• 검색 결과가 없습니다.

Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation Process Using Hydrophilic Polymer

N/A
N/A
Protected

Academic year: 2021

Share "Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation Process Using Hydrophilic Polymer"

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

표면적이 증가된 분별침전에서 친수성 고분자물질을 이용한 paclitaxel의 입자 크기 감소

임용규, 김진현*

공주대학교화학공학부

Received: October 12, 2015 / Revised: October 30, 2015 / Accepted: November 6, 2015

서 론

Paclitaxel

현재난소암

,

유방암

,

카포시종양

(Kaposi’s sarcoma)

비소세포성 폐암

(non-small cell lung cancer)

치료에가장효과있는항암물질이며적응증

(

류마티스성 절염알츠하이머치료

)

처방방식의확대로향후 요는계속늘어날전망이다

[16, 19]. Paclitaxel

주요생산

방법에는주목나무

(yew tree)

에서직접추출하는방법

,

주목

나무에서전구체

(baccatin III, 10-deacetylpaclitaxel

)

얻어반합성하는방법

,

주목나무에서유도된식물세포를 양하는방법이있다

[1, 3, 14].

식물세포배양법은기후

,

환경 등에의한영향을받지않고생물반응기내에서안정적으로

생산이가능하기때문에일정한품질의

paclitaxel

대량

산할있다는장점이있다

.

일반적으로 물에녹지않는 원료의약품

(active phar- maceutical ingredient, API)

경우입자크기를작게하여

활용도를높이고자한다

.

입자크기가작아질수록제형 용해속도

,

약물분산의균일성

,

경구생체이용률등을

향상시킬있다

[2, 7].

또한정제건조단계에서잔류수

잔류용매제거에도상당히도움이된다

[12]. Paclitaxel

Biopharmaceutics classification system(BCS) class IV

의약품으로분류되어물에대한용해도가매우낮아

용도에많은제한이있다

[7, 8].

입자크기를줄이기위하여

,

“top-down(breaking-down)”

“bottom-up(building-up)”

기술

이용되고있다

[2].

이미제조된입자의의약품을다양

방식의

milling

이나고압호모게나이저에의해작은입자

분쇄하는

top-down

기술은조업과정에서많은에너지가

요구되고의약품의오염이나분해가발생할있다

.

반면 분자수준의의약품을분무건조

,

증발

,

초임계안티솔벤트 접목된침전기법에의해작은입자의의약품을제조하

bottom-up

기술은낮은수율과높은장비비용이발생할

있다

.

연구에서시도되는분별침전은

bottom-up

기술 포함된다

.

기존문헌에의하면분별침전다양한종류의이온교환 수지를사용하여반응액부피당표면적을증가시킴으로써

paclitaxel

입자크기를감소시킬뿐만아니라침전효율

Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation Process Using Hydrophilic Polymer

Yong Kyu Lim and Jin-Hyun Kim*

Department of Chemical Engineering, Kongju National University, Cheonan 331-717, Republic of Korea

In this study, we applied an increased surface area fractional precipitation with hydrophilic polymer for decreasing the particle size of the anticancer agent paclitaxel from plant cell cultures. The addition of polymer resulted in a considerable decrease in the size of the paclitaxel precipitate. Among the polymers (HPMC 2910, PVP-K90, PVA) used, PVP-K90 was the most effective for the inhibition of precipitate growth. When PVP-K90 (0.2%, w/v) was used, the paclitaxel particles were four to five times smaller, having less than a 20 µm radius, than those obtained in the absence of the polymer. In addition, the precipitate size was inversely correlated with the absolute value of zeta potential.

Keywords: Paclitaxel, increased surface area fractional precipitation, polymer, particle size, decrease

*Corresponding author

Tel: +82-41-521-9361, Fax: +82-41-554-2640 E-mail: jinhyun@kongju.ac.kr

© 2015, The Korean Society for Microbiology and Biotechnology

(2)

(

침전시간단축

)

향상시킬있었다

[11].

