• 검색 결과가 없습니다.

Nb V ò & ÿ; c  \ ¥ (Ru,Nb.Sn)Sr

N/A
N/A
Protected

Academic year: 2021

Share "Nb V ò & ÿ; c  \ ¥ (Ru,Nb.Sn)Sr"

Copied!
5
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Effect of Nb Doping on the Superconducting Properties of (Ru,Nb,Sn)Sr

2

EuCu

2

O

z

Ho Keun Lee

Department of Physics, Kangwon National University, Chuncheon 24341, Korea (Received 4 August 2015 : revised 12 August 2015 : accepted 13 August 2015)

Polycrystalline samples of (Ru1−xNbx) Sr2EuCu2Ozand (Ru0.8−xNbxSn0.2) Sr2EuCu2Ozwith 0

≤ x ≤ 0.4 were synthesized by using a solid state-state reaction method. The phase formation and the physical properties were investigated by means of X-ray diffraction and transport measurements.

Contrary to the observation of no superconductivity in Sn-free Nb-doped (Ru1−xNbx) Sr2EuCu2Oz

samples with x ≥ 0.2, a superconducting transition behavior was observed in the (Ru0.8−xNbxSn0.2) Sr2EuCu2Oz samples, and an onset superconducting transition temperatures Tc, of about 29 K and 35 K were observed for the x = 0.2 and 0.4 samples, respectively. The superconducting behaviors induced by Nb and Sn co-doping are discussed in conjunction with the changes in the hole concentration and the structure.

PACS numbers: 74.72.-h, 74.70.Pq, 74.62.Dh, 74.25.-q

Keywords: (Ru,Nb,Sn)Sr2EuCu2Oz, Nb/Sn co-doping, Superconductivity

Nb V ò & ÿ; c  Â \ ¥ (Ru,Nb.Sn)Sr

2

EuCu

2

O

z

4 8 ý € ¾ ¹ Åy ¢ — ¤V R Ë

T

‡ Ú£ Ó

y

©œ"é¶@/†<Ɠ§ Ótüo†<Æõ, ðr…; 24341

(2015¸ 8Z4 4{9 ~ÃÎ6§, 2015¸£  8Z4 12{9 ú&ñ‘:r~ÃÎ6£§, 2015¸ 84 13{Z 9 >FSX‰&ñ)

(Ru1−xNbx)Sr2EuCu2Oz (Rux9 0.8−xNbxSn0.2)Sr2EuCu2Oz (x = 0 - 0.4)r¼#`¦¦“©œìøÍ6£xZOܼ

–

Ð ½+Ë$í “¦ Nbu¨8Š\ Ér©œ +þA$í x9 œí„•¸:¤$£í`¦ X-‚ r]X x9 ú5Åx :£¤$í8£¤&ñܼ–Ð ›¸Ùþ¡. Õª



õ Sns •¸iç÷&t ·ú§“r (RuÉ 1−xNbx)Sr2EuCu2O_ r¼#›¸$í\"f x ≥ 0.2“ âĺ œí„•¸:£¤$ís›'a 8

£

¤÷&t ·ú§Hכ õ @/q÷&> Sn s u¨8Š)a(Ru0.8−xNbxSn0.2) Sr2EuCu2Oz r¼_# âĺ œí„•¸„s :

£¤$ís›'a8£¤&%÷3ܼ 9, x = 0.2 x9 0.4 {9 M: yŒ•y• 29 K xŒ 9 35 K_ œí„•¸ „s :¤$£í`¦˜Ð%i. Nb x9 Sn 1_lxr •¸içܼ–Ð Ä»µ1Ïa)œí„•¸ :£¤$í o\¦r¼#_ f.Ë 0lx•¸ o x ½9¨›¸oü< ƒ> #Œ 7H_ Ùþ

¡.

