• 검색 결과가 없습니다.

Pressure (kPa)

N/A
N/A
Protected

Academic year: 2022

Share "Pressure (kPa)"

Copied!
34
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

열역학 물성 연구 동향

및 KDB 응용 프로그램의 개발

고려대학교 화공생명공학과

강정원

열역학 물성 연구회

2003

10

13

일 발표자료

(2)

발표 내용

 열역학 물성 관련 연구동향

CAPEC, Technical University of Denmark 센터 소개

열역학 물성 분야의 표준화 방향

 KDB 응용 프로그램의 개발

KDB 응용 프로그램 개발 현황 및 문제점

향후 개발 방향

(3)

CAPEC, DTU 소개

 Computer Aided Process Engineering Center

 Professor Rafiqul Gani

 Professor Sten Bay Jorgensen

 Professor Jens Abildskov

 Professor Niels Jens

 Research Area

 Program A : Physical Properties

 Program B : Process Modeling, Simulation and Idetification

 Program C : Process Synthesis, Product / Process Design and Analysis

 Program D : Process Control and Operation

 Program E : Numerical and Computational Aspects

 Program F : Safety and Risk Analysis

(4)

Research Activities

 List of Softwares

ICAS : Integrated computer aided system

TML : Thermodynamic Model Library

ProPred : Property Prediction

TMS : Thermodynamic Model Selection

PDS : Process Design Studio

PROCAMD : Computer Aided Molecular Design

MoT : Model Testbed

(5)

Collaboration

 Consortium

 FMC , USA

 Bayer , Germany

 Mitsubishi, Japan

 ICI , UK

 Syngenta , UK

 Novo Nordisk , Denmark

 PDC, Germany

 Danisco Ingredient , Denmark

 and many more… (About 20 )

 Academic

 Prof. J. P. O’Connel (Univ. of Virginia)

 …

(6)

Tools for Thermodynamic Properties and Phase Equilibrium

 Thermodynamic Properties Database

 TML (Thermodynamic Model Library)

 TMS (Thermodynamic Model Selection)

 ProPred 3.5 (Pure component property prediction Too)

 ProCAMD (Computer-Aided Molecular Design

Software)

(7)

Activities in CAPE Problems

Choosing among Process Alternatives

Feasibility Study

CAPEC Thermophysical Properties Database - Pure component properties and parameters - Mixture properties and parameters

- Experimetal data

Thermodynamic Model Selection

Parameter fitting for the

Thermodynamic Model

Simulation Design Calculation

Optimization

TML

Thermodynamics Model Library

Propred 3.5

Pure component properties predeiciton

TMS

Thermodynamic Model Selection

Pure properties Export / Import Properties of

unknown molecules

Equilibrium

Analysis Model Selection Guide

Regression Input

Regression

Result Process Conditions

Properties Values

(8)

Research

 Development of 2

nd

order UNIFAC method

KT-UNIFAC 1st order and 2nd order

New parameters Matrix

 Development of KT-UNIFAC Utility Program

 Phase equilibrium for surfactant solution

(9)

Development of UNIFAC Method

 Uncertainties for prediction using current GC method are quite high

 Current GC methods are generally unable to distinguish isomers and reflect effects of adjacent groups

 Second order UNIFAC can overcome deficiencies of current GC methods

ln

2

ln ln

ln γ i = γ

iC

+ γ

iR

+ w

R2

γ

iR

First oder contribution Second order contribution

(10)

Development of new UNIFAC method

 Example of group decomposition of molecules

CH3 CH CH3 OH

2 CH3 1 CH 1 OH

1 CHOH

First-order groups Second-order groups

2-Propanol

First-order groups Second-order groups

M-Xylele

CH3

CH3

4 ACH

2 AC-CH3

1 ARS1S3

(11)

KT-UNIFAC, Model Description

Combinatorial Term Residual Term

Second-Order Term

C iC

iC FH ln i,SG ln ,

lnγ = γ + γ Ji Ji

i,FHC

γ 1 ln

ln = +





+

=

i i i

i i C

SG

i L

J L

q J

Z 1 ln

lnγ , 2

= NMG

k k

ski Gki k ski

Li qi

iR

η η

γ

ln ) ln 1 ( ln

( )

+

=

NSOG j

NSG j m

NSG m

n mi ni ni

ni n m n i m j n R m

i s

G mn mn G

V RT G

u τ

η ϑ τ

δ ϑ

γ 2 ' , ' ' '

ln

( )





mi i nm m ni m

ni nV G G s

RT G

u nm

i m m

j

nm τ

η ϑ τ

δ ϑ

' '

' ,'

(12)

New parameters for 1 st order groups

T dependency is similar to Linear UNIFAC (Hansen et al.)

First order parameters were obtained from 4413 Data Sets

(VLE, HE, γinf)

New groups were included (Nitriles, epoxy,...)

