**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**2016. 10. 20. **

### Changhee Lee

### School of Electrical and Computer Engineering Seoul National Univ.

### chlee7@snu.ac.kr

## Chapter 5. Diffraction

## Part 2

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**5.5 Fresnel diffraction patterns **

*h* * * *R* *h*

*h* *h* *R*

*h* *R*

*h* *r'*

*r* ) ...

### ' 1 ( 1

### 2 ' 1 )

### ' ( )

### (

^{2}

### +

^{2}

^{1}

^{/}

^{2}

### +

^{2}

### +

^{2}

^{1}

^{/}

^{2}

### = + +

^{2}

### + +

### = +

### [ ^{n} ^{r} ^{n} ^{r} ] ^{dA}

^{n}

^{r}

^{n}

^{r}

^{dA}

*rr* *e* *e*

*U* *ikU*

*r*
*r*
*ik*
*t*

*i*

*P*

^{=} ^{−} _{4}

^{0}

_{π}

^{−}

^{ω}

### ∫∫

^{(}

^{+}

_{'}

^{'}

^{)}

^{cos(} ^{} ^{,} ^{} ^{)} ^{−} ^{cos(} ^{} ^{,} ^{} ^{'} ^{)}

**Fresnel zones: regions bounded by ** *concentric circles, R=constant, defined * *such that r+r’ differs by * λ /2 from one boundary to the next.

**Fresnel zones: regions bounded by**

*h* *L* *h*

*L* *n* *R*

*L* *R*

*L*

*R*

_{n}1 2 1

### ' ) 1 ( 1

### ...

### , 2

### , +

−### =

### =

### =

### = λ λ λ

*If R*

_{n}* and R*

_{n+1}* are the inner and outer * *radii of the (n+1)st zone, the area is *

### . of t independen

2

### ,

1 2

2

1

*R* *R* *L* *n*

*R*

_{n}### π

_{n}### π λ

### π

_{+}

### − =

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**5.5 Fresnel diffraction patterns **

3

### ...

2

1

### − + −

### = *U* *U* *U*

*U*

_{p}### The optical disturbance at P is the sum of the contributions from the various Fresnel zones.

### Since the mean phase changes by exactly 180

^{o}

### from one zone to the next,

1 5

4 3

3 2

1 1

### 2 ... 1

### 2 ) 1 2

### ( 1

### 2 ) 1 2

### ( 1 2

### 1

*U* *U*

*U* *U*

*U* *U*

*U* *U*

*U*

*n*
*p*

###

### →

### +

### +

### − +

### +

### − +

### =

∞

→

### For the case of an infinitely large aperture *(no aperture at all), the total optical *

### disturbance at P is ½|U

_{1}

### |.

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**5.5 Fresnel diffraction patterns **

### In the case of an irregular obstacle,

### (1) If P is in the illuminated region, the presence of the obstacle makes little difference, (2) If it is in the shadow region, the optical disturbance is very small, roughly in agreement

### with geometrical optics.

### Diffraction fringes appear around the shadow only if the irregularities at the edge of the

### obstacle are small compared to the radius of the 1

^{st}

### Fresnel zone.

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Zone plate **

### If an aperture is constructed so as to obstruct alternate Fresnel zones, say the even- numbered ones, then the remaining terms in the summation are all of the same sign.

**Such an aperture is called a zone plate. **

**Such an aperture is called a zone plate.**

5

### ...

3

1

*U* *U*

*U*

*U*

_{p}### = + +

### It is much like a lens, because |U

_{p}

### | is much larger than if there were no aperture. The equivalent focal length is L as given by

### λ

2

*R*

1
*L* =

*L*

*R*

_{1}

### = λ

### 1

^{st}

### Fresnel zone

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Rectangular aperture **

* * *y* *L* *x*

*h* *h* *r'* *r*

*y* *x*

*R*

### ) 2 (

### ' 1

^{2}

^{2}

2 2

2

### + +

### +

### = +

### +

### =

### [ ^{n} ^{r} ^{n} ^{r} ] ^{dA}

^{n}

^{r}

^{n}

^{r}

^{dA}

*rr* *e* *e*

*U* *ikU*

*r*
*r*
*ik*
*t*

*i*

*P*

^{=} ^{−} _{4}

^{0}

_{π}

^{−}

^{ω}

### ∫∫

^{(}

^{+}

_{'}

^{'}

^{)}

^{cos(} ^{} ^{,} ^{} ^{)} ^{−} ^{cos(} ^{} ^{,} ^{} ^{'} ^{)}

### Simplifying assumptions: The obliquity factor and *1/rr’ vary so slowly compared to e*

^{ik(r+r’)}*/r that they * can be taken outside the integral.