PACS numbers: 74.72.-h, 74.70.Pq, 74.62.Dh, 74.25.-q

Keywords: (Ru,Nb,Sn)Sr2EuCu2Oz, Nb/Sn 1lxr •¸iç, œí„¸ :£¤$í

E-mail: hklee221@kangwon.ac.kr

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

(2)

I. " e  ] Ø

RuSr2RCu2O8 (Ru-1212)œí„•¸^‰H CuBa2RCu2O7 (Cu-1212, R = Y ¢¸H BžÐÀÓ "鶙è) > œí„•¸^‰_ µ1Ï

|

 [1] Êê u¨8Š\ @/ôÇ ´ú§“rɃ½¨\¦Ãº'Ÿ H ×æ Cu-1212

œ

í„•¸^‰_ Cu-O ^‰“o Cu @/’ Ru \¦u¨8Š “¦ Ba

@

/’ Sr`¦u¨8Š #Œ Bauernfeind 1px [2]\ _K %ƒ6£§Ü¼–Ð

½

+Ë$í÷&%3. Õª[þt“Ér¢¸ôÇ RuSr2(R2−xCex)Cu2O10 (Ru- 1222) > œí„•¸^‰•¸ ½+Ë$íÙ¡Üþ¼ 9, s[þt`¦ Ru> œí„•¸

^

‰–Ð Ô¦oĺ 9, Rs Sm, Eu, x9 Gd {9 âĺ\ëߖ éߖ{9



©œs +þA$íH†ds ·ú˜94R e”. Ru > œí„•¸^‰\ :£¤Z>y

´ ú

§“Ér ›'a`”d¦t>)a  “כÉrs[þt Ru> œí„•¸^‰H e”

>

“:r•¸ (Tc) €• 50 K s “ œí„•¸ :£¤$í`¦  è­q

÷

r m l„s “:r•¸ (Tm) 100 K - 180 K“ €• ô

Ç y©œ$í:£¤$핸 /BN”>rÊs†< ˜Ð“¦ [3, 4]÷&%3l M:ëHs.

s

[þt $í œí„•¸^‰_ Rux9 Cuo u¨8Š ƒ½¨ õH s

 >\"f ›'a8£¤÷&Hy©œ$í“Ér RuO2 8£x\, Õªo“¦ œí„

•

¸ :£¤$í“Ér CuO2 8£x\ l“ H כ ܼ–Ð ·ú˜9t“¦ e”.

:

£

¤y Cu o\ Zn`¦ u¨8ŠôÇ õ œí„•¸ e”>“:r•¸H y

Œ

™™è  l&h „s“:r•¸\H H  %ò†¾Ó`¦ put ·ú§H

s ›'a8£¤÷&%3 [5]. ÕªQ Ru 8£x_ l&h :£¤$í 



o œí„•¸ :£¤$í\ puH´òõHf” "îSX‰y µ1ß)€4R e”

tH ·ú§“ÉrœI©–Ð çߖÅÒa). sH Ruo u¨8Š_ â Ä

º u¨8ŠÜ¼–Ð l&h :£¤$í_ o ÷r m f.Ë 0lx•¸_



o\¦ Ä»µ1Ï #Œ œí„•¸ :¤$£í_ o•¸ Ä»µ1Ïr~´ ú e” l

 M:ëHs. ÕªX< Ru-1222 >_ âĺ Ru @/’ Nb`¦ 50% t u¨8Š 8•¸ l„s“:r•¸H™™yŒè  œí„

•

¸ e”>“:r•¸_ oHÄBº &h6£§s ˜Ð“¦÷&#Q e”ܼ 9 [6, 7], sH Ru-1222 >_ âĺ œí„•¸ü< €•ôÇ y©œ$í :£¤$í ç

ߖ_ ©œ ñŒ•6 xs Bĺ &h6£§`¦ trKïr. s\ @/q÷&

>

 RuSr2RCu2Oz(R = Eu, Gd)> \"fH Ru@/’ Nb`¦ u

¨8Š € œí„•¸ e”>“:r•¸ x9 l„s “:r•¸ —¸¿º yŒ™™è

†

<Ês ·ú˜94R e”ܼ 9 20% s©œ_ Nbs u¨8Š÷&€ e”>“:r

•

¸ ›'a8£¤÷&t ·ú§6£§s ˜Ð“¦÷&#Q e” [8, 9]. sQôÇ  s

H u¨8Š\ Ér íߖ™è|Ó_¾ o "é¶s“ |¨c ú e”ܼ



 Ru @/’ Nbx9 Sn`¦ uŠ8¨ 8•¸ Ru > œí„•¸^‰ _

 íߖ™è|¾Ó_ oH_ \O6£§s ·ú˜94R e” [7,10]. Õª o

 #Œ Nb u¨8Š¼–ÜЛ'a8£¤÷&H¿º >çߖ_ œí„•¸ :£¤$í_

sH, Ru_ „ (valence) ¿º > çߖ\ s e” l

 M:ëHܼ–Ð ÆÒ&ñ÷&“¦ e”. XANES (X-ray absorption near-edge spectroscopy) z´+«>\ _ € Ru-1212 x9 Ru- 1222>_ Ru „ yŒ•yŒ• 4.6 [11] x9 4.95 [12]–Ð ìr$3

