• 검색 결과가 없습니다.

Department of Nuclear Engineering

N/A
N/A
Protected

Academic year: 2022

Share "Department of Nuclear Engineering"

Copied!
43
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

NUCLEAR SYSTEMS ENGINEERING

Cho, Hyoung Kyu

Department of Nuclear Engineering Seoul National University

Cho, Hyoung Kyu

Department of Nuclear Engineering

Seoul National University

(2)

Contents

1. Introduction

2. Nonflow Process

3. Thermodynamic Analysis of Nuclear Power Plants 4. Thermodynamic Analysis of A Simplified PWR System

6.4.1  First Law Analysis of a Simplified PWR System

6.4.2  Combined First and Second Law or Availability Analysis of a Simplified PWR System

5. More Complex Rankine Cycles: Superheat, Reheat, Regeneration, and Moisture  Separation

6. Simple Brayton Cycle

7. More Complex Brayton Cycles

8. Supercritical Carbon Dioxide Brayton Cycles

The engine cycle is named after George Brayton (1830–

1892), the American engineer who developed it, although it  was originally proposed and patented by Englishman John  Barber in 1791. It is also sometimes known as 

the Joule cycle. The Ericsson cycle is similar to the Brayton 

cycle but uses external heat and incorporates the use of a 

regenerator. There are two types of Brayton cycles, open to 

the atmosphere and using internal combustion chamber or 

closed and using a heat exchanger.

(3)

Simple Brayton Cycle

 Brayton Cycle

 Reactor systems that employs gas coolants offer the potential for operating as direct Brayton cycle by passing the heated gas directly into a turbine. 

 Ideal for single‐phase, steady‐flow cycles with heat exchange and therefore is the basic cycle  for modern gas turbine plants as well as proposed nuclear gas‐cooled reactor plants.

 The ideal cycle is composed of two reversible constant‐pressure heat‐exchange processes  and two reversible, adiabatic work processes

 The compressor work, or “backwork," is a larger fraction of the turbine work than is the  pump work in a Rankine cycle.

(4)

Simple Brayton Cycle

 Brayton Cycle

(5)

Simple Brayton Cycle

(6)

Simple Brayton Cycle

 Brayton Cycle Analysis

 Pressure or compression ratio of the cycle

 For isentropic processes with a perfect gas, constant 

 For a perfect gas, because enthalpy is  a function of temperature only 

and the specific heats are constant.

) 1 (

2 1 /

) 1 (

1 2 1

2



 

 



 





 

v v p

p T

T

s

v

p c

c / ,

c

Tv1Tpc

1

(7)

Simple Brayton Cycle

 Brayton Cycle Analysis

 Entropy change of ideal gas

From the first T ds relation From the second T ds relation

Y. A. Cengel

(8)

Simple Brayton Cycle

 Brayton Cycle Analysis

 Isentropic Processes of Ideal Gases

cv

R

v

v v

v v

v c

R T

T v

R v T

c T

/

2 1 1

2 1

2 1

2 1

2

ln ln ln ln

ln

0 

 

 

1 /

, /

,   

cp cv

cp cv R cv

R

1

2 1 1

2

 

 

 

 

 

v v T

T For isentropic process, ideal gas

1)/ (

1 2 1

2 1

2 1

2 1

2 1

2

ln ln ln ln ln

ln 0

 

 

 

 

 

 

P

P P

P P

P c

R T

T P

R P T

c T p

c R

p p

 / , / 1  1 1

, 

cp cv cp cv R cp R

1)/ (

1 2 1

2

 

 

 

 

 

P P T

T For isentropic process, ideal gas

(9)

Simple Brayton Cycle

 Brayton Cycle Analysis

 Isentropic Processes of Ideal Gases

1

2 1 1

2

 

 

 

 

 

v v T

T ( 1)/

1 2 1

2

 

 

 

 

 

P P T

T

 

 

 

 

 

2 1 1

2

v v P

P

 

Valid for 

‐ Ideal gas

‐ Isentropic process

‐ Constant specific heats

(10)

Simple Brayton Cycle

 Brayton Cycle Analysis

 Turbine work

 Compressor work

1)/ (

3 4 3

4









P P T

T

1)/ (

1 2 1

2









P P T

T

(11)

Simple Brayton Cycle

 Brayton Cycle Analysis

 The heat input from the reactor 

 The heat rejected by the heat exchanger

1)/ (

1 2 1

2









P P T

T

1)/ (

3 4 3

4









P P T

T

(12)

Simple Brayton Cycle

 Brayton Cycle Analysis

 Maximum useful work

 Thermodynamic efficiency

 Optimum pressure ratio for maximum net work

′ 0

(13)

Simple Brayton Cycle

 Example 6.7

(14)

Simple Brayton Cycle

 Example 6.7

4 1.658 278 972

(15)

Simple Brayton Cycle

 Example 6.7

(16)

Simple Brayton Cycle

 Example 6.7

(17)

Simple Brayton Cycle

 Example 6.7

The highest temperature in the cycle occurs at the end of  the combustion process (state 3), and it is limited by the  maximum temperature that the turbine blades can 

withstand. This also limits the pressure ratios that can be used in the cycle. 

