• 검색 결과가 없습니다.

 1.  Separation of Proteins in Whey by Strong Anion-Exchange Membrane of Q Sepharose    

N/A
N/A
Protected

Academic year: 2022

Share " 1.  Separation of Proteins in Whey by Strong Anion-Exchange Membrane of Q Sepharose     "

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Q Sepharose       

* 

  , * 

(2002 3 20 , 2002 5 30 )

Separation of Proteins in Whey by Strong Anion-Exchange Membrane of Q Sepharose

Du Young Choi* and Kyung Ho Row

*Center for Advanced Bioseparation Technology, Dept. of Chem. Eng., Inha University, Inchon 402-751, Korea

(Received 20 March 2002; accepted 30 May 2002)

 

             α-lactalbumin, BSA, β-lactoglobulin A

 B !" #$. %&" '  () *+!" UF ,-. !/0 )12 30,0003  10,000 45 678 9$. NaCl. :;   !" 8<) =>.  ?@ ABC9$. =>D buffer A(20 mM piperazine- HCl pH 6.4), buffer B(buffer A+1 M NaCl) ( #$. E8 =>. D buffer A/buffer B(vol%)=95/5-90/10(0-5 min), 90/10(5-10 min), 90/10-70/30(10-45 min), 70/30(45-55 min), 70/30-10/90(55-60 min) 9$. F. G HI JK) L 7 4M. NO   PQRS@ !" #$.

Abstract−Strong anion-exchange membrane in the linear gradient elution method was experimented for the separation of the major whey proteins of α-lactalbumin, BSA, β-lactoglobulin(A, B). This centrifugal UF filters were used for the pretreat- ment of proteins. The membrane with nominal molecular weight limit 30,000 was more effective than that with 10,000. The salt concentrations were changed to determine the mobile phase composition for separating the whey proteins. The mobile phase was composed of buffer A(20 mM piperazine-HCl pH 6.4) and buffer B(buffer A+1 M NaCl). The optimum mobile phase composition was determined as buffer A/buffer B(vol%)=95/5-90/10(0-5 min), 90/10(5-10 min), 90/10-70/30(10-45 min), 70/

30(45-55 min), 70/30-10/90(55-60 min). With this experimental condition of the linear-gradient elution mode, four major whey proteins were satisfactorily separated.

Key words: Whey Proteins, Anion Exchange Membrane, Buffer, Mobile Phase Composition

1.  

 , ,   , 2-6% 

   !"#.   $ %&' ()* +

$ ,- . /* 012#[1].  $ 34 567 8

 9 :; <4 => , ?@ A BC DE FG H) ( IJ#[2]. KLJMN  7 O*P Q @  R- 

S caseinsT U $ .VJ,  ;VJ W*X Y Z

[ \S#.  30-35 g/L  , 80% 7 ZP caseins

  7 pH 4.6X ]^_` a! b), cd), efg, S hi, @ h j k c)l#[3].   , caseins[ g mC 6-7 g/L no U #[4]. U$ pq .6 hn r

6X a7 4 "Ms, Bt uvwq,  ,  j x y z{N |} !"#. U$ ~ €9 ‚ ƒ„ ƒN c) …  , 6† .&7 ‡ˆ_‰Š 34J#[5]. w‹Œ

U ŽJ )* ‘7 ’ “# IVJMN ,-C 

” • –—s 20˜ ˆ U  BC ™O š›

"#[6]. U œ 6% yT 70% ˆ uvwq "Ms, 

$ 0.7%no "#[7]. P, CmI 9 žl whey retentate 18-22%  7 \S#[8].  U  O*$

α-lactalbumin, β-lactoglobulin, immunoglobulins A, M G, bovine serum albumin(BSA), lactoferrinI lactoperoxidase#. U 

BrŸ7 ZP β-lactoglobulin Ÿ $ 18.4 kDas, 162t

 56 ¡ŽN O* !" , 2-4 g/Lno ¢"#. α-lactalbumin

$ 123t  56 ¡ŽN O* £Ms, Ÿ $ 14.2 kDa , \

¤  0.6-1.7 g/Lno  !"#[9]. α-lactalbumin$ .& 3 -C ¥¦v§ 8  !"Ž ¨©, ) ŸgFª Ž*

To whom correspondence should be addressed.