또한침전공정 고분자물질을첨가해줌으로써

megestrol acetate

크기를감소시킬있는연구결과가보고되었다

[2].

러한연구결과로부터이온교환수지와고분자물질을접목하 분별침전을수행할경우시너지효과에의해효과

적으로작은입자의

paclitaxel

제조할있을것으로

상된다

.

,

이온교환수지를이용한표면적이증가된분별침 공정에고분자물질을첨가함으로써

paclitaxel

입자 기를효율적으로감소시킬있을것으로판단된다

.

따라서 연구에서는이온교환수지

(Amberlite IRA 400 OH)

용한표면적이증가된분별침전공정에종류의고분자물

[PVA(polyvinyl alcohol, MW 31,000-50,000), HPMC 2910(hydroxypropyl methylcellulose 2910), PVP-K 90 (polyvinylpyrrolidone-K 90)]

각각첨가하여분별침전

간에따른

paclitaxel

입자성장양상을조사하고궁극적으

입자크기를효과적으로감소시킬있는지를평가하 였다

.

재료 및 방법

식물재료

실험에사용된식물세포배양액은

Taxus chinensis

으로부터 얻은 세포주

(cell line)

이용하였으며

,

수정된

Gamborg’s B5

배지

[5]

에서

24

o

C,

조건으로교반

(150 rpm)

배양하였다

.

식물세포배양배양액으로부터

decanter (Westfalia, CA150 Claritying Decanter)

고속원심분리기

(

α

-Laval, BTPX205GD-35CDEEP)

이용하여식물세포와 세포조각

(cell debris)

회수하였다

.

회수한식물세포와 포조각을합하여바이오매스라하였다

.

연구에사용된 이오매스는

(

)

삼양제넥스로부터제공받았다

.

Paclitaxel 분석

Paclitaxel

함량 분석을 위해

HPLC system(Waters, USA)

Capell Pak C

18(

250

×

4.6 mm, Shiseido, Japan)

칼럼을사용하였다

.

이동상은아세토니트릴과증류수혼합 용액

(35/65-65/35, v/v, gradient mode)

유속

1.0 ml/min

으로흘려주었다

.

시료주입양은

20 ml

이며

227 nm

에서

UV

의해검출하였다

. HPLC

분석은표준정량곡선을이용하 였으며표준시료는

Sigma-Aldrich

제품

(

순도

: 95%)

사용 하였다

[15].

분별침전(fractional precipitation)을 위한 시료준비 식물세포배양액으로부터회수한바이오매스와메탄올의

비율을

1/1(w/v)

하여실온에서

4

반복추출한농축

(

원액의

30%)

하였다

.

-

추출을위해농축된메탄올용액

메틸렌클로라이드를첨가

(

메탄올농축액의

25%)

하고

,

30 min

동안교반정체시켜분리를유도하였다

.

-

추출을수행하여

paclitaxel

포함된하층인메틸렌

로라이드층으로

paclitaxel

회수하여농축

/

건조하였다

.

조된추출물

(crude extract)

메틸렌클로라이드에

20% (v/w)

비율로녹이고흡착제

sylopute(Fuji Silysia Chemical Ltd.,

Japan)

건조된추출물대비

50% (w/w)

비율로첨가하여

40

o

C

항온조에서

30 min

동안교반시킨여과하였다

.

과액은

30

o

C,

감압상태에서건조하고

,

건조된시료를메틸렌 클로라이드에녹인헥산에떨어뜨려헥산침전을수행하 였다

(

메틸렌클로라이드

/

헥산

= 1/10, v/v).

헥산침전 과를통하여

paclitaxel

침전물을얻고

35

o

C

에서

24

시간 진공건조하고

,

건조된시료를메탄올에용해하고

(

순수

paclitaxel

함량

: 0.5%, w/v)

메탄올이

61.5%

때까 방울씩천천히증류수를떨어뜨린

4

o

C

에서보관하

paclitaxel

침전물을얻었다

.

