• 검색 결과가 없습니다.

19. Theory of Multilayer Films 19. Theory of Multilayer Films

N/A
N/A
Protected

Academic year: 2022

Share "19. Theory of Multilayer Films 19. Theory of Multilayer Films"

Copied!
26
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

19. Theory of Multilayer Films 19. Theory of Multilayer Films

Transfer Matrix

Reflectance at Normal Incidence Anti-reflecting Films

High-Reflectance Films

r

t

(2)

Transfer Matrix for a Single Film on a Substrate:

TE Mode

Transfer Matrix for a Single Film on a Substrate:

TE Mode

( ) ( )

( ) ( )

1 2

1 01 1 1

2 02 2 2

:

, cos

, cos

Consider two waves E and E that have the same frequency

E r t E k r t

E r t E k r t

ω

ω ε

ω ε

= +

= +

r r

r r r r r

r r r r r

n0 n2

E0 Et2

1

Er

n1

1

Et Ei2

1

Ei Er2

(3)

mode) -

ˆ (TE

0 E z

Er = z

mode) -

(TE ˆ

0 Bxx By

Br = + n

0

=

=

1 1 1

m m r

r E

E

E0 1

1

Er

2

1

Er

m

Er 1

1

1

Et

2

1

Et

1 2

Ei 1

1

Ei

2 2

Ei 1

2

Er 2

1

Ei Er22

m

Ei1 Erm2

m

Et 1

m

Ei2

1 2

Et 2

2

Et m

Et2

B0

n

1

n2=ns

=

=

1 2 2

m m t

t E

E

=

=

1 1 1

m m i

i E

E

=

=

1 1 1

m m t

t E

E

=

=

1 2 2

m m i

i E

E

=

=

1 2 2

m m r

r E

E

Er0

=

=

1 2 2

m m t

t E

E

=

=

1 1 1

m m r

r E

E

(4)

Transfer Matrix for a Single Film on a Substrate:

TE Mode

Transfer Matrix for a Single Film on a Substrate:

TE Mode

Tangential components of E and B-fields are continuous across the interface.

On (a) :

0 1 1 1

0 0 1 0 1 1 1 1

2 2 2

2 1 2 1 2 2

cos cos cos cos

cos cos cos

a r t i

a r t t i t

b i r t

b i t r t t t

E E E E E

B B B B B

E E E E

B B B B

θ θ θ θ

θ θ θ

= + = +

= =

= + =

= =

On (b) :

(a) (b)

(5)

0 0

0 0 0 0 0

1 1 0 0 1

2 0 0 2

Note :

:

cos cos

cos

t

s t

E n

B E n E

v c

Define n n

n

ε μ

γ ε μ θ

γ ε μ θ

γ ε μ θ

= = ⎛ ⎞⎜ ⎟⎝ ⎠ =

=

=

=

( ) ( )

( )

0 0 1 1 1 1

1 2 2 2

a r t i

b i r s t

B E E E E

B E E E

γ γ

γ γ

= =

= =

Transfer Matrix for a Single Film on a Substrate:

TE Mode

Transfer Matrix for a Single Film on a Substrate:

TE Mode

0 0 1 0 1 1 1 1

2 1 2 1 2 2

( ) cos cos cos cos

( ) cos cos cos

a r t t i t

b i t r t t t

a B B B B B

b B B B B

θ θ θ θ

θ θ θ

= =

= =

(6)

( ) ( )

( ) ( )

( )

2 2

0 1 1

2 1 1 2

1 2 2 1

0

1

1 1 2

2

exp exp

exp

exp ex

o

p

. c s t

i t i

b i r t

r

i t

b i r t

From the geometry of the problem we can see that :

E E i and E E i

where

Using these exp

k n

ressions we find

E E E E i E i E

B

:

E E E

π t

δ θ

δ δ

λ

δ δ

γ γ

= Δ = ⎜

= + = + + =

= =

= =

( )iδ Ei1 exp( )+iδ = γs Et2

Transfer Matrix for a Single Film on a Substrate:

TE Mode

Transfer Matrix for a Single Film on a Substrate:

TE Mode

t

(7)

( )

( )

( ) ( )

1 1

1

1 1

1

1 1

2 exp

2 exp

:

exp exp

2

b b

t

b b

i

a t i

t1

b

i1 b b

We can solve the last two equations for :

E B

E i

E B

E i

we then obtain

i i

At the first bou

E and E in terms of E and

E E E

ndary

B

E

γ δ

γ

γ δ

γ

δ δ

+

= +

=

+ +

= + =

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1

1

1 1 1 1 1

1

1

exp exp

2 cos sin

exp exp exp exp

2 2

sin cos

b

b b

a t i b b

b b

i i

B

E B i

i i i i

B E E E B

E i B

δ δ

γ δ δ

γ

δ δ δ δ

γ γ γ

γ

γ δ δ

+

+

= +

+ + +

= = +

= +

Transfer Matrix for a Single Film on a Substrate:

TE Mode

Transfer Matrix for a Single Film on a Substrate:

TE Mode

(8)

1

1

11 12

21 22

cos sin

sin cos

2 2 :

:

a b

a b

a a

This can be written in matrix form :

E i E

B B

i

The x transfer matrix is given by

m m

m m

Generalizing to a system with N layers

E E

B

δ δ

γ

γ δ δ

⎡ ⎤ = ⎡ ⎤

⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

= ⎢

⎡ ⎤ =

⎢ ⎥⎣ ⎦ 1 2 3K N

M

M M M M N N

N N

E

B B

=

MN

Transfer Matrix for a Single Film on a Substrate:

TE Mode

Transfer Matrix for a Single Film on a Substrate:

TE Mode

0 0 0 0 0

1 1 0 0 1

2 0 0 2

cos cos

cos

t

s t

n n n

γ ε μ θ

γ ε μ θ

γ ε μ θ

=

=

=

for a multilayer

11 12

1

21 22

1

cos sin

sin cos m m i

m m

i δ δ

γ

γ δ δ

⎤ ⎢=

⎥ ⎢

⎦ ⎢

( )

1

1

cos sin

sin cos

a b b

a b b

E E B i

B E i B

δ δ

γ

γ δ δ

= = +

= +

(9)

( )

( )

0 1 2

0 0 1 2

0 1 2 11 12 2

1

0 0 1 2 21 22 2

1

:

cos sin

sin cos

a r b t

a r b s t

r t t

r s t s t

0 r1 t2 :

E E E E E

B E E B E

In matrix form we obtain

E E i E m m E

E E E m m E

i

The am

In terms of E , E , and E

li p t

γ γ

δ δ

γ γ γ γ

γ δ δ

= + =

= =

+ = =

( ) 11 12

0 1

1 2

0

2 0

2 2

:

1

:

1

s s r t

reflection and transmission coefficients

E

ude are given by

In terms of r and t we obtai

r m t m t

r E t

E E

r m t t

n

m γ

γ γ

+ = +

= +

(10)

0

0 11 0 12 21 22

0 11 0 12 21 22

0 11 0 12 21 22

2

. :

s s

s s

s s

t m m m m

m m m m

r m

Solving for r and t we have

These equations allow us to evaluate the properties of multilayer m m

ms m

fil γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

= + + +

+

= + + +

0 0 0 0 0

1 1 0 0 1

2 0 0 2

cos cos

cos

t

s t

n n n

γ ε μ θ

γ ε μ θ

γ ε μ θ

=

=

=

11 12

1

21 22

1

cos sin

sin cos m m i

m m

i δ δ

γ

γ δ δ

⎤ ⎢=

⎥ ⎢

⎦ ⎢

Reflection coefficient (r) and transmission coefficient (t) Reflection coefficient (r) and transmission coefficient (t)

(11)

( ) ( )

( ) ( )

2

1 0 0 1

2

1 0 0 1

11 12

1 0 0

21 1 0 0 22

cos si

: cos sin

sin

n

cos

cos sin

s s

s s

At normal incidence the matrix elements become

m m i

n

m i n m

At normal incidence the re

n n n i n n n

flectance

r n n

coefficient becomes :