*dy* *e*

*dx* *e*

*C*

*dxdy* *e*

*C* *U*

*x*
*x*

*y*
*y*

*L*
*iky*
*L*

*ikx*
*x*
*x*

*y*
*y*

*L*
*y*
*x*
*ik*
*P*

### ∫ ∫

### ∫ ∫

### =

### =

^{+}

2

1

2

1

2 2

2

1 2

1

2 2

2 / 2

/

2 / ) (

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Rectangular aperture **

*y* *L* *L*

*y* *k* *L* *v*

*L* *x* *x* *k*

*u* π λ π λ

### 2

### 2 = =

### =

### =

*k* *L* *U* *C*

*dy* *e*

*dx* *e*

*U*

*U*

^{u}*u*

*v*
*v*

*v*
*i*
*u*

*i*
*P*

π

### π

π

### =

### =

^{1}

### ∫

_{1}

^{2}

^{2}

^{/}

^{2}

### ∫

_{1}

^{2}

^{2}

^{/}

^{2}

^{,} ^{ }

^{1}

### ) ( )

0

### (

2

2/

*s* *iS* *s*

*C* *dw*

*s*

*e*

*w*

*i*

### = +

### ∫

^{π}

### ∫

### ∫ ^{=}

### =

^{s}*w* *dw* *S* *s*

^{s}*w* *dw*

*s*

*C*

0
2 0

2

### / 2 ) , ( ) sin( / 2 ) cos(

### )

### ( π π

**Fresnel integrals **

**Fresnel integrals**

2 2

2

### ( ) ( )

### )

### ( *dC* + *dS* = *ds*

*ds* *w*

*s* *dS* *ds*

*w* *s*

*dC* ( ) = cos( π

^{2}

### / 2 ) , ( ) = sin( π

^{2}

### / 2 )

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Cornu spiral, a plot of the Fresnel integrals **

**The Cornu spiral is useful for ** graphical evaluation of the Fresnel integrals.

### • *The limit points s*

_{1}

* and s*

_{2}

### are marked on the spiral.

### • A straight line segment drawn

*from s*

_{1}

* to s*

_{2}

### gives the value of the integral

### • The length of the line segment is the magnitude of the integral, and *the projections on the C and S axes * are the real and imaginary parts, respectively.

### • *ds represents an element of arc. *

### ∫

*s*

^{s}_{1}

^{2}

^{2}

^{/}

^{2}

*w*

*i*

*dw*

*e*

^{π}

2 2

2

### ( ) ( )

### )

### ( *dC* + *dS* = *ds*

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Cornu spiral, a plot of the Fresnel integrals **

### ) 2 (

### ) 2 (

1 2

1 2 1

2

1 2

1 2

1 2

*y* *L* *y*

*v* *v*

*s* *s*

*x* *L* *x*

*u* *u*

*s* *s*

### λ λ

### −

### =

### −

### =

### −

### −

### =

### −

### =

### −

2 1

### ( 1 )

### 2 ) 1

### ( )

### ( 2 , ) 1 ( )

### (

*i* *U*

*S* *C*

*S* *C*

### +

### −

### =

### −∞

### =

### −∞

### =

### ∞

### =

### ∞

### [ ^{(} ^{)} ^{(} ^{)} ] [

_{1}

^{2}

^{(} ^{)} ^{(} ^{)} ]