침전침전물을여과하고

35

o

C

에서

24

시간 동안 진공 건조하여

ODS C

18 컬럼

(50 mm

×

500 mm, Shiseido, Japan)

Silica

컬럼

(50 mm

×

500 mm, Shiseido, Japan)

장착된

HPLC

공정으로추가 정제하였다

[13].

최종정제된

paclitaxel

순도는

98.0%

이었 으며시료준비과정을

Fig. 1

나타내었다

.

표면적이 증가된 분별침전(increased surface area fractional precipitation)

표면적이증가된분별침전공정의개략도를

Fig. 2

나타

내었다

.

기존문헌

[2, 4]

에서원료의약품의입자크기감소에

효과적인종류의 고분자물질

(HPMC 2910, PVP-K 90, PVA 31,000

50,000)

각각농도

(0.1, 0.2, 0.3%, w/v)

리하여증류수에녹인첨가하여분별침전을수행하였다

.

시료를메탄올에녹이고

(

순수한

paclitaxel

함량기준

: 0.3%,

w/v),

메탄올이

61.5%

때까지고분자물질이포함된

류수를교반

(~180 rpm)

하에방울씩떨어뜨렸다

.

분별침

전공정의반응액부피당표면적

(S/V)

증가를위해이온교환

수지

(Amberlite IRA 400 OH)

첨가

(S/V = 0.428 mm

-1

)

4

o

C

항온항습기

(KCL-2000W, EYELA, Japan)

보관 하여

paclitaxel

침전물을얻었다

[11].

이온교환수지는

35

o

C

에서하루동안건조한실험에사용하였다

.

분별침전

변화에따른

paclitaxel

침전양상을전자현미경을이용

하여관찰하였다

.

침전물 형태 및 크기 확인

분별침전동안

paclitaxel

침전물형태확인크기측정

위하여 전자현미경

(SV-35 Video Microscope System,

Some Tech., Korea)

사용하였다

[6].

분별침전을통해얻은

paclitaxel

침전물을고배율

(

×

100)

에서관찰하였다

.

관찰된

(3)

paclitaxel

침전물은

IT-Plus software(Some Tech., Korea)

에서동화상으로확인하였으며이를통해

paclitaxel

침전물 형태와크기를확인하였다

.

제타전위(zeta potential) 측정

표면적이증가된분별침전공정에서고분자물질을첨가하

않은경우와동일농도

(0.2% w/v)

종류의고분자물

(PVA, HPMC 2910, PVP-K90)

각각첨가한경우분별 침전

(24

시간

)

용액에서의 제타전위를 측정하였다

. ELS-Z

(Photal, Japan)

이용하여제타전위를측정하였으며측정

제타전위는

ELS-Z software

사용해확인하였다

.

결과 및 고찰

고분자물질이 입자 형태에 미치는 영향

연구에서는

paclitaxel

입자크기를획기적으로 소시키기위하여

,

이온교환수지로표면적이증가된분별침

Fig. 1. Preparation of sample for increased surface area fractional precipitation with hydrophilic polymer. The process consists of biomass extraction, liquid-liquid extraction, adsorbent treatment, hexane precipitation, fractional precipitation, ODS-HPLC, and silica- HPLC.

Fig. 2. Schematic diagram of increased surface area frac-

tional precipitation with hydrophilic polymer for decreasing

the particle size of paclitaxel precipitate. The surface area per

working volume (S/V: 0.428 mm

-1

) of the reactor was increased by

addition of ion an exchange resin (Amberlite IRA 400 OH). The

methanol composition in water, pure paclitaxel content, and tem-

perature were 61.5% (v/v), 0.3% (w/v), and 4

o

C, respectively.

