• 검색 결과가 없습니다.

저작자표시

N/A
N/A
Protected

Academic year: 2022

Share "저작자표시"

Copied!
76
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

저작자표시-비영리-동일조건변경허락 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우 에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

(2)

G YGWGXGXG 扯GG _ 欃 G 粤 峦 彳 午 軑 概

躓怉魝髶焼▗G 魝繈捝⛧ඇₓ⁳镈嘒⚛G 嘤礣㒳G 戳粼搢黏G 闌恧⚯G 魙簯峙蹐哴

欘G 龩G 崢G 彳G 氜G G崢G彳G驝

擀尬鐕叜懠彳緌

欯G G G G 蛬G G G G 楊

(3)

躓怉魝髶焼▗G 魝繈捝⛧ඇₓ⁳镈嘒⚛G 嘤礣㒳G 戳粼搢黏G 闌恧⚯G 魙簯峙蹐哴

Non-Destructive Evaluation of Paramagnetic Metal Using the Sheet Type Induced Current and Matrix Type Hall Sensors Array

YWXX扯G G _欃G G Y\槠

欘G 龩G 崢G 彳G 氜G G崢G彳G驝

擀尬鐕叜懠彳緌

欯G G G G 蛬G G G G 楊

(4)

躓怉魝髶焼▗G 魝繈捝⛧ඇₓ⁳镈嘒⚛G 嘤礣㒳G 戳粼搢黏G 闌恧⚯G 魙簯峙蹐哴

朂怉楉枃G G G 歉G G G 鞨G G G 包 G G G G G G G G G G G G

⛋G 軑概⚛G 懠彳G 粤峦彳午礮軆G 軑概⚓ឳG 柋嗵㒿U

YWXX扯G G [欃G G G G G

欘G龩G崢G彳G氜GG 崢G 彳G 驝

擀尬鐕叜懠彳緌

欯G G G G 蛬G G G G 楊

(5)
(6)

l

ὃ ヂ

ABSTRACT ... viii

Ⲷ 1ⰿ ▶ ᳺ ... 1

Ⲷ 2ⰿ ⭪Ṇ ₩ ⴟᰲ