• 검색 결과가 없습니다.

Solution of Electrostatic Problems

N/A
N/A
Protected

Academic year: 2022

Share "Solution of Electrostatic Problems"

Copied!
34
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

http://optics.hanyang.ac.kr/~shsong 송석호 (물리학과)

Field and Wave Electromagnetics, David K. Cheng Reviews on

(Week 1) 2. Vector Analysis

3. Static Electric Fields

(Week 2) 4. Solution of Electrostatic Problems 5. Steady Electric Currents

(Week 3) 6. Static Magnetic Fields

7. Time-varying Fields: Faraday’s Law Introduction to Electromagnetics, 3rd Edition, David J. Griffiths

(Week 4-5) 7. Electrodynamics: Maxwell’s Equations (Week 6) 8. Conservation Laws

(Week 7-8) 9. Electromagnetic Waves (Week 9-10) 10. Potentials and Fields (Week 11-12) 11. Radiation

(Week 13-14) 12. Electrodynamics and Relativity

(2)

Chapter 4.

Solution of Electrostatic Problems

한양대학교 전기공학과 정진욱

(3)

   

2

, V

V V

   

   

       

E D

E

 

2 2 2

2

2 2 2

2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

In generalized coordinate, 1

x y z

h h h h h h

h h h u h u u h u u h u

  

  

 

  

   

  

            

                

(Laplacian)

Electrostatic Boundary Value Problems

Poisson's & Laplace's Equations.

2

V

(Poisson Eqn.)

   

 

2

V 0 Laplace's equation

 

: No free charge in a set of conductors

2 2 2 2 2

1 1

z V V

r r r V r

r





2 2 2 2 2

2

2 sin

sin 1 sin

1 1

V

R V R

R R V R R

With the given boundary values, one can determine

V E , ,

s

E   V ,  

s

E

n

(4)

Uniqueness Theorem

 

 

1 2

2 2

1 2

1 2 1 2 3

1 2

2 2

2 2

2

, : two solutions ,

Assume that both V and V satisfy the same boundary condition on S , , ,...

0 0

( )

1

n d

d d d

d d d d d

d d n d

S

d d n

S

V V

V V

S S S V V V

V V V

V V V V V

V V ds V d

V V ds

R

 

 

     

 

    

      

   

   

 

a a

0

1 2 1 2

0 as the radius R of the goes to infinite.

0 0 !!!!!

d

S V     V VVV

 

   fA     f A A f A solution of an electromagnetic problem satisfying its boundary conditions is the only possible solution.

 The solution of Poisson’s (Laplace’s) Equation is unique.

(5)

Capacitor: an example of Laplace’s Equation

• Example 4.1

a) The potential at any point between the plates b) the surface charge densities on the plates

  0

y

 

 

 

2 2 1

1 2

0

0

0

0

at 0, 0 at ,

y y

d V y dV

dy C dy

V y C y C

y V

y d V V

V V y d

V V

y V

y d

  

 

 

 

  

         

E a a

0 0

0 0

0 0 0

Surface charge density ,

,

in this case

  

  

 

 

   

  a a

a a

n y sl y

n y su y d

sl su

E V

d E V

d

1

0 n s

E

 Laplace’s equation in Cartesian coordinates

(6)

Electrostatic Boundary Value Problems

• Laplace’s equation in cylindrical coordinates

• Cylindrical symmetry and the lengthwise dimension is very large

• If the problem is such that electric potential changes only in the circumferential direction and not in r- and z-directions,

1 0 1

2 2 2

2

2

 



 

 



 

z V V

r r

r V r

r

 

2 2

2 2

1 2

0, 0

1 0 ln

V V

z

r V V r C r C

r r r

  

2

 

1 2

2 2

1 V 0

V K K

r  

  

   

  

 

(7)

Electrostatic Boundary Value Problems

• Example (Problem 4-23)

a a

E E

1 0

1

?