(4)

Fig. 3. Electron micrograph of paclitaxel precipitates formed by increased surface area fractional precipitation at 6 −24 h:

(A) Control, (B) 0.1% (w/v) HPMC 2910, (C) 0.2% (w/v) HPMC 2910, (D) 0.3% (w/v) HPMC 2910, (E) 0.1% (w/v) PVP-K90, (F) 0.2%

(w/v) PVP-K90, (G) 0.3% (w/v) PVP-K90, (H) 0.1% (w/v) PVA, (I) 0.2% (w/v) PVA, (J) 0.3% (w/v) PVA. The methanol composition in

water, pure paclitaxel content, and temperature were 61.5% (v/v), 0.3% (w/v), and 4

o

C, respectively. Scale bar indicates 10 µm.

(5)

공정에고분자물질을첨가하여분별침전을수행하였다

.

표면적이증가된분별침전공정에서고분자물질첨가유무 따른

paclitaxel

침전양상

(

입자형태

)

조사하였다

.

분자물질첨가유무에따른입자형태를

Fig. 3

나타내었

.

고분자물질이첨가되지않은경우

(control, Fig. 3A),

모양은부채꼴형태로대칭을이루며길게뻗어나가는 양을 보였다

.

고분자물질

HPMC 2910

농도

(0.1, 0.2, 0.3%, w/v)

달리하여첨가한경우

(Fig. 3B, C, D),

고분자

물질이첨가되지않은경우

(Fig. 3A)

보다전반적으로원형

형태

(

둥근형태

)

입자모양을보였으며입자크기는 작아지면서 가늘어짐을있었다

.

농도가 증가할수록

paclitaxel

침전물입자간많이뭉쳐있는경향을보였

.

고분자물질

PVP-K90

농도

(0.1, 0.2, 0.3%, w/v)

리하여첨가한경우

(Fig. 3E, F, G),

입자모양은일정하고 일한크기의부채꼴형태를나타내었으며

HPMC 2910

우보다전반적으로뭉쳐있으며작은크기를보였다

.

고분자물질

PVA

농도

(0.1, 0.2, 0.3%, w/v)

달리하여 가한경우

(Fig. 3H, I, J),

입자모양은부채꼴형태로바늘과 같이가늘고길게형성되었으며높은농도

(0.3%, w/v)

에서는 부채꼴형태라기보다는불규칙한바늘형태를나타내었다

.

고분자물질이 입자 크기에 미치는 영향

고분자물질첨가유무에따른입자크기를

Fig. 4

나타 내었다

.

고분자물질이첨가되지않은경우

(control),

분별침

6, 12, 18, 24

시간일 입자 크기는 각각

48.4, 47.2,

45.8, 45.3

μ

m

침전시간이경과함에따라입자크기가

미하게감소하는경향을보였다

.

선행연구에의하면표면적 증가물질

(

이온교환수지

)

첨가되지않은분별침전의경우 침전시간이경과함에따라

paclitaxel

침전물의입자크기가

커지는경향을보였다

[11].

하지만이온교환수지첨가에

표면적이증가된분별침전의경우침전시간이경과함에 따라입자크기가오히려감소하였는데

(Fig. 4, control),

분별침전과정에서이온교환수지와핵의충돌횟수가 가되어많은핵이생성됨에따라침전물크기가작아지는 으로판단된다

[9]. HPMC 2910

첨가된경우

(Fig. 4A),

별침전

6, 12, 18, 24

시간에서입자크기는각각농도

0.1%

(w/v)

46.3, 37.4, 35.4, 34.8

μ

m,

농도

0.2%(w/v)

26.5, 23.0, 21.2, 21.0

μ

m,

농도

0.3%(w/v)

41.0, 33.3, 32.8, 32.3

μ

m

이었다

. HPMC 2910

농도가

0.1%(w/v)

에서

0.2%(w/v)

증가할경우에는

paclitaxel

입자크기가전반 적으로감소하였으나

0.2%(w/v)

에서

0.3%(w/v)

농도가

가할경우에는

paclitaxel

입자크기가오히려다시증가하

였다

.