The powe

n i n n n

δ δ

ε μ

ε μ δ δ

δ δ

δ δ

+

= +

=

+ +

=

= =

( ) ( )

( ) ( )

2 2

2 2 2 2

1 0 0 1

2 2

2 2 2 2

1 0 0 1

cos sin

cos sin

s s

*

s s

r reflectance coefficient is given by :

n n n n n n

R = r r

n n n n n n

δ δ

δ δ

+

= + + +

11 12

1

21 22

1

cos sin

sin cos m m i

m m

i δ δ

γ

γ δ δ

⎤ ⎢=

⎥ ⎢

⎦ ⎢

0 0 0 0 0

1 1 0 0 1

2 0 0 2

cos cos

cos

t

s t

n n n

γ ε μ θ

γ ε μ θ

γ ε μ θ

=

=

=

19-2. Reflectance at Normal Incidence:

Single-Layer Film

19-2. Reflectance at Normal Incidence:

Single-Layer Film

1 1 1

0 0

2 2

cos t

n t n t

π π

δ θ

λ λ

= =

(Reflectance)

(12)

/λ nt /λ0

Δ =

0 1 2

1 (air)

1.52 (glass)

s

n

n n n n

=

=

= =

s 1.52 n= n =

0

2 2n λ Δ = =λ

0

4 4n λ Δ = =λ

4.3%

(Reflectance at normal incidence)

(13)

Reflectance at Normal Incidence:

Single-Layer Quarter-Wave Film Reflectance at Normal Incidence:

Single-Layer Quarter-Wave Film

0

1 1

0 0 1

11 12

1 0 0 1 0 0 1

21 1 0 0 1 0 1

0

0 22

1

:

2 2

cos =0, sin =1

4 2

cos 0 sin 0

sin co 0

4

s 4

0 For the quarter wave thickness

n t n

n

i i i

m m

n n

m i n i n m i

At normal incidence t

t

he r

n λ

π π π

δ δ δ

λ λ

δ δ

ε μ ε μ γ

γ λ

ε μ δ ε μ δ

λ

= = =

= = = =

⇒ ⎜

= = = =

= =

( )

( ) ( )

( )

( )

( )

2 2

0 1 0 1

2 2

0 1 0

2 2

0 1

2 2

0 1

1

s s

* s s

s

s

i n n n n n n

r

i n n n n n n

eflectance coefficient becomes :

The power reflectance coeff n

icient is given b n n

R = r

n n

y : r

n

+

= +

= =

+

= 0 R

A single λ/4 film can produce perfect antireflection!

1 0

4

4 n

t = λ = λ

ns

n n1 = 0

(14)

Reflectance at Normal Incidence:

Two-Layer Quarter-Wave Films Reflectance at Normal Incidence:

Two-Layer Quarter-Wave Films

1 1

2

1

1 2

1

1 2

2

: 0

0 :

0 0 0

0 0 0

two quarter wa

i The transfer matrix for a quarter wave thickness film is given by

i For

i i

i i

The reflectance coefficient ve fi

be lms

γ γ

γ

γ γ γ

γ γ γ

γ

= ⎢

⎤ ⎡

⎥ ⎢

= ⎥ ⎢⎥ ⎢⎦ ⎣ =

1

1 2

M

M = M M

2 1

0 2 2 2 2

1 2

0 11 0 12 21 22 2 0 1 2 0 1

2 2 2 2

0 11 0 12 21 22 2 1 2 0 1 2 0 1

0

1 2

s

s s s s

s s s s

s

*

comes :

m m m m n n n n

r m m m m n n n n

The power reflectance coefficient is given by : R = r r

γ γ

γ γ

γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ

γ γ

+

= = = =

+ + + + +

+

2 2 2

2 0 1

2 2

2 0 1

2 2

2 0 1

2

1 0

s s

s

s

n n n n n n n n

Zero reflectance occurs when n n

n n

n n n n

=

=

+

(15)

Reflectance at Normal Incidence:

Two-Layer Quarter-Wave Films Reflectance at Normal Incidence:

Two-Layer Quarter-Wave Films

0 1

2

n n n

n = s

Although the reflectance is greater, it remains less values over the broad range by introducing a λ/2 layer!