V r d

dV

r

Determine the potential distribution fo the regions : ) 0

) 2

 

 

 

  a

b

     

 

 

   

2 2

0 0

0 1 2

1 2

0 0

1 2

0

For 0 , 0

0 0

, 0

For 2 , +

2 0 2 +

, 2

2 2

Finally,

2 , 2

2

d V V A B

d

V V

V V V

V V K K

V K K

V V

K K

V V

  

   

 

  

 

 

   

     

 

     

 

    

 



 

 

 

  

 

   

(8)

Electrostatic Boundary Value Problems

• Example

– Determine the potential distribution

 

 

2 1 1

2 2

1

1 2

1

2 2

Spherical symetry, is independent of and 0

at ,

at ,

 

        

 

 

    

    

i i

i

o o

o

V

C C

d dV dV

R V C

dR dR dR R R

R R V R V C C R

R R V R V C C R

Laplace’s equation in spherical coordinates

(9)

Electrostatic Boundary Value Problems

 

   

0 1 2 0 2 1

1 2

0 0

0

1 2 0 2 1 0

0

,

1 ,

is independent of the dielectric constant of the insulating material

 

  

 

 

        

i i

i i

i

i i

i

R R V V R V R V

C C

R R R R

V R R R V V R V R V R R R

R R R

V

(10)

4-4. Method of images

(ex) Point charge and ground plane conductor

A class of EM problems with boundary conditions appear to be difficult to be solved directly by the governing Poisson’s or Laplace’s equation,

and, when conducting bodies have boundaries of a simple geometry,

 The bounding surfaces can be replaced by appropriate image (equivalent) charges,

 and, the potential distributions can then be determined in a straightforward manner.

 This method is called by the method of images.

 

 

0 0

2 2 2

2 2 2

1 1

( , , )

4 4

Q Q

V x y z

R R

R x z y d

R x z y d

 

 

 

 

 

0

2 2 2 3/ 2

2 2 2

0

0 2 2 3/ 2

0

0

2

2

z

S z

total S

E y V

y E y

Qd

x z d

Q rdr x z r

Q hr dr Q

r h

 

 

   

(11)

Method of images

(12)

• Example 4-5

– OMQ, OMP : similar triangles

Point charge & conducting sphere

d

i

a

da

P

0

1 0

4

M i

i

i i

i

Q V Q

r r

r Q a

Q Q

r Q d



 

    

 

     

(13)

 

 

   

0

2 2 2 2

2 2 2 2

0

2

, , 1 ,

4

2 cos , 2 cos

, , 1

4 2 cos 2 cos

, 0 0, , 0

,

  

 

    

  

 

    

 

     

 

        

   

   

For grounded sphere

0

i M

i

i i i

i

i i

i i

Q Q

V r a

r r

r a d ad r a d ad

Q Q V a

a d ad a d ad

V a V a

a a

d Q Q

d d

Point charge & conducting sphere

• Example 4-5

P

(14)

 

 

   

 

0

2 2

2 2 2

2

2 2

0 2 2 3/ 2

2

1 1

, ,

4

2 cos ,

2 cos

,

,

4 2 cos

s

 

  

 

 

 

 



ind

Electric field

Charge density

Total induced charge on the sphere Q

i

i

Q Q

Q

Q

R

s R

s s

Q a

V R R d R

R R d Rd

a a

R R R

d d

E R V

R

Q d a E a

a a d ad

ds 2 a

0 0 in    

 

d d da Q Qi

Point charge & conducting sphere

• Example 4-5

(15)

Point charge & conducting sphere

 

0

0 0 0

0

, , ,

4 4

i

i

V a V

V Q Q aV

a

 

 

 

  

When additional image charge is required

Electric field profile

additional image charge

V=V0

Qi

(16)

Chapter 5

Steady Electric Currents

(17)

Steady electric currents

• Two types of electric currents by the motion of free charges – Convection currents

• Due to the motion of positively or negatively charged particles in a vacuum or rarefied gas

• Cathode-ray tube & violent motions of charged particles in a thunderstorm

• Not governed by Ohm’s law

– Conduction currents

• Drift motion of electrons in a conductor

• Average drift velocity is very low on order of 10-4 or 10-3 m/s

(18)

Convection current density

 Convection current

• the amount of charge passing through the surface

s

• Current

• (Volume) Current density

• Convection Current & current density

: the number of charge charrier per unit volume, t : the distance of each charge carrier in time t N

 

u

Q Nq S t

  u a

n

I Q Nq s Nq

t

      

u an uS

(A/m )

2

Nq

J u

I  

S

J d sJ   u

(19)

Space-Charge limited Vacuum Diode

• Example 5-1 (vacuum-tube diode)

– Find the maximum convection current density at a fixed voltage difference.