÷

&#Q s e”ܼ 9, s–Ð “K +5 _ Nbs u¨8Š÷&€ Ru-1212>_ âĺ Ru-1222 >\ qK f.Ë 0lx•¸ yŒ™™è

ß

¼l M:ëH\ Ru-1212 >_ œí„•¸ :£¤$ís ß¼> t

Fig. 1. Temperature dependences of electrical resistivity for (Ru1−xNbx)Sr2EuCu2Oz(0 ≤ x ≤ 0.4) samples.



H כ ܼ–Ð [O"î÷&#Qš¸“¦ e”. sQôÇ ]jî–`ߦŽžÐ l 0

AK ‘:r ƒ½¨\"fH Ru-1212 >\ &h{©œôÇ f.Ë`¦ •¸içôÇ Ê

ê Nb`¦u¨8ŠÙþ¡`¦M: Ru-1222 >ü< Ä»ôÇ œí„•¸ :£¤$í _

 o e”H\¦žŽÐÙþ¡. Ru-1212 >_ âĺ Ru @/

’

 Sn` ¦ {9ÂÒ uŠ¨8 € f.Ë 0xl•¸ 7£x|¨c ú e”6£§s ·ú˜



94R e”ܼټ–Ð [9,10], ‘:r½ƒ¨\"fH (Ru0.8−xNbxSn0.2) Sr2EuCu2Oz >_ œí„•¸ :£¤$í\ @/K ƒ½¨Ùþ¡.

II. ÷ m Ç ] M ö

r

¼#“Ér “¦©œìøÍ6£xZOܼ–Ð ½+Ë$íÙþ¡Ü¼ 9, íH•¸ 99.9% s



©œ_ RuO2, Nb2O5, SnO2, SrCO3, Eu2O3, x9 CuO ì

r´ú˜s s6 x÷&%3. r¼_# "î3lq›¸$í“Ér (Ru1−xNbx) Sr2EuCu2Oz x9 (Ru0.8−xNbxSn0.2)Sr2EuCu2Ozs%3ܼ 9, 900 - 980C\"f 7rçߖ |9™è ìr0Al\"f \P%ƒo ÷&

%

3ܼ 9, sÊê 1050C–Ð \P)a „l–Ð\"f íߖ™è\¦ fËo 9 5 rçߖ ™è “¦ s#Q"f 1050C\"f 10rçߖ ™è Êê



©œ“:rܼ–Ð "fÍtىþ¡. B \P%ƒo ×æçߖ\ r¼#“r ìÉrW x9 $í +þ

Aõ&ñ`¦'¬I. r¼#_ œ +©þA$í :£¤$“íÉr Cu Kα‚`¦s 6

 

xôÇ X-‚ r]Xl (X’pert-pro MPD)–Ð 8£¤&ñ)a X<s'

\

¦ „½Óܼ–Ð sÀÒ#Q&’ܼ 9, q$†½Ó x9 \Pl„§4 :£¤$í“Ér :

Ÿ

xœ_© 4 éߖ ]X]ZXO x9 pìrÓZ~½O`¦ s6x  #Œ 8£¤&ñ÷&

%

3. 4éߖ q$†Ó 8½¤&£ñ\"fHË$½+í)anۼ߼+þA r¼#`¦ f”

¹¢¤€^‰ +þAI–Ð ]XéߖôÇ Êê “ÉrÛ¦`¦s6 xK „FG`¦ƒ

(3)

Fig. 2. X-ray diffraction patterns for (Ru0.8−xNbxSn0.2) Sr2EuCu2Oz (0 ≤ x ≤ 0.4) samples.

Ùþ

¡Ü¼ 9 10 mA_ „ÀÓ\¦ fË9 8£¤&÷ñ&%3. 8£¤&ñ“Ér©œ“:r

\

"f €• 10 K t 8£¤&ñ÷&%3.