_{1}

^{2}

### ) 1

### (

^{2}

0 *v*

*v*
*u*

*u*

*p*

*C* *u* *iS* *u* *C* *v* *iS* *v*

*i*

*U* *U* + +

### = +

For the general case in the normalized form

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Slits and straightedge **

### [ ^{(} ^{)} ^{(} ^{)} ]

_{1}

^{2}

### 1

0 *v*

*v*

*p*

*C* *v* *iS* *v*

*i*

*U* *U* +

### = +

### [ ] _{} ^{} ^{+} ^{+} ^{+} _{} ^{}

### = + + +

### =

_{−}

_{∞}

*C* *v* *iS* *v* *i*

*i* *v* *U*

*iS* *v*

*i* *C*

*U*

_{p}*U*

^{v}### 2 1 2 ) 1 ( )

### 1 ( )

### ( )

### 1 (

^{2}

^{2}

0

0 ^{2}

F. A. Jenkins and H. E. White, Fundamentals of Optics, 3^{rd} ed. (McGraw-Hill, 1957)

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Straightedge **

*If the receiving point P is exactly at the geometrical shadow edge, then v*_{2}=0.

### [ ]

^{0}

_{2}

_{2}

^{0}

_{0}

0

### 2 ) 1 2 1 2 ( 1 1

### 2 1 2 ) 1 ( )

### 1 ( )

### ( )

### 1 (

2

*i* *U*

*i* *U* *U*

*i* *v*

*iS* *v*

*i* *C* *v* *U*

*iS* *v*

*i* *C*

*U*

_{p}*U*

^{v}

_{p}### + =

### = +

### →

###

### + + +

### = + + +

### =

_{−}

_{∞}

*The highest irradiance occurs just inside the illuminated region at v*_{2}*~1.25, where I*_{p}*~1.37I*_{0}.

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Narrow slits and opaque narrow strips **

**Photographs of a number of Fresnel diffraction **
**patterns for single slits of different widths. As the slit **
becomes wider, the fringes go through very rapid

changes, approaching for a wide slit the general appearance of two opposed straight-edge diffraction patterns.

**Fresnel diffraction by narrow opaque strips. **

*Babinet's principle is not very useful in dealing with *
*Fresnel diffraction. In Fraunhofer diffraction, the *
diffraction patterns due to complementary screens are
identical. In a typical case of Fresnel diffraction, however,
this is not true, as may be seen by comparing two Figs.

F. A. Jenkins and H. E. White, Fundamentals of Optics, 3^{rd} ed. (McGraw-Hill, 1957)

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

** Fresnel diffraction from a slit **

**The diffraction pattern from a slit for **
**different Fresnel numbers N**_{F}** = a**^{2}* /*λ

**d.****corresponding to different distances d ****from the aperture. **

• At very small distances (very large
*N** _{F}*), the diffraction pattern is a
perfect shadow of the slit.

• *As the distance increases (N*_{F }

decreases), the wave nature of light is exhibited in the form of small oscillations around the edges of the aperture.

• *For very small N** _{F}*, the Fraunhofer

*pattern is obtained. This is a sinc*function with the first zero

subtending an angle λ/D = λ/2a.

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

### Fresnel integrals

Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics (1991)

### ) 2 / sin(

### ) 2 /

### cos(

^{2}

^{2}

2

2/

*X* *i*

*X*

*e*

^{i}^{π}

^{X}### = π + π

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**5.6 Applications of the Fourier transform to diffraction **

*Now we consider the general problem of (Fraunhofer) diffraction by an aperture having not only *
an arbitrary shape, but also an arbitrary transmission including phase retardation, which may vary
over different parts of the aperture.

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**5.6 Applications of the Fourier transform to diffraction **

Path difference δr

### lens the

### of length focal

### ˆ ,

### cosines direction

### , , ˆ , ˆ

### ˆ ˆ ˆ , ˆ

### = +

### = +

### =

### ⋅

### =

### = +

### +

### = +

### =

*L* *L* *y* *Y* *L*

*x* *X* *y*

*x* *n* *R* *r*

*k* *j*

*i* *n* *y* *j* *x* *i* *R*

### β α

### δ

### γ β α γ β

### α

###

###

*dxdy* *e*

*dA* *e*

*U*

_{P}^{~} ∫∫

^{ik}^{δ}

^{r}^{=} ∫∫

^{ik}^{(}

^{xX}^{+}

^{yY}^{)}

^{/}

^{L}**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**For a nonuniform aperture we introduce an aperture function g(x,y). **