E-mail: rowkho@inha.ac.kr

(2)

 40 4 2002 8

, ÍÎ \ "#[7-9, 21-22]. Ì ÀÁ Ÿ ÏÐÑ$

. ÒDÓ n^ŽJ ˆÔ H) 9 K!Õ#.  56ª

‚¾ "  ^  Ö ŒˆF*X 9  DX 

 Ÿ $ ×Ì *7 ¿ , /*;l H)Ž „

Ì Ø*7 ¿ DX  H)Ž <fP¿ l#[23]. <

fl . Ÿ  buffer ³I #Ù Ì 9 Úf Ûª ^

l#. pH Ü; JÝPŽ ÞC ÒD Üzª, 4f C pH (I

 ol  OF Ü;[ \ÔPŽ Þ9 JC buffer -Ol

#. JC buffer ßà$ Ì ÀÁ ¾ hn *h ,-C -S

#[24]. ¨  Ÿ  j^Â(isoelectric point)I bufferS ³  o ,-C Ÿ ÏÐÑ S N H)P¿ l#. ¶X Oƒ )á F*(gradient elution)7 )P âJ Ÿ F«7 ã •#[25].

ä ™O åJ$ U  ,X α-lactalbumin, β-lactoglobulin AT B, BSA[ × Ì ÀÁ¾7 )P Ÿ P •#. æçJM N Œˆ F*I F°º èÙ U  Ÿ  B9 éP   C#.

2.  

2-1. 

ä æç c)l U  ¸ Òê_dS α-lactalbumin(type III:

deplete, form Bovine Milk Approx. 85%), β-lactoglobulin, β-lactoglobulin A β-lactoglobulin B(form Bovine Milk Approx. 90%), bovine serum albumin(BSA), buffer ëC piperazine, ÄQ sigmaX OìPí#.

Äî _d$ RìPŽ ^ ¾ I(PVDF 0.45µm, Waters)[  )9 ^ï [ Pí#. buffer B )9_` c)C NaCl$ Œ„;V

X OìPí#. $ ²É ðñ(Division of Millipore, Waters, Milford, MA 01757, U.S.A.)T 3¯(HA-0.5µm, Division of Millipore, Waters)[  )P IC ò 4[ c)Pí#. ä æçX Äî _d7

PVDF 0.45µm 3¯N ^ï C ó c)ô#. Œˆ$ #×I õ$

F*MN c)Pí#. Buffer A pH 6.4S 20 mM piperazine-HCl, buffer B buffer AT 1M NaCl7 ö! £#.

2-2. 

ä æçX r÷ 1 mlS ÀÁ¾ HiTrap Q HP(Pharmacia)[ c )Pí#. HiTrap Q HP$ * Q Sepharose[ resinMN c)P

¬ ×Ì ÀÁ¾#. Ÿ}) HPLC &pN Waters 515 multi-solvent delivery systemI 486 tunable absorbance analytical detector, Rheodyne injector(50µl sample loop)[ ‚C Waters model 600S liquid chromatography(Waters Associates, Milford, MA, U.S.A.)[ c) ô#. Š¯ 4Ö &p Chromate(Ver. 3.0, Interface Eng., Korea)[

&fC PC#. ½ #Ù Ÿ}) HPLC &p øùŽŽ M930D solvent

 ± ÛB Ÿ 7 gÛ9 åJ S α-lactalbumin, β-lactogloblin

(A, B)I BSA Ÿ7 +Ž Þ9 Ÿ  C¹ 10,000(YM-10)I

30,000(YM-30) û‘Ÿ z UF 3¯[ c)9 _d[ ^ï Pí#.

U 4)x _d õ$ „7 YM-10I YM-307 &fC Q t _ ç ª!  û‘Ÿ ŽX 3,000 rpmMN 15ŸÓ û‘Ÿ P í#. ŽX åJ  Ÿ  ÄQ 10,000 ˆŽ ¨© Ÿ   C¹ 10,000 ¾7 ¤IP “ $ x7 _dN ô#. Ÿ   C¹ 30,000S ¾X α-lactalbumin, β-lactogloblin Ÿ 

?? 14.0 kDa, 18.3 kDa 7 —P ¾7 ¤IC Ix7 _dN c)ô#.  )7 ²PŽ ÞC detector wavelength

260 nmN HiTrap Q HP[ ¤IP _d ±$ 1 ml/minMN n Pí#.

3. 