III. ÷ m Ç] M ö+ s ÇÊ Ý õ m Í ‚ º8 ý

Fig. 1“Ér (Ru1−xNbx)Sr2EuCu2Oz(0 ≤ x ≤ 0.4)›¸$í r

¼#_ q$†½Ó :¤$£í 8£¤&ñ õ\¦˜Ð#Œïr. Nb`¦u¨8Š  t

 ·ú§“Ér x = 0“ r¼#_ âĺ œí„•¸ „s rŒ•“:r•¸ Tc

(onset) = 47 K,$†½Ós 0s÷&H “:r•¸ Tc(zero) = 17 Kœí

„

•¸ „s :£¤$`í¦˜Ð%i. s õHÉr½ƒ¨[þt\ _ K

 ˜Ð“¦)a õü< Ä»ôÇ õs. Nb`¦u¨8ŠôÇ âĺ x

= 0.2 x9 x = 0.4“ âĺ œí„•¸ „s :£¤$ís›'a8£¤÷&t ·ú§

€

Œ

¤Ü¼ 9, ìø͕¸^‰&h“ q$†½Ó :£¤$í`¦ ˜Ð%i. Mclaughlin 1

px [8]“Ér (Ru1−xNbx)Sr2GdCu2O8 >_ ƒ½¨ õ \¦ :Ÿx K

 Nb`¦ x = 0.15t u¨8Š € e”>“:r•¸ (Tc(zero)) 29 K\"f 19 K–Ð yŒ™™è  9, x = 0.2“ âĺ ìø͕¸^‰&h“ :

£¤$ís›'a8£¤H†d`¦Ð“˜¦ôÇ  e”. ¢¸ôÇ Williams 1px [9]“Ér (Ru0.6Nb0.4)Sr2EuCu2O8 >_ Ä⺠ìø͕¸^‰&h“ q$†½Ó :

£¤$í`¦˜Ðs 9, Nbs uŠ8¨÷&t ·ú§“Érâĺ Tc(onset) = 32 K. Tc(zero) = 12 K_ œí„•¸ „s\¦ ˜ÐsH õ\¦˜Ð

“

¦Ùþ¡. "f ‘:rƒ½¨_ Nb u¨8Š\ Ér Fig. 1_ œí„

•

¸ :£¤$í_ oH Ru-1212 >_ âĺ Ru @/’ Nbs 20%

s

©œ u¨8Š|¨c: œMí„•¸ :£¤$ísa8›'£¤÷&t ·ú§HH 7áxA _

 õü< Bĺ a%~“Ér {9u\¦˜Ð“. Fig. 1\ ƒ/åL)ar

¼

#_ ©œ“:r \Pl„§`4¦ 8£¤&ñôÇ õ x = 0, 0.2 x9 0.4 r

¼

#_ âĺ yŒ•yŒ• 78.9, 98.4 x 154.4 µV%9 i. ©œ“:r \Pl

Fig. 3. Temperature dependences of electrical resistivity for (Ru0.8−xNbxSn0.2)Sr2EuCu2Oz (0 ≤ x ≤ 0.4) sam- ples.

„

§4õ CuO2 ¨î€{©œ_ f.Ë0lx•¸_ ©œ›'a›'a> [13]\ _ 

€

 s[þt°úכ“Ér yŒ•yŒ• 0.066, 0.061, x9 0.027f.Ë0lx•¸\ @/6£x

 9, "f Nbs u¨8Š÷&€ r¼#_ f.Ë 0lx•¸ yŒ™™èH†d

`

¦trôÇ.

Fig. 2H (Ru0.8−xNbxSn0.2)Sr2EuCu2Oz œí„•¸^‰_ X-‚ r]X X<s'\¦˜Ð#Œïr. Fig. 2\ ³ðr)a ü< °ú  s

 @/ÂÒìr_ r]X xsß¼H Ru-1212½¨›¸_ ©œÜ¼–Ð x9Q t

ú B^” ½+É Ãº e”%3ܼ 9, þj™è5pxZOܼ–Ð >íߖ)aa x9 c ©œÃº°úכ“Ér x = 0{9 M: 3.873(2) ˚A, 11.626(6) ˚A, x

= 0.2 {9 M: 3.856(3) ˚A, 11.588(10) ˚AÕªo“¦ x = 0.4 {9 M

: 3.856(3) ˚A, 11.588(10) ˚A%i. Ru @/’ Nb u¨8Š÷&

€

 a x9 c ©œÃº°úכs 7£x†<Ês ·ú˜94R e” [7,14]. 