1

CH2 1 2

C=C 2 X 3

ACH 3 X X 4

ACCH2 4 X X X 5

OH 5 X X X X 6

MeOH 6 X X X X X 7

H2O 7 X X X X X 8

AcOH 8 X X X X 9 X Parameters Available

CH2CO 9 X X X X X X X X 10

CHO 10 X X X X X X X X 11 Parameters NOT Available

CCOO 11 X X X X X X X X X 12

HCOO 12 13

CH2O 13 X X X X X X X X X X 14

CNH2 14 X X X X X X X 15

CNH 15 X X X X X X X X X 16

(C)3N 16 X X X X X X X X X 17

ACNH2 17 X 18

PYRIDINE 18 X X X X X X X X 19

CCN 19 X X X X X X X X X X X 20

COOH 20 X X X X X X X X 21

CCL 21 X X X X X X X X X X X X 22

CCL2 22 X X X X X X X X X X X X X X X 23

CCL3 23 X X X X X X X X X X 24

CCL4 24 X X X X X X X X X X X X X X X X 25

ACCL 25 X X 26

CNO2 26 X X X X X X X X X X X 27

ACNO2 27 28

CS2 28 X X X X X X X X X X X 29

CH2SH 29 X X X X X X X X 30

FURFURA 30 X X X X X X X X X X X 31

DOH 31 32

I 32 X X X X X X X X X X 33

BR 33 X X X X X X X X X X 34

C#C 34 X X X X X X X X 35

DMSO 35 X X X X X X X X X X X 36

ACRY 36 X X X X 37

ClC=C 37 X X 38

ACF 38 x X X X X X X X 39

DMF 39 X X X X X X X X X X X X X X 40

CF2 40 X X 41

COO 41 X X 42

SiH2 42 X X 43

SiO 43 44

NMP 44 X X X X X X 45

CCLF 45 X X X X X X 46

CONCH2 46 X X X X X X 47

OCCOH 47 X X X X X X 48

CH2S 48 X X X X X 49

Morpholine 49 X X X X 50

Thiophene 50 X X X X X X 54

CH2(cyc) 54 X X X X x X X X X X X X X X X X X X X X X X X X X X 60

ACO 60 X X 63

ACCN 63 X X X 69

ACBr 69 X X X 74

SO2 74 93

PO4 93 102

O=COC=O 102 X X X X X X X X 103

OCOO 103 X X 104

SO2(cyc) 104 105

EPOXY 105 X X X X X X 106

NCO 106 X X X

) exp( u T

mk = Δ mk

τ

)

( 0

2 , 1

, a T T

a

umk = mk + mk Δ

(13)

New parameters for 2 nd order

 Second Order Group Parameters were fitted from 842 experimetal data sets (VLE, H

E

,

γinf

)

AAE ARE (%) AAE ARE (%) AAE ARE (%) AAE ARE (%)

P 3.50 3.47 4.09 3.89 1.95 2.69 1.78 1.99

y1 0.0153 3.64 0.0147 3.60 0.0129 3.04 0.0112 2.79

HE 388.82 192.03 476.62 1167.60 137.94 20.33 115.79 20.20

γinf 89.53 39.41 68.07 58.81 134.96 25.78 124.97 25.11

Property

UNIFAC Modified UNIFAC New Method

First Order Second Order

(14)

Comparison of calculated result

Figure 3. Comparison of experimental and predicted result for VLE (hexane + methoxy benzene (anisole) at 333.25 K)

Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0

Pressure (kPa)

0 20 40 60 80 100

Experimental Data Original UNIFAC Modified UNIFAC KT-UNIFAC, First Order

Figure 4.Experimental and predicted result for VLE (1,2-epoxybutane + n-heptane at 313.15 K)

Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0

Pressure (kPa)

10 15 20 25 30 35 40 45 50

Experimental Data Original UNIFAC Modified UNIFAC KT-UNIFAC, First Order

Improved prediction due to new groups

(15)

Comparison of calculated result

Improved prediction due to second order group

Figure 7. Experimental and predicted result for VLE (Hepatne + 2-Methyl-Isobutyl-Ketone at 348.15 K)

Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0

Pressure (kPa)

20 25 30 35 40 45

Experimental Data Original UNIFAC Modified UNIFAC KT-UNIFAC, First Order KT-UNIFAC, Second Order

Figure 8. Experimental and predicted result for VLE (hepatne + 2-methyl-2-butanol at 328.15 K)

Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0

Pressure (kPa)

12 14 16 18 20 22 24 26 28 30

Experimental Data Original UNIFAC Modified UNIFAC KT-UNIFAC, First Order KT-UNIFAC, Second Order

(16)

Comparison of calculated result

Improved prediction due to second order group

Figure 10. Experimental and predicted result for HE (benzene + 1,2,3,4-tetrahydronaphthalene at 298.15 K)

Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0

Excess Enthalpy (J/mol)

0 100 200 300 400

Experimental Data Original UNIFAC Modified UNIFAC KT-UNIFAC, First Order KT-UNIFAC, Second Order

Figure 11. Experimental and predicted result for Excess Enthalpy (benzene + isopropanol at 308.15 K)

Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0

Excess Enthalpy (J/mol)