0 3/ 2 2 0

4 2

9

J e V

d m

 

e e

J E

 

  

J uy

Child-Langmuir law

(20)

Conduction current density

 Conduction currents (drift motion of electrons, hole, and ions under the influence of an applied electric field)

– The average drift velocity : –

– For semiconductors, – Example

• For a current density J = 7 (A/mm2) in copper – E =0.121 V/m

– Electron drift velocity 3.57×10-4 m/s

i i i i

  N q

J u

e e

 

u E

: conductivity

e e e e

     

     

J E E

e e h h

       

(ue : electron mobility in a conductor)

( 

e

  Ne )

(21)

5-4. Equation of continuity

• Principles of conservation of charge

– One of the fundamental postulates of physics. “Electric charges

may not be created or destroyed; all charges either at rest or in motion must be accounted for at all times”.

Total outward flux of the current density vector through S

3

A/m

S V

S V

V V V

dQ d

I d d

dt dt

d d

d d d d

dt t

t

 

    

    

 

      

   

 

 

  

J s

J s J

J J

 

(22)

Kirchhoff’s Current Law

• For steady current,

– KCL : The algebraic sum of all the currents flowing out of a

junction in an electric circuit is zero.

• What about this in the case of AC ?

/ t 0

  

 

0

0 0

j

0 KCL

S j

d I

   J   J s    

 

0

0 KCL

j

j

I

KVL, -

 

E dl

 

dV    0 E 0

C C

(23)

Current relaxation

Charges introduced in the interior of a conductor will move to the conductor surface and redistribute themselves in a such way as to make and E=0 inside under equilibrium condition.

To calculate the time it takes to reach an equilibrium,

 

 

 

 

/ 3

0

-19

.

In a simple medium, /

0 C/m

s

=1.53 10 s

7.38 hrs

t

copper rubber

t

t e

 

  

 

    

 

 

     

 

    

E J E

E

Q0

J

(24)

Power dissipation and Joule’s Law

• Microscopically, these electrons collide with atoms on lattice sites.

Energy is thus transmitted from the electric field to the atoms in thermal vibration.

 

 

:

 

 

 

    

 

 

 

E E l

E u u

E u E J

E J

 

i i i i

i i

W

q l q

p dW e

dt

dP p N q dV dV

dP dV

3

The work done

by an electric field in moving a charge a distance A power where is the drift velocity.

W/m : power density

(25)

 

 

2

  

 

J E

V

L S

P dV

dV dsdl P Edl Jds VI I R

W

In a conductor of a constant cross section, W

Power dissipation and Joule’s Law

• Total electric power converted into heat

d

V

I S

(26)

Boundary conditions

Boundary condition for the normal component of C:

 

1 2

1 2

, l im

0

V S

n n

Side face

n s

n h

s

C C d

Ah C A C A C

C

d h C

 

 

  

 

s

s

 

2

s

Divergence theore

C m m

/

0

a

n

C

Medium 1

Medium 2

h

If a field vector C satisfies the relation of

  C   (ex: )   D  

(27)

Boundary conditions

(ex: ) H

  C J   J

 

 

2

1

1

2

, lim

0

S C

t t

Side line

t t

s

s h

s

d dl

Jhl C l C l dl

J

C C J Jh

 

   

  

 

C s C

C

 

 Stokes's th

A/

e

m e

or m

Medium 2

a

t

C

h

l

Medium 1

 

 

1 2

1 2

n n s

t t s

C C

C C J

 

 

C/m

2

A/m

In summary, the boundary conditions of a vector field satisfying

If a field vector C satisfies the relation of

C

 

  C J

(28)

Governing Equations

• For steady currents.