Ì ÀÁ¾ û  6 Œ* ZT †KC ÒD H)

N SC •#.  šl #h* ì  c #h 6I <

f 9X Ÿ   HPLCT  $ _ӌ Ÿ [ Æ 4 "Ms È$ ÉÊI  FG P#. N Ì ÀÁ¾

&Â7 )PD $ Ÿ (I[ ŽBÆ 4 "#. W' y 4[

²:_‰ ³7 c)P ûP 7 Ÿ PŠ & 8 c) l#. pH[ FGP ) º$ ,Ó buffer ÀÁ Ó  ¹

±JS ÌÀÁ <f7 Æ 4 "¿ 9ê#. ŒˆI buffer ÌÀ Á Ÿ X 4*S 7 Ü*_‰ “o ßà !· Ps

ÌÀÁ7 c)P .VJ ngX ë (IT ± j

 JG' — !· C#. Œˆ F* ßz ½ ¹J Ü;

C )$ žl ) #„C Œ7 ¶C#. Úfl )

† ±o Œˆ o rŸJ z C#. , I Œ

ˆ Ì ×Ì ÀÁ¾  JMN <, Úf7 L!PDX Ÿ

 K!ªŠ ¨ Ÿ  K!ª ±o ?? Ÿ  z7

" ±o C#. ¶X #' Oƒ )áº$ ¾X  *

Ÿ7 Úf_$ ¨ c)l#. ½C, ßçJMN Wn @ 7 ßàJ MN )_$ âJ F«7 ㎠!—% ¨ Oƒ )á[ c)P •

 & P#[26].

U  , α-lactalbumin, β-lactogloblinI BSA[ Ÿ PŽ Þ P Ž' HPLC ×Ì ÀÁ¾7 MN &f9 NaCl o [ Ü;_‰ Oƒ )á F*ºMN æçPí#. ï× ? U 

 Òê _d[ ýþP Œˆ$ buffer A(20 mM piperazine-HCl pH 6.4)T buffer B(buffer A+1 M NaCl)[ c)Pí#.  Ÿ  ) ! ªw (X  ×^P no )oS j^Â(pI) Z

T ™ "#.   pI\# Œˆ pH úD   

yJMN 4:Ì(H+)7 P ˆBJMN P2_Ž(OH)

(3)

8 ×Ì7 *¿ l#. +¿ ×Ì7 , $ ÒD „

Ì H)ŽN l ×Ì ÀÁ¾ <fP¿  •#. 

pIT Œˆ pHc Z úD -4 $ . Y ×Ì

! . / ÀÁ¾ <fP¿ l#[27]. èX Fig. 1X \ 0T õ pI & È$ α-lactalbumin & / <f £# ) , BSA β-lactoglobulin (X l#. Buffer B ‚l NaCl

„7 òMN1  y _Ó$ š#. Fig. 1X c)C

Œˆ F*$ ßzJMN Ü;Pí , buffer A/buffer B 95/5-90/10 (0-5 min), 90/10(5-10 min), 90/10-70/30(10-45 min), 70/30-70/30(45-55 min), 70/30-10/90(55-60 min) vol%£#. Fig. 2X  Òê _dX β-lactoglobulinB β-lactoglobulin(A, B)7 ëC Òê_dN æçC 2I#. æg U ± " β-lactoglobulin$ AT B ýþ !"

#. Ÿ$ β-lactoglobulin A 64%, β-lactoglobulin B 36%#[4].

Fig. 2X Fig. 1I ÀPD BSA BC  ( 3!´,

β-lactoglobulin ÷ú Ą β-lactoglobulin(A, B)MN Ÿ £#. β- lactoglobulin(A, B) Ÿ o[ òPŽ Þ9 Œˆ F*7 Ü;_`

æçP Fig. 3I õ$ Œˆ F*7 æçJMN a£#. Buffer A/

buffer B 95/5-90/10(0-5 min), 90/10(5-10 min), 90/10-87/13(10-20 min), 87/13-70/30(20-40 min), 70/30-10/90(40-45 min) vol%S Œˆ F*

X Fig. 3 2Iï α-lactalbumin ÷ú ( 3! , Äî 

 ÷ú Žêß nPí#. P β-lactoglobulin(A, B) Ÿ o Fig. 2 2IT À9 4 ¨ òPí#.

Òê _d ýþX a$ Œˆ F«7 U Ÿ57 2Z ò 4

 )9_ÿ _d J)P æçPí#. U Ÿ5 4X 4

Î #„C Ÿ   ‚ !"#. èX   åJ MN P  Ÿ7 +Ž Þ9 U 4)x7 ^ï Pí#.