### ,

### , )

### , ( )

### , (

### ) , ( )

### , (

) (

/ ) (

*L* *kY* *L*

*dxdy* *kX* *e*

*y* *x* *g* *U*

*dxdy* *e*

*y* *x* *g* *Y*

*X* *U*

*y*
*x*
*i*

*L*
*yY*
*xX*
*ik*

### =

### =

### =

### =

### ∫∫

### ∫∫

+ +

### ν µ

### ν

### µ

^{µ}

^{ν}

**Spatial frequency **

*y* *h* *g*

*y* *g*

*g* *y*

*g* ( ) =

_{0}

### +

_{1}

### cos( ν

_{0}

### ) +

_{2}

### cos( 2 ν

_{0}

### ) + ... , ν

_{0}

### = ^{2} π

**Diffraction pattern is a Fourier resolution of the aperture function. **

**5.6 Applications of the Fourier transform to diffraction **

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Apodization **

**Apodization (literally “to remove the feet”) is any process by which the aperture function is altered **
*in such a way as to produce a redistribution of energy in the diffraction pattern. It is an optical *

*filtering technique, primarily used to remove Airy disks caused by diffraction around an intensity *
**peak, improving the focus. **

**Consider a single slit. g(y)=1 for –b/2 <y< b/2 and g(y)=0 otherwise. **

### 2 ) ( 1

### 2 ) sin( 1

2

2

*b*

*b* *b*

*dy* *e*

*U*

*b*
*b*

*y*
*i*

### ν

ν

### = ν

### = ∫

−^{+}

Suppose now that aperture function is altered
by apodizing in such a way that the resultant
**aperture transmission is a cosine function: **

###

###

###

###

### − +

### = −

### =

### <

### <

### −

### =

### ∫

−^{+}

*b* *b*

*b*

*dy* *b* *e*

*U* *y*

*b* *y* *b*

*b* *y* *y*

*g*

*b*
*b*

*y*
*i*

### / 1 /

### ) 1 cos( 2

### ) cos(

### 2 / 2

### / for ) / cos(

### ) (

2 2

### π ν π

### ν ν

### π π

ν

**Apodization suppresses the higher spatial frequencies. In this way, it is possible to ***apodize the circular aperture of a telescope so as to reduce greatly the relative *

*intensities of the diffraction rings that appear around the images of stars. This enhances *
**the ability of the telescope to resolve the image of a dim star near that of a bright one. **

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Spatial filtering **

*The xy plane represents the location of some coherently illuminated object. This object is imaged *
*by an optical system, the image appearing in the x’y’ plane. The diffraction pattern U(*µ,ν) of the
*object function g(x,y) appears in the *µν** plane. **

*dxdy* *e*

*y* *x* *g*

*U* ^{(} ^{µ} ^{,} ^{ν} ^{)} ^{=} ∫∫ ^{(} ^{,} ^{)}

^{i}^{(}

^{µ}

^{x}^{+}

^{ν}

^{y}^{)}

*U(*µ,ν*) is the Fourier transform of g(x,y). *

*The image function g’(x’,y’) that appears *
*in the x’y’ plane is, in turn, the Fourier *
*transform of U(*µ,ν*). *

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Spatial filtering **

### ) , ( ) , ( )

### , (

### ' µ ν *T* µ ν *U* µ ν

*U* =

The finite size of the aperture at the µν plane limits the spatial frequencies that are transmitted by
the optical system. And there are lens defects, aberrations, etc., which result in a modification of
*the function U(*µ,ν* ). All of these effects can be incorporated into the transfer function T(*µ,ν) of

*the optical system, defined as follows:*

### ν µ ν

### µ ν

### µ *U* *e*

^{µ}

^{ν}

*d* *d* *T*

*y* *x*

*g* ∫ ∫

−^{∞}∞

^{i}

^{x}

^{y}∞

∞

−

+

### = ( , ) ( , )

−^{(}

^{'}

^{'}

^{)}

### ) ' , ' ( '

*The image function g’(x’,y’) is the Fourier transform of the product of T(*µ,ν*)·U(*µ,ν*). *

The transfer function can be modified by placing various screens and apertures in the µν plane.