0 200 400 600 800 1000 1200 1400 1600

Experimental Data Original UNIFAC Modified UNIFAC KT-UNIFAC, First Order KT-UNIFAC, Second Order

(17)

UNIFAC Utility

 Database Management Tools

UNIFAC Groups and Group Assignment Tables

UNIFAC Interaction Parameters

VLE Experimental Data

(CAPEC DB and User Database)

 Parameter Regression and Analysis Tool

(18)

UNIFAC Group Data

Management Tools

(19)

Regression Analysis Tool

(20)

Software Demo…

 CAPEC Tools

 UNIFAC Utility

(21)

열역학 물성 관련 연구동향

 자료의 표준화 (Standardization)

효율적인 정보의 공유와 유통을 위하여 필수적임

 자료의 검증 (Validation)

적절한 절차를 통하여 검증된 정포를 포함해야 함

 QM/MM 기반의 물성 DB

 상업화 , 대형화, 집중화

(22)

Standardization Efforts

 PDXI (Properties Data eXchange) by AIChE

 Move on to CAPE-OPEN

 CAPE-OPEN (European Committee)

 Too abstract

 COM Model

 Self-ML (CODATA Group, Kehiaian)

 Project ended (funding too !)

 CML (Chemical Mark-up language) – Chemical Structure

 matML (Material Mark-up language, NIST)

 ThermoML (TRC, NIST)

 Collaboration with J. Chem. Eng. Data

(23)

Why XML ?

 Minimum specification

small set of rules (easily understood)

 Formats and actual data are integrated

 Don’t have to worry about data structure

 Extensible

 Easily portable to RDBMS structure

(24)

XML 처리 과정

(25)

ThermoML

 M. Frenkel et al., J. Chem. Eng. Data, 48, 2 (2003)

 Specification

 Experimentally measurable physical properties and transport properties data (120 properties)

 Mixture phase equilibrium and reaction data

 Cooperative data processing between J. Chem. Eng. Data and TRC

(26)

Example

(27)

Information flow architecture

(28)

국내 연구 동향

 KISTI

Accepted ThemoML as a new standard

(29)

KDB 연구연구 개발 동향

 KDB 현황

웹 버전으로 개발되어 서비스 중

현재 화학공학연구정보센터에서 서비스 중

매월 8000여 사용자

지속적인 업데이트가 어려운 실정임

(30)

KDB 연구연구 개발 동향

 현재 KDB의 문제점

자료와 계산 프로그램이 별도로 운영되고 있음

많은 양의 자료를 효과적으로 교육 및 연구에 활용 하기에 불편함이 많음

지속적인 사업을 하기 위한 예산 확보의 어려움

효과적인 홍보 전략이 필요할 것으로 보임

(31)

열 물성 데이터베이스의

교육용 소프트웨어 개발의 사례

 ICAS 5.0 – CAPEC, DTU

 Phase – W. Chapman , Rice University

(32)

문제점 해결방안 - 1

 KDB의 활용

열역학 및 분리공정 과목 등의 학생교육에 활용

DDB 및 KDB를 통합한 인터페이스를 개발하여 연 구 목적으로 활용

• 모델의 개발 (G-NLF-HB EOS)

• 기타 물성 그룹 기여 방법개발 등

 해결 전략

VB .NET 를 활용한 통합 인터페이스 및 응용 프로 그램의 개발

KDB 및 DDB의 표준화 (ThermoML의 표준 도입)

(33)

KDB work in progress…

 DB Format conversion (Incorporating ThermoML)

 Thermodynamic calculation methods

 EOS : SRK/PR/NLF-HB

 Activity : NRTL, UNIQUAC, UNIFAC

 Calculations

 VLE / SLE / LLE /SVE

 Regressions

 Pure component properties

 VLE regression

 Group Contribution regression

 Planning to finish before the end of November …

(34)

KDB-Thermo LAB

KDB Thermo LAB

DB Utility Pure Properties Mixture Properties

KDB

DDB

ThermoML Data Management

Tools

Data Interface

Properties Calculation

Properties Regression Group Contribution

Methods

Phase Equilibrium Calculation Phase Equilibrium

Regression Group Contribution

Methods

참조

관련 문서

Psychometric properties of the Intrinsic Motivation Inventory in psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting:

Fabrication and Optical Properties of Polysiloxane Hybrimer Resin Using Oligohydrosiloxane 1 (OPH 1).. Fabrication and Optical Properties of Polysiloxane Hybrimer

English cleft construction is one of the constructions that have structural properties and semantic properties of themselves.. At first, I observe the

CMP characteristics such as the removal rate and WIWNU% were improved by the increase of CMP pressure; however, the electrical properties

Various studies have been performed to improve properties of material, electrical and mechanical properties of railway train according to the increase of the speed in the

Metalloids(준금속) : the elements that are difficult to classify exclusively as metals or nonmetals and have properties between those of elements in the two

¾ Optical Properties - A material’s response to exposure to electromagnetic radiation, particularly to visible light.. ¾ Light is energy, or radiation, in the form of

Among mixed metal halogen compounds, mixed fluorine compounds are of important interest, including their physical properties, chemical properties,