"f x = 0.2 ü< x = 0.4_ âĺ s[þt©œÃº °úכ_ 7£x

H Nb_ s“:r¼lß (0.64 ˚A, CN = 6) Ru s“:rß¼l (0.565 ˚A, CN = 6) ˜Ð H כ [15]ܼ–Ð [O"î)a. ÕªQ



 x = 0“ r¼#s x = 0.2 ˜Ð ©œÃº Hכ “Ér Nb u

¨8Š\ Érs“:rß¼l_ s–Ð [O"îs #Q§>. Ru>\ Sns •¸iç|¨cM: q‚+þA&h“ ©œÃº o ˜Ð“¦)a &h s

 e”ܼ 9 [16], †¾Ó Êê ˜Ð &ñxô9Ç ŽžÐ €9כ¹ “¦ óøÍ é

ߖ)a.

Fig. 3“Ér (Ru0.8−xNbxSn0.2)Sr2EuCu2Oz_ q$†½Ó :£¤

8£¤&ñõ\¦˜Ð#Œïr. Nb u¨8Š÷&t ·ú§“Ér x = 0“ r

¼#_ âĺ Tc(onset) = 46 K , Tc(zero) = 18 K\¦ ˜Ð

%

i. "f Fig. 1_ õü< q“§K^¦ M: Sn`¦u¨8Š 

(4)

t

 ·ú§“Ér RuSr2EuCu2Oz r¼#\ qK œí„•¸ „s“:r•¸ _

 s Bĺ &hܼ 9, q$†½Ó °úכs €•çߖ 7£x)a כ `¦

· ú

˜ ú e”. Õª!3\•¸ Ô¦½¨ “¦ Nb`¦u¨8Š € Fig. 1\

"

f ›'a8£¤)a͕øì¸^‰&h“ :£¤$íõH²ú˜o œí„•¸ „s :£¤$í s

 ›'a8£¤H†d`¦ ˜Ð#Œïr. :£¤y x = 0.4_ âĺ Tc (onset)

= 35 K, Tc (zero) = 14 K_ œí„•¸ „s :£¤$í`¦ ˜Ð%i Ü

¼ 9, Nbs u¨8Š÷&t ·ú§“Ér x = 0r¼#\ qK &ñ©œ©œI _

 q$†½Ó °úכ•¸ Œ•>›'a8£¤÷&%3. ÕªQ x = 0.2“ âĺ

•

¸ Tc (onset) = 29 K œí„•¸ „s :¤$£í`¦ ˜Ð%iܼ Tc

(zero)H 8£¤&ñ%ò%i\"f ›'a8£¤÷&t ·ú§€Œ¤. Nb u¨8Š\ 

 É

r f.Ë 0lx•¸_ o\¦ÆÒ&ñ l 0AK ©œ“:r\Pl„§4`¦ 8£¤

&

ñôÇ õ x = 0, 0.2 x9 0.4 r¼#_ âĺ yŒ•yŒ• 82.4, 100.6 x9

99.4 µV%i. s õH Sns uŠ8¨÷&t ·ú§“Érâĺü<

q

“§K˜Ð€ x = 0 x9 0.2r¼_# âĺ Õª s Œ• Sn u

¨8ŠÜ¼–Ð f.Ë 0lx•¸_ Ho \O6£§`¦rôÇ. ÕªQ x = 0.4 r¼#_ âĺH\Pl„§4s ©œ@/&hܼ–Ð ß¼> yŒ™

™

è #Œ Sn õ Nb_ 1lxr u¨8Š÷&€ Nb ëߖ u¨8ŠôÇ âĺ_ f

.Ë 0lx•¸ yŒ™™è ´òõ\¦ {9ÂÒ œ©WrvH´òõ\¦Ä»µ1Ï H

ܼ–Ð ^¦ ú e”ܼ 9 s–Ð “K œí„•¸ „s :£¤$ís †¾Ó



©œ÷&H´òõ\¦4Rš¸H Üכ¼–Ð [O"î)a. ôǼ# Fig. 3_ x = 0.2 ¼r#_ âĺ Sns uŠ¨8÷&t ·ú§“Ér Fig. 1_ x = 0.2 r¼#õ ©œ“:r \Pl„§_4 s &h6£§\•¸ Ô¦½¨ “¦