, HPMC 2910

경우

0.2%(w/v)

농도에서가장

paclitaxel

침전물을얻을있었다

. PVP-K90

첨가된 경우

(Fig. 4B),

분별침전

6, 12, 18, 24

시간에서입자크기는

각각 농도

0.1%(w/v)

27.5, 27.8, 27.6, 25.7

μ

m,

농도

0.2%(w/v)

17.2, 17.1, 17.0, 16.8

μ

m,

농도

0.3%(w/v) Fig. 4. Effect of polymer concentration on the particle size of paclitaxel during increased surface area fractional precipita- tion: (A) HPMC 2910, (B) PVP-K90, (C) PVA. The methanol composition in water, pure paclitaxel content, and precipitation temperature were 61.5% (v/v), 0.4% (w/v), and 4

o

C, respectively.

●: Control; ○: 0.1% (w/v) polymer; ▼: 0.2% (w/v) polymer;△:

0.3% (w/v) polymer.

(6)

22.8, 22.4, 22.4, 22.0

μ

m

이었다

. HPMC 2910

우와마찬가지로

PVP-K90 0.2%(w/v)

에서가장작은입자의 침전물을얻었다

. PVA

첨가된경우

(Fig. 4C),

분별침전

6, 12, 18, 24

시간에서입자크기는각각농도

0.1%(w/v)

55.2, 44.9, 40.0, 39.6

μ

m,

농도

0.2%(w/v)

36.6, 34.4, 30.9, 30.5

μ

m,

농도

0.3%(w/v)

48.0, 36.3, 35.1, 31.0

μ

m

이었다

. HPMC 2910

PVP-K90

경우와마찬가지로

PVA 0.2%(w/v)

에서가장작은입자의침전물을얻었다

.

과적으로표면적이증가된분별침전공정에고분자물질 가는

paclitaxel

입자크기감소에효과가있었으며

,

효과

PVP-K90, HPMC 2910, PVA

순으로나타났다

. Paclitaxel

순도

(~98.0%)

수율

(>85%)

분별침전동안거의변화가 없었으며이러한현상은기존의연구결과와도유사함을 있었다

[11].

이상의결과로부터

paclitaxel

입자크기를 획기적으로줄이기위하여

,

표면적이증가된분별침전공정 고분자물질

(HPMC 2910, PVP-K90, PVA)

첨가하는 식이매우효과적임을있었다

.

첨가된고분자물질이 고체

-

액체계면의표면장력을낮추고

paclitaxel

생성 도를증가시켜

(

성장저해

)

입자크기가작아짐을

었다

[4].

나아가고체

-

액체계에고분자물질흡착은새로

생성되는 소수성 표면의 계면장력을 감소시키고 공간적

(steric)

또는정전기적

(electrostatic)

안정화를제공하여

성장을저해하게된다

[4].

특히

PVP-K90

경우가장작은

입자의

paclitaxel

얻을있어침전과정에서

paclitaxel

입자성장저해에가장효과적임을있었다

.

이러한 과는

PVP-K90

paclitaxel

입자와의높은친화력

(affinity)

기인하는것으로판단된다

[2].

,

고분자물질과

paclitaxel

입자간의친화력이증가할수록

paclitaxel

입자성장을 하는데효과적인공간적저해요소

(steric barrier)

역할 하기때문이다

.

또한

paclitaxel

입자크기감소를위한 적의고분자물질농도

(0.2%, w/v)

존재하였는데

,

이는 가된고분자물질의농도가일정량이상이되면용액의높은 점도로인한

antisolvent(nonsolvent)

증류수를향한용매

(

탄올

)

적절한확산을억제하기때문으로판단된다

[2].

고분자물질농도에따른입자크기증가현상은다른 료의약품의경우에도보고되었다

[2, 10, 17, 18].