• Boundary conditions.

2

1 2

1 2 1 1

1 2 2 2

A/m

n n

t t t

t

J J

J J J

J

  

  

  0 0  

= 0,

/  = 

    

J

J E J E

Boundary conditions for current density

t

     J

1 2

0

t t

C C C

   

1 2

0 n n

C C C

    

(29)

Governing Equations

• Exercise

  

2

 

1 1

2 2 1

10 3 4 A/m in medium 1 Determine at in medium 2 if =2

 

 

J a a

J

y z

P

1

2

2

1

   x 0

  

2

2

 20

y

3 2 

z

A/m

J a a

J

1

2

 ? J

z

(30)

Current Flow in a Parallel Capacitor

• Example 5-4

– Current density, electric field intensities & surface charge densities

1 2 1 2

1 2

1 2

2 1 1 2

d d

V R R I I

S S

V J I

S d d

 

 

1 1 2 2

1 1 2 2 1 2

2 1

1 2

2 1 1 2 2 1 1 2

, V E d E d

E E J J

V V

E E

d d d d

1 2

1 1 1

2 1 1 2

2 1

2 2 2

2 1 1 2

1 2

s

s

s s

E V

d d

E V

d d

   

 

   

 

 

 

  

1 2

1 2

si s s

?

n n si

D D

  

 

 

(31)

Resistance calculations

• Capacitance

• Resistance

S S

L L

d d

C Q

V d d

   

 

 

 

D s E s E l E l

 

 

 

L L

s s

d d

R V

I dd

 

    

 

E l E l

J s E s

 

 

 

If and of the medium have the same space dependence or if the medium is homogeneous

 

RC C

G

   1

( G :

R conductance)

(32)

Resistance calculations

• Example 5-5

– Find the leakage resistance per unit length.

• coaxial cable

• parallel wire

     

1 1

1

2 1 1

F/m ln .m

ln / 2

C R b

b a C a

 

 

   

            

 

 

1

1

2 1

1

1

F/m cosh 2

1 1 1

cosh ln 1 .m

2 2 2

C D

a

D D D

R C a a a



  

   

 

 

 

       

                        

(33)

Resistance calculations

• The procedure for computing the resistance.

1. Choose an appropriate coordinate system

2. Assume potential difference V0 3. Find E within the conductor.

4. Find the total current

5. Find the resistance R by taking the ratio V0

/I

S S

I   J s d    E s d

2

V 0 V

     E

(34)

Resistance calculations

• Example 5-6

0

2

1 2

2

0

0

0 0

0

0 0

/ 2

0 2

2

2 2

ln at ,

at

Since potential is a function of only,

The current density is

Therefore,

 

 

 

   

 

 

 

 

 

   

        

      

 

 

J E a a

J sb

S a

V V V

V

d V V c c

d V V

V V

V r r

V dr V b

I d h h

r a

R V

I 2hln

b a/

참조

관련 문서

It considers the energy use of the different components that are involved in the distribution and viewing of video content: data centres and content delivery networks

After first field tests, we expect electric passenger drones or eVTOL aircraft (short for electric vertical take-off and landing) to start providing commercial mobility

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the

Therefore, in discussing the motion of an electron of known energy or momentum about a nucleus, it is necessary to speak only in terms of the probability of finding that

~ The streak lines can be used to trace the travel of a pollutant downstream from a smoke stack or other discharge. ~ In steady flow, Lagrangian path lines are the same as

Kinematics : study of the geometry of motion. Relates displacement, velocity, acceleration, and time without reference to the cause of motion. Kinetics : study of

Absolute and Relative Velocity in Plane Motion Instantaneous Center of Rotation in Plane Motion Absolute and Relative Acceleration in Plane Motion... Analysis of Plane

In the proposed method, the motion of focused object and the background is identified and then the motion vector information is extracted by using the 9