ÛB Ÿ  I   6 “$ y7! $ PVDF 0.45µm 3¯N ÛÙ ó û‘Ÿ z UF 3¯[ )9 Ÿ  Z è I P  JS bMN U 4)x7 ^ï [ Pí#. α-lactalbumin, β-lactogloblinI BSA Ÿ  Table 1X 4 4 "8 4Ž

¨© åJ Ÿ7 +Ž Þ9X Ÿ  49 PS 

ª, 4: ˆS Ÿ 7 gÛÆ 3- "!X Ÿ  C¹

10,000I 30,000S û‘Ÿ z UF 3¯[ c)Pí#. Fig. 3I ŒKC

Œˆ F*MN ? 3¯ C¹ Ÿ  èÙ 2I ?Ž Fig. 4T Fig. 5#. Fig. 4 Ÿ  C¹ 10,000S ¾7 ¤IP “$ _d Fig. 1. Separation of the standard chemicals of the whey proteins by

anion-exchange membrane(buffer A/buffer B(vol%)=95/5-90/

10(0-5 min), 90/10(5-10 min), 90/10-70/30(10-45 min), 70/30(45- 55 min), 70/30-10/90(55-60 min), 20µµµµl)

Fig. 2. Separation of the standard chemicals of the whey proteins by anion-exchange membrane(mobile phase composition same as in Fig. 1, 20µµµµl).

Fig. 3. Separation of the standard chemicals of the whey proteins by anion-exchange membrane(buffer A/buffer B(vol%)=95/5-90/10 (0-5 min), 90/10(5-10 min), 90/10-87/13(10-20 min), 87/13-70/30 (20-40 min), 70/30-10/90(40-45 min), 20µµµµl).

Fig. 4. Separation of the proteins contained in whey by anion-exchange membrane(mobile phase composition same as in Fig. 3, 20µµµµl, molecular weight limit 10,000 centrifugal UF filters retentated).

(4)

 40 4 2002 8

[, Fig. 5 30,000S ¾7 ¤IC õ$ „ _dN Ÿ}C 2I#.

Äî  BC  (I Ÿ o ²:P , β-lactoglobulin(A, B) XN öX C;< ) £#. W' C¹ Ÿ  10,000S

¾7 c)ô Fig. 4X α-lactalbumin$ #Ù ÷úT õ )

£ , BSAT β-lactoglobulin$ Û Ÿ  “=#. Fig. 4, 5X Ÿ oT  ( È$  U ‚l åJ  n

ˆMNr¯ Úf  InX buffer B )9 !" ³; Ì(Cl )I ÌÀÁ û/P¿ K!ª >P J$ „ Úf £Ž ¨

©#. Q ?X \ 0T õ 40Ÿ ó @~C ³; Ì(Cl) òN × Ì ÀÁ¾ ¡ C  C;< ) £#. BSA T β-lactoglobulin Ÿ  A "!o buffer B ‚l NaCl

 Ü;[ æçJMN FGPí#. NaCl„ 30Ÿ Œ 20%no B

P¿ ò o buffer B h@ Ü;[ R£#. 2I Œˆ

F*$ Fig. 1I õ$ buffer A/buffer B[ 95/5-90/10(0-5 min), 90/10(5- 10 min), 90/10-70/30(10-45 min), 70/30-70/30(45-55 min), 70/30-10/90(55- 60 min) vol% £#.  2I Fig. 6 ª1CMs, û‘Ÿ z UF 3¯N ^ï P “$ U _d 20µl RìC æç 2I#. ^ï [ P “$ _d Ÿ  #„C  'DP "! åJ

 „ ˆBJMN JŽ ¨© Ÿ o ²: £#. BSAT

β-lactoglobulin Û EC _Â ) £Ms È$ ÷ú (I

Žêß ˆ' nPí#. P Fig. 4T 5 9 α-lactalbumin I BSA y _Ó F!´ , _d[ ^ï P Ÿ  C¹ 10,000

¾7 c)C Fig. 7I ÀPD α-lactalbumin Ÿ o ²:Pí,

#Ù  Ÿ oT )„$ ò £#. Ÿ  C¹ 30,000 S ¾7 c)C Fig. 8X åJ  ÀJ Ÿ  A £

#. Fig. 9-11X Rì7 50µlN G— æç9 ä 2I#. Rì

7 ò_‰D ™' Ÿ o H!, )  åJ

„7 Ÿ åJMN Rì7 òPí#. Œˆ F*$ ^ Fig.