입자크기와 제타전위의 관계

표면적이증가된분별침전공정에서고분자물질을첨가하

않은경우와동일농도

(0.2% w/v)

종류의고분자물

(PVA, HPMC 2910, PVP-K90)

각각첨가한경우분별 침전용액에서의제타전위를측정하여제타전위와입자크기 와의상관관계를조사하였다

. Fig. 5

에서보는바와같이 분자물질을첨가하지않은경우

(control)

분별침전용액의 타전위값은

-2.35 mV(

입자반지름

: 45.3

μ

m)

이었으며

,

분자물질

PVA, HPMC 2910, PVP-K90

각각첨가하였을

경우분별침전용액의제타전위값은

-10.90 mV(

입자반지

: 30.5

μ

m), -13.05 mV(

입자반지름

: 21.0

μ

m), -29.54 mV (

입자반지름

: 16.8

μ

m)

나타났다

.

분별침전

paclitaxel

전물의입자크기와분별침전용액의제타전위값을비교해 보면

,

제타전위절대값이증가할수록입자크기가감소하였

.

,

침전물의입자크기는제타전위절대값에반비례함 있었다

.

표면적이증가된분별침전공정에고분자 물질을첨가할경우분별침전용액의제타전위을증가시켜 침전물을더욱안정화시키고

,

이로인해침전물들이분별침 용액속에서서로뭉치지않고안정되게유지되어작은

입자의침전물이얻어지는것으로판단된다

[2, 20].

이러한

결과는기존문헌에보고된

paclitaxel

침전물의입자크기와 분별침전용액의제차전위와의상관관계와도일치함을 있었다

[15].

요 약

연구에서는표면적이증가된분별침전공정에친수성 고분자물질을첨가하여식물세포유래항암물질

paclitaxel

입자크기를감소시키고자하였다

.

표면적이증가된분별 침전공정에고분자물질

(PVA, HPMC 2910, PVP-K90)

가할경우침전물의입자크기는획기적으로감소하였다

.

가된고분자물질

PVP-K90

가장효과적이었으며

, PVP-

K90

농도

0.2%(w/v)

첨가한경우고분자물질을첨가하지

않은 경우보다

4

5

정도 가장 작은 입자 크기

(<20

μ

m

radius)

침전물을얻었다

.

또한분별침전을통해얻은

Fig. 5. Particle size of paclitaxel precipitate and zeta potential

of reacting solution using polymer during increased surface

area fractional precipitation with an ion exchange resin

(Amberlite IRA 400 OH). The methanol composition in water,

pure paclitaxel content, precipitation temperature, and precipita-

tion time were 61.5% (v/v), 0.3% (w/v), and 4

o

C, 24 h, respec-

tively.

(7)

전물의입자크기는분별침전용액의제타전위절대값에 비례함을있었다

.

Acknowledgments

This research was supported by Basic Science Research Pro- gram through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2015016271).

References

1. Baloglu E, Kingston DG. 1999. A new semisynthesis of pacli- taxel from baccatin?. J. Nat. Prod. 62: 1068−1071.

2. Cho EB, Cho WK, Cha KH, Park JS. 2010. Enhanced dissolu- tion of megestrol acetate microcrystals prepared by antisol- vent precipitation process using hydrophilic additive. Int. J.

Pharm. 396: 91−98.

3. Choi HK, Son SJ, Na GH, Hong SS, Park YS, Song JY. 2002.

Mass production of paclitaxel by plant cell culture. Korean J.

Plant Biotechnol. 29: 59−62.

4. Dalvi SV, Dave RN. 2009. Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisol- vent precipitation. Ind. Eng. Chem. Res. 48: 7581−7593.

5. Gamborg OL, Miller RA, Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res.

50: 151−158.

6. Jeon KY, Kim JH. 2009. Improvement of fractional precipita- tion process for pre-purification of paclitaxel. Process Bio- chem. 44: 736−741.

7. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S.

2011. Formulation design for poorly water-soluble drugs based on biopharmaceytics classification system: Basic approaches and practical applications. Int. J. Pharm. 420: 1−

10.

8. Khadka P, Ro J, Kim H, Kim I, Kim TJ, Kim H, Cho JM, Yun G, Lee J. 2014. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavail- ability. Asian J. Pharm. Sci. 9: 304−316.