For a fixed turbine inlet temperature T3, the net work 

output per cycle increases with the pressure ratio, reaches a  maximum, and then starts to decrease. Therefore, there  should be a compromise between the pressure ratio (thus  the thermal efficiency) and the net work output. 

With less work output per cycle, a larger mass flow rate

(thus a larger system) is needed to maintain the same power  output, which may not be economical. 

In most common designs, the pressure ratio of gas turbines  ranges from about 11 to 16.

(18)

Contents

1. Introduction

2. Nonflow Process

3. Thermodynamic Analysis of Nuclear Power Plants 4. Thermodynamic Analysis of A Simplified PWR System

6.4.1  First Law Analysis of a Simplified PWR System

6.4.2  Combined First and Second Law or Availability Analysis of a Simplified PWR System

5. More Complex Rankine Cycles: Superheat, Reheat, Regeneration, and Moisture  Separation

6. Simple Brayton Cycle

7. More Complex Brayton Cycles

8. Supercritical Carbon Dioxide Brayton Cycles

(19)

More Complex Brayton Cycles

1)/ (

3 4 3

4









P P T

T

(20)

More Complex Brayton Cycles

1)/ (

1 2 1

2









P P T

T

(21)

More Complex Brayton Cycles

1)/ (

1 2 1

2









P P T

T s

(22)

More Complex Brayton Cycles

(23)

More Complex Brayton Cycles

1)/ (

3 4 3

4









P P T

T

(24)

More Complex Brayton Cycles

(25)

More Complex Brayton Cycles

(26)

More Complex Brayton Cycles

(27)

More Complex Brayton Cycles

1)/ (

3 4 3

4









P P T

T ( 1)/

1 2 1

2









P P T

T

(28)

More Complex Brayton Cycles

Without regeneration With regeneration

(29)

More Complex Brayton Cycles

Without regeneration With regeneration

= 38.3 % = 30.7 %

With regeneration,  = 4

With regeneration,  = 8

= 35.5 %

Without regeneration = 8

= 56.2 % Not desired!

0.993 2.800

(30)

More Complex Brayton Cycles

(31)

More Complex Brayton Cycles

Reheating by just fuel spraying

High concentration

oxygen

Constant pressure

Constant pressure

A gas-turbine engine with two-stage compression with intercooling, two-stage expansion with reheating, and regeneration and its T-s diagram.

(32)

More Complex Brayton Cycles

- Net work of gas turbine = (turbine work output) – (compressor work input) - Efficiency enhancement by

-> Decreasing the compressor work input

-> Increasing the turbine work output Steady flow compression or expansion work is proportional to the specific

volume of fluid.

1. As the number of stages increases, the compression becomes nearly

isothermal at the inlet temperature.

-> compression work decrease.

2. Similarly, turbine work between the two pressure levels can be increases by

expanding the gas in stages and reheating it -> multistage expansion with reheating.

Intercooling

Reheating

(33)

More Complex Brayton Cycles

4

(34)

More Complex Brayton Cycles

(35)

More Complex Brayton Cycles

4

(36)

More Complex Brayton Cycles

4

(37)

More Complex Brayton Cycles

(38)

More Complex Brayton Cycles

HW#5

(39)

More Complex Brayton Cycles

(40)

More Complex Brayton Cycles

(41)

Simple Brayton Cycle

 Brayton Cycle

(42)

Simple Brayton Cycle

 Brayton Cycle

(43)

Contents of Lecture

 Contents of lecture

 Chapter 1 Principal Characteristics of Power Reactors

Will be replaced by the lecture note

Introduction to Nuclear Systems 

 Chapter 4 Transport Equations for Single‐Phase Flow (up to energy equation)

 Chapter 6 Thermodynamics of Nuclear Energy Conversion Systems:

Nonflow and Steady Flow : First‐ and Second‐Law Applications

 Chapter 7  Thermodynamics of Nuclear Energy Conversion Systems :  Nonsteady Flow First Law Analysis

 Chapter 3  Reactor Energy Distribution

 Chapter 8  Thermal Analysis of Fuel Elements

Thermodynamics

Heat transport Conduction  heat transfer Nuclear system

참조

관련 문서

produces a magnetic field which can be guided by a magnetic yoke to a linear Hall sensor; the output of the sensor is proportional to the electric current..

대한의사협회 회원자율징계제도에 회원자율징계제도에 대한 대한 토론회 토론회 개최하 개최하 여 여 전문가단체의 전문가단체의 회원징계제도에 회원징계제도에 대한

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the

Department of Nuclear Engineering, Seoul National Univ..

From the viewpoint of distribution of affairs, Autonomous police should perform the following office work; the security of citizen life, traffic police

The change in the internal energy of a closed thermodynamic system is equal to the sum em is equal to the sum of the amount of heat energy supplied to the system and the work.

The change in the internal energy of a closed thermodynamic system is equal to the sum em is equal to the sum of the amount of heat energy supplied to the system and the work.

region above the central cavity in KSNP steam generator, and the main