œ

í„•¸ „s :¤$£í\H H s›'a8£¤&Ù÷¼–Ð sâĺ f.Ë 0

l

x•¸ s ü@ ´òõ œí„•¸ :£¤$\í ˜Ð H %ò†¾Ó`¦p u

Hכ ܼ–Ð ˜Ð“. :£¤y uŠ8¨_ âĺ ²DGè&™h“ Áº|9"f _

 s  > ÷& 9 s Áº|"9f :£¤$í_ †¾Ó©œ #ŒÂÒ

„

 _ ²DGFo (localization)\ %ò†Ó`¾¦p5g œí„•¸ :£¤$í

\

 %ò†¾Ó`¦puH Üכ¼–Ð ·ú˜94R e” [17,18]. ¢¸ôÇ Sn õ

 Nbs 1lxr uŠ8¨÷&%3`¦M: q‚+þA&h“ ©œÃº o

•

¸ œí„•¸ :£¤$í_ oü< ƒ›'a÷&Hכ ܼ–Ð ˜Ðs 9 †¾ÓÊê

˜

Ð ^‰>&h“ ƒ½¨ ú'Ÿ÷&€ Õª "鶓`¦˜Ð "îSX‰y

€Œ•½+É Ãº e”`¦ Üכ¼–Ð \V©œ)a.

IV. + s Ç Â ] Ø

‘

:r ƒ½¨\"fH (Ru1−xNbx)Sr2EuCu2Oz x9 (Ru0.8−xNbxSn0.2)Sr2EuCu2Oz (x = 0 - 0.4) r¼#

`

¦ “¦©œìøÍ6xZ£Oܼ–Ð ½+Ë$í “¦ ©œ+þA$í x9 œí„•¸ :£¤$í`¦

ƒ

½¨Ùþ¡. X-‚ r]X ìr$ 3 õ Nbü< Sns 1lxr u¨8Š

)

a (Ru0.8−xNbxSn0.2)Sr2EuCu2Oz (x = 0 - 0.4) r¼# _

 âĺ _ éߖ{9©œ r¼#s ½Ë$+íH†d`¦˜ Ãú· º e”%3. :£¤ y

 Nbü< Sns 1lxr u¨8Š)a r¼#_ âĺ Nbëߖ u¨8ŠôÇ (Ru1−xNbx)Sr2EuCu2Oz r¼#õH ²ú˜o œí„•¸ „s :

£¤$ís›'a8£¤÷&%3. (Ru0.8−xNbxSn0.2) Sr2EuCu2Oz r

¼

#\"f x = 0.4“ âĺ Tc(onset) = 35 K, Tc(zero) = 14 K_ œí„•¸ „s :£¤$í`¦ ˜Ð%i. ôǼ# x = 0.2 r¼# _

 âĺ Tc(onset) = 29 K œí„•¸ „s :£¤$í`¦ ˜Ð%iܼ



 Tc(zero)H 8£¤&ñ%ò%i\"f a8'›£¤÷&t ·ú§€Œ¤. ©œ“:r \P l

„§4 :£¤$í 8£¤&ñ õH Nbü< Sn`¦ 1 lxr uŠ¨8ôÇ âĺ _

 œí„•¸ :£¤$ís Nb ëߖ uŠ8¨ôÇ r¼#_ :£¤$íõ ØÔ>



 H כ “Ér Sn u¨8Š´òõ\ _ôÇ f.Ë 0lx•¸ o÷r  m

 u¨8Š\ Ér Áº|9"f:£¤$í 1px#Œ  ´òõ•¸ “¦9÷&#Q



 †<Ê`¦]jrK ÅÒ%3.

P

c p 8 ý ò k >

‘

:r ƒ½¨H DzôDGƒ½¨Féߖ (KRF-2012R1A1A2042519) õ

 2014¸•¸ y©œ"é¶@/†<Ɠ§ †<ÆÕtƒü½¨›¸$íq_ t"é¶Ü¼–Ð ƒ

½

¨÷&%3_þvm (õ]j ñ-120141498). ‘:rƒ½¨_ ú'Ÿ ×æ XRD XRD 8£¤&ñ“Ér œ"©yé¶@/†<Ɠ§ /BN1lxz´+«>z´_þv›'a\"f ú '

Ÿ÷&%3_þvm.