**This is known as spatial filtering. **

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Spatial filtering **

Low-pass spatial filtering

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Spatial filtering **

High-pass spatial filtering

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Phase contrast and Phase gratings **

The method of phase contrast was invented by Zernike, and it is used to render visible a

transparent object whose index of refraction differs slightly from that of a surrounding transparent medium. Phase contrast is particularly useful in microscopy for examination of living organisms.

*This method consists of the use of a special type of spatial filter. *

### ) ( 1

### )

### ( *y* *e*

^{(}

^{)}

*i* *y* *g* =

^{i}^{φ}

^{y}### ≈ + φ

### ) ( )

### (

### ) ( ) ( 1

### ( )

### (

2 1

2 /

2 / 2

/ 2 /

### ν ν

### φ φ ν

ν ν

ν

*iU* *U*

*dy* *e*

*y* *i*

*dy* *e*

*dy* *e*

*y* *i* *U*

*b*
*b*

*y*
*b* *i*

*b*

*y*
*i*

*y*
*i*

### +

### =

### +

### =

### +

### =

### ∫

### ∫

### ∫

−

−

∞

∞

−

*U*_{1}* and U** _{2 }*are 180

^{o}out of phase. The phase-contrast method is inserting a

**phase plate which shifts the phase of***iU*

*by an additional 90*

_{2 }^{o}

*.*

* For example, consider a phase grating consisting *
of alternate strips of high- and low-index material,
all strips being perfectly transparent.

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**Phase contrast and Phase gratings **

### ) ' ( )

### ' ( )

### ( )

### ( )

### ' (

### ' *y* *U*

_{1}

*e*

^{'}

*d* *U*

_{2}

*e*

^{'}

*d* *g*

_{1}

*y* *g*

_{2}

*y* *g* = ∫ ^{ν}

^{−}

^{i}^{ν}

^{y}^{ν} + ∫ ^{ν}

^{−}

^{i}^{ν}

^{y}^{ν} = +

The phase plate is just a transparent-glass plate having a small section whose optical thickness is λ/4 greater than the remainder of the plate. This thicker section is located in the central part of the µν plane, that is, in the region of low spatial frequencies.

After inserting phase plate ,

*U*

_{1}

### ( ν ) + *iU*

_{2}

### ( ν ) → *U*

_{1}

### ( ν ) + *U*

_{2}

### ( ν )

*The g** _{1}* is the image function of the whole object aperture. It represents the constant background.

*The g** _{2 }*the image function for a regular grating of alternate transparent and opaque strips. Thus,
the phase grating has been rendered visible. It appears in the image plane as alternate bright and
dark strips.

### signal modulated

### - amplitude signal

### modulated -

### phase

^{phase}

###

^{shift }

###

^{of}

###

^{90}

^{0}

^{ to}

###

^{ the}

###

^{carrier }

###

^{freq.}

### →

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**5.7 Reconstruction of the wave front by diffraction, Holography **

**Holography is the science and practice of making holograms. Dennis Gabor was awarded the Nobel Prize in **
*Physics in 1971 "for his invention and development of the holographic method“. *

**Typically, a hologram is a photographic recording of a light field, rather than of an image formed by a lens, and **
it is used to display a fully three-dimensional image of the holographed subject, which is seen without the aid of
*special glasses or other intermediate optics. The hologram is an encoding of the light field as an interference *
*pattern in the photographic medium. When suitably lit, the interference pattern diffracts the light into a *

reproduction of the original light field and the objects that were in it appear to still be there, exhibiting visual depth cues such as parallax and perspective that change realistically with any change in the relative position of the observer.

Recording a hologram Reconstructing a hologram

**EE 430.423.001 ****2016. 2**^{nd}** Semester **

**5.7 Reconstruction of the wave front by diffraction, Holography **

**EE 430.423.001 ****2016. 2**^{nd}** Semester **