6-8I õ$ buffer A/buffer B[ 95/5-90/10(0-5 min), 90/10(5-10 min), 90/

10-70/30(10-45 min), 70/30-70/30(45-55 min), 70/30-10/90(55-60 min) vol%N Pí#. Fig. 9X _d[ ^ï P “= , õ$ F«

Fig. 6I ÀPD U  „ òl •7 4 4 "#. 

9X û‘Ÿ z UF 3¯[ c)P ^ï C æç2IS Fig. 10, 11X Rì 20µlS ^ 2I(Fig. 7, 8) 9 U

 „ ÀJ J¿ òPí Ÿ o Y Z £#. W ' Fig. 8, 117 ÀPD _d I ) ! Ÿ o È , α- lactoglobulin(A, B) Ÿ  Û "! “=#. ß NaCl J Fig. 5. Separation of the proteins contained in whey by anion-exchange

membrane(mobile phase composition same as in Fig. 3, 20µµµµl, molecular weight limit 30,000 centrifugal UF filter permeated).

Fig. 6. Separation of the proteins contained in whey by anion-exchange membrane(buffer A/buffer B(vol%)=95/5-90/10(0-5 min), 90/10 (5-10 min), 90/10-70/30(10-45 min), 70/30(45-55 min), 70/30-10/90 (55-60 min), 20µµµµl, no use centrifugal UF filter).

Fig. 7. Separation of the proteins contained in whey by anion-exchange membrane(mobile phase composition same as in Fig. 6, 20µµµµl, molecular weight limit 10,000 centrifugal UF filter retentated).

Fig. 8. Separation of the proteins contained in whey by anion-exchange membrane(mobile phase composition same as in Fig. 6, 20µµµµl, molecular weight limit 30,000 centrifugal UF filter permeated).

(5)

GC „I ò  Ì ÀÁ¾7 c)P U 7 Ÿ P

Š ,-C -SMN H)C#. æç _Ó 10ŸI 40Ÿ c NaCl

 ò Ž%Ž buffer A/buffer B, 95/5-90/10(0-5 min), 90/10(5-10 min), 90/10-70/30(10-45 min), 70/30-70/30(45-55 min), 70/30-10/90(55-60 min) vol%X & 4C Œˆ F* £#. ½ U $ Ÿ   C¹ 30,000S ¾ 10,000 9 ^ï 2I # •7 SPí#. Ÿ  C¹ 10,000S ¾7 ¤IP “$ _d ÛB

Ÿ  #MN ýþ U _d[ ^ï P.o β- lactoglobulinI pI EC immunoglobulins α-lactalbuminI EC

„MN ‚ ! "! Ÿ o[ ²:_ÿ#. èX 30,000 ˆ

immunoglobulins Ÿ  C¹ 30,000S ¾X I ! 10,000S ¾

 9 ÀJ (J£#. ª ^ï  r  DX Y Z[ \ “=#. rŸJMN Ÿ oª )„ òPí, ^ ï  c)l _ÓI )7 —PD ˆBJMN (IJS 2I[ Ž BPŽ J”Pí#. ½C û‘Ÿ z UF 3¯ * 3! 

 û‘Ÿ Ž ü^ ±oN S9 ¾ K_l •\# C¹ Ÿ 

#: Y Ÿ 7 ¤I_` 3¯ (I[ P_L#.

4.  

U  , l α-lactalbumin, BSA, β-lactoglobulin(A, B) 7 Ÿ PŽ Þ9X ¬ ×Ì ÀÁ¾I Oƒ )á F*º7 )Pí

#. ×Ì ÀÁ¾7 c)9 pHFGI ³ ßzJ )º7 )P

UMNr¯ 7 Ÿ PŠ á (IJ£ , Q t 

N Mš β-lactoglobulin7 Ÿ Æ 4 "£#. U $ ×Ì ÀÁ¾ ßàJMN <f +$ ³ oX Úf DX Ÿ  K!Õ#. èX ßz Oƒ )áT buffer c)$ á R-P

#. æç7 ¤9X âJ Œˆ F«7 éC 2I 1 ml/min Œˆ

I Buffer A/Buffer B(vol%)=95/5-90/10(0-5 min), 90/10(5-10 min), 90/10-70/30(10-45 min), 70/30(45-55 min), 70/30-10/90(55-60 min) O

ƒ F* ¹[ æçJMN a£#. U )C $ (o

  Ÿ5N gFPÛª, uvwq[ gÛPŽ Þ9X Cm  Iºª, ŸN «Fb C In 3-P#. ä ™O2I  U ‚l ûdNr¯ α-lactalbumin, BSA β-lactoglobulin A, β-lactoglobulin B[ Ÿ P hn tO Ž  dN /)… 4 "

#. PMN ÀÁ¾7 )C Ÿ ºI ÏÐÑ BC QJ é

 ‘o "¿ "!· C#.