REFERENCES

[1] P. H. Hor, R. L. Meng, Y. Q. Wang, L. Cao and Z.

J. Huang et al., Phys. Rev. Lett. B 58, 1891 (1987).

[2] L. Bauernfeind, W. Widder and H. F. Braun, Phys- ica C 254, 151 (1995).

[3] I. Felner, U. Asaf, Y. Levi and O. Millo, Phys. Rev.

B 55, R3374 (1997).

[4] C. Bernhard, J. L. Tallon, Ch. Niedermayer, Th.

Blasius and A. Golnik et al., Phys. Rev. B 59, 14099 (1999).

[5] S. K. Goh, G. V. M. Williams and H. K. Lee, Curr.

Appl. Phys. 6, 515 (2006).

[6] H. K. Lee and Y. C. Kim, Int. J. Mod. Phys. B 17, 3682 (2003).

[7] H. K. Lee and G. V. M. Williams, Physica C 415, 172 (2004).

[8] A. C. Mclaughlin, V. Janowitz, J. A. McAllister and J. P. Attfield, Chem. Commun. 14, 1331 (2000).

[9] G. V. M. Williams, H. K. Lee and S. Kramer, Phys.

Rev. B 67, 104514 (2003).

[10] A. C. Mclaughlin and J. P. Attfield, Phys. Rev. B 60, 14605 (1999).

[11] R. S. Liu, L. -Y. Jang, H. -H. Hung and J. L. Tallon, Phys. Rev. B 63, 212507 (2001).

(5)

[12] G. V. M. Williams, L. -Y. Jang and R. S. Liu, Phys.

Rev. B 65, 064508 (2002).

[13] J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitter- man and J. D. Jorgensen, Phys. Rev. B 61, 12911 (1995).

[14] H. K. Lee and G. W. Kim, New Phys.: Sae Mulli 64, 952 (2014).

[15] R. D. Shannon, Acta Cryst. A 32, 751 (1976).

[16] N. Balchev, K. Nenkov, G. Mihova, B. Kunev and J. Pirov, Physica C 467, 174 (2007).

[17] J. P. Attfield, A. L. Kharmanov and J. A. McAllis- ter, Nature 394, 157 (1998).

[18] H. K. Lee, J. Supercond. Nov. Magn. 24, 1381 (2011).

수치

Fig. 1. Temperature dependences of electrical resistivity for (Ru 1−x Nb x )Sr 2 EuCu 2 O z (0 ≤ x ≤ 0.4) samples.
Fig. 3. Temperature dependences of electrical resistivity for (Ru 0.8−x Nb x Sn 0.2 )Sr 2 EuCu 2 O z (0 ≤ x ≤ 0.4)  sam-ples

참조

관련 문서

Ÿ 새로운 일자리 및 대체될 일자리를 위해 근로자들을 대비 Ÿ 디지털 세계의 일자리에 적응할 수 있도록 사람들의 역량을 강화 Ÿ 다양한 훈련에 관한 도전과제를 해결하기

Ÿ 한국기업법학회 기획운영이사 Ÿ 한국증권법학회 편집위원

coordinated Sr(1), 8-foldcoordinated Sr(2), and 4-fold-coordinated Al 3+ cation sites in

De-assertion causes the NB or external clock generator to turn on the processor, and that takes place (a) in a sleep state: after a wake-up event is triggered; (b) in

‚ÓÁÏÓÊÌÓÒÚË ‰Îfl ÒÓÓÚ˜ÂÒÚ‚ÂÌÌËÍÓ‚, ÍÓÚÓ˚ ÔËÂÁʇ˛Ú ‚ äÓ². MINISTRY OF JUSTICE

[r]

These results suggest that, the ZrN coated Ti-Nb alloy is a good corrosion resistance for dental implant compared with non-coated Ti-Nb alloy... The

따라서 골 반응을 촉진시킬 수 있는 임플란트 표면처리에 대한 연구가 앞으 로 더욱더 활성화 되어야 하고,양극산화에 의한 표면처리에 있어서 기공의 크기와 표면