9. Kim SY, Kim KJ, Ryu SK. 2002. In situ analysis of growth mechanism in batch crystallization of phosphoric acid. Theo-

ries and Applications of Chem. Eng. 8: 3445−3448.

10. Labouret AD, Thioune O, Fessi H, Devissaguet JP, Puisieux F. 1995. Application of an original process for obtaining colloi- dal dispersions of some coating polymers: preparation, char- acterization, industrial scale-up. Drug Dev. Ind. Pharm. 21:

229−241.

11. Lee JY, Kim JH. 2012. Decease in the particle size of pacli- taxel by increased surface area fractional precipitation.

Korean J. Microbiol. Biotechnol. 40: 169−174.

12. Pyo SH, Kim MS, Cho JS, Song BK, Han BH, Choi HJ. 2005.

Efficient purification and morphology characterization of pacli- taxel from cell cultures of Taxus chinensis. J. Chem. Techol.

Biotechnol. 79: 1162−1168.

13. Pyo SH, Park HB, Song BK, Han HB, Kim JH. 2004. A large- scale purification of paclitaxel from cell cultures of Taxus chin- ensis. Process Biochem. 39: 1985−1991.

14. Rao KV, Hanuman JB, Alvarez C, Stoy M, Juchum J, Davies RM, et al. 1995. A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 12: 1003−

1010.

15. Ryu JK, Kim JH. 2012. Effect of zeta potential on fractional precipitation for the purification of paclitaxel from plant cell cul- tures of Taxus chinensis. Korean J. Microbiol. Biotechnol. 42:

114−120.

16. Schiff PB, Fant J, Horwitz SB. 1979. Promotion of microtubule assembly in vitro by taxol. Nature 277: 655−667.

17. Stainmesse S, Orecchioni AM, Nakache E, Puisieux F, Fessi H. 1995. Formation and stabilization of a biodegradable poly- meric colloidal suspension of nanoparticles. Colloid Polym.

Sci. 273: 505−511.

18. Thioune O, Fessi H, Devissaguet JP, Puisieux F. 1997. Prepa- ration of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant.

Int. J. Pharm. 146: 233−238.

19. Wani MC, Talyor, HL, Wall, ME, Coggon P, McPhail AT. 1971.

Plant antitumor agent. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifo- lia. J. Am. Chem. Soc. 93: 2325−2327.

20. Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF.

2009. Micronization of atorvastatin calcium by antisolvent pre- cipitation process. Int. J. Pharm. 374: 106−113.

수치

Fig. 2. Schematic diagram of increased surface area frac- frac-tional precipitation with hydrophilic polymer for decreasing the particle size of paclitaxel precipitate
Fig. 3. Electron micrograph of paclitaxel precipitates formed by increased surface area fractional precipitation at 6 −24 h:
Fig. 5. Particle size of paclitaxel precipitate and zeta potential of reacting solution using polymer during increased surface area fractional precipitation with an ion exchange resin (Amberlite IRA 400 OH)

참조

관련 문서

Therefore depending on the size of the fracture in the veneering porcelain, intraoral repair methods using surface treatment and composite resins may

 Heat sink, provides large surface area to dissipate heat from

In the present study we investigated the proliferation effect of human oral cancer KB cell treated with pulsatilla koreana extract.. We analyzed the effects of this

In the hydrogen production by steam reforming of LNG, the catalytic performance of NA and M/NA catalysts was well correlated with the nickel surface area of the

Table 8.. tors for particle formation in gas phase and scale-up of the reactor system. They have developed models for droplet and particle dynam- ics and applied to the

In this study, we investigated the surface characteristics of hydroxyapatite film on the micro-pore structured Ti-35Ta-xNb alloys by

Particle size and size distribution of ethylene -modified polystyrene with different EAA concentration at 140% degree of neutralization of EAA. Latex Particle Size

The steps in diffusion bonding: (a) Initially the contact area is small; (b) application of pressure deforms the surface, increasing the bonded area; (c) grain boundary