Fig. 9. Separation of the proteins contained in whey by anion-exchange membrane(mobile phase composition same as in Fig. 6, 50µµµµl, no use centrifugal UF filter).

Fig. 10 Separation of the proteins contained in whey by anion-exchange membrane(mobile phase composition same as in Fig. 6, 50µµµµl, molecular weight limit 10,000 centrifugal UF filter retentated).

Fig. 11. Separation of the proteins contained in whey by anion-exchange membrane(mobile phase composition same as in Fig. 6, 50µµµµl, molecular weight limit 30,000 centrifugal UF filter permeated).

Table 1. Molecular masses and isoelectric points for the whey proteins

Protein Proportion of skim

milk protein(%)

Concentration in whey(g/l)

Proportion of total whey protein(%)

Isoelectricpoint (pI)

Molecular mass

α-lactalbumin 2-5 0.7 12 4.2-4.5 14,000

Bovine serum albumin(BSA) 0.7-1.3 0.3 5 5.13 69,000

β-lactoglobulin 7-12 3.0 50 5.35-5.49 18,300

Immunoglobulins 1.9-3.3 0.6 10 5.5-8.3 15,000-1,000,000

(6)

 40 4 2002 8

4. Ye, X., Yoshida, S. and Ng, T. B.: The Int. J. of Biochem. & Cell Biology, 32, 1143(2000).

5. Korhonen, H., Pihlanto-Leppala, A., Rantamaki, P. and Tupasela, T.: Trends in Food Science & Technology, 9, 307(1998).

6. Bury, D., Jelen, P. and Kimura, K.: Dairy Journal, 8, 149(1998).

7. Lieske, B. and Konrad, G.: Dairy Journal, 6, 13(1996).

8. Gerberding, S. J. and Byers, C. H.: J. Chormatogr. A, 808, 141(1998).

9. Splitt, H., Mackenstedt, I. and Freitag, R.: J. chromatogr. A, 729, 87(1996).

10. Zydney, A. L.: Dairy J., 8, 243(1998).

11. Hahn, R., Schulz, P. M., Schaupp, C. and Jungbauer, A.: J. Chor- matogr. A, 795, 277(1998).

20. Josic, D., Buchacher, A. and Junhbauer, A.: J. chromatogr. B, 752, 191 (2001).

21. Splitt, H., Mackenstedt, I. and Freitag, R.: J. Chromatogr. A, 729, 87 (1996).

22. Manji, B., Hill, A., Kakuda, Y. and Irvine, D. M.: J. Dairy Sci., 68, 3176(1985).

23. Shan, L. and Anderson, D. J.: J. Chromatogr. A, 909, 191(2001).

24. Keith Roper, D. and Lightfoot, E. N.: J. Chromatogr. A, 702, 3(1995).

25. Koo, Y. M. and Row, K. H.: J. Korean Ind. Eng. Chem., 11, 807(2000).

26. http://100.empas.com/entry.html/?i=52227&Ad=kfc.

참조

관련 문서

Paula J.M., Satish J.P., Shih P.T.,&#34;Competitive anion transport in desalting of mixtures of organic acids by

et al., Ultrafiltration behavior of extracelluar and metabolic products in activated sludge system with UF separation

In this report, new elution methods for [ 18 F]fluoride are described, using the anion exchange cartridge with inert potassium salts instead of applying basic solution to

ABSTRACT:A sulfonated PP-g-styrene ion-exchange hollow fiber membrane was prepared by pre-irradiation method with E-beam followed by sulfonation reaction.. Degree of grafting

Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography.. One

It was found that a lab-prepared WP from raw milk is mostly of β-lactoglobulin with small amount of higher molecular weight components, while a commercial whey protein

Absence of some proteins leads to loss of fertility as they are responsible for sperm division and differentiation like DYNLT1 and found to be involved in

As the predicted O-H vibrational spectra of the neutral cage hexamer are in reasonable agreement with the experimental spectra of the water hexamer bound to a