(16)

Reflectance at Normal Incidence:

Two-Layer Films

Reflectance at Normal Incidence:

Two-Layer Films

(17)

19-4. Reflectance at Normal Incidence:

Three-Layer Antireflecting Films

19-4. Reflectance at Normal Incidence:

Three-Layer Antireflecting Films

(18)

Reflectance at Normal Incidence:

Three-Layer Antireflecting Films Reflectance at Normal Incidence:

Three-Layer Antireflecting Films

1 3

0 2

s

For the quarter - wave film, zero reflectance occurs when : n n n n

n =

(19)

CVI Antireflecting Films CVI Antireflecting Films

(20)

CVI Broadband Antireflecting Films CVI Broadband Antireflecting Films

(21)

19-5. High-Reflectance Layers 19-5. High-Reflectance Layers

by reversing the order of deposition of the low - and high refractiv

A high - reflectance film rather than an anti - reflecting film is made

The transfer matrix for a quarter wave t e

hi index la

ckness fi yers

lm .

is gi

0

:

0

, :

0 0 0

0 0 0

L H

H L

HL H L

H

H L

L

i ven by

i For two quarter wave films with the high refractive index layer on top

i i

i i

The power reflectance coefficient fo the two l ye

r a

γ γ

γ

γ γ γ

γ γ γ

γ

= ⎢

⎤ ⎡

⎥ ⎢

= ⎥ ⎢⎥ ⎢⎦ ⎣ =

M

M = M M

2 2 2

0

2 2

0

* L s H

L s H

r film at normal incidence

n n n n

R = is giv

r r n n n

en by :

n

= ⎜ +

(22)

High-Reflectance stack of N Double-Layers High-Reflectance stack of N Double-Layers

( 1 1)( 2 2) ( ) ( )

0 0

0 0

N N

H L H L HN LN H L HL

N N L L

H H

N

H H

L L

For a high - reflectance film with N pairs of high - and :

The ampl

low refractive index layers

itude and powe γ γ

γ γ

γ γ

γ γ

= = =

= = ⎢

M M M M M K M M M M M

M

( )( )

2 0

0

2 0

0

2 0

1

1

N

N N

L

L H

s

s H

H L

N N N

L H L

s

N

s L H

*

H L s H

r reflectance coefficients for the multi layer film at normal incidence are given by :

n n

n n

n n

n n

n n

r

n n n n

R = r r

n

n n n

n n

n n n n

⎞⎛

⎟⎜

= =

+ +

= ( )( )

2

2 0

1

N 1

s L H

n n n n

+

(23)

High-Reflectance Layers High-Reflectance Layers

N=2

N=2 +1(high) N=6

(24)

Reflectance of high-low λ/4 Layers Reflectance of high-low λ/4 Layers

(25)

CVI High-Reflectance Coatings CVI High-Reflectance Coatings

(26)

CVI High-Reflectance Coatings CVI High-Reflectance Coatings

참조

관련 문서

율격과 운율의 문제...

 When the price of an item declines, the substitution effect always leads to an increase in the quantity demanded of the good.. Income

참고 ) 문화상징을 효과적으로 구사한 시인은 종교적인 상징을 개성적 으로 창출한 한용운 , 서정주 , 김현수

[r]

여기에서는 원자가 띠 꼭대기에 있는 적은 수의 전자들이 간격을 뛰어넘어 전도 띠로 옮겨갈 수 있을 만큼의 충분한 열 에너지를 받을 수 있다..

at the Specific Conditions of Sputtering Power in the Preparation of CoSi 2 Thin Films by Using the Sputtering Method ……… 88 Fig.. 44 Carrier Concentration and Mobility of the

international exchange of South Korean films, korean films in the 2000s, korean domestic international film festivals, korean films in overseas film

4.12 XRD analysis results of corrosion products on Al-Mg films at the beginning of the salt spray test