culture appears to be attractive (도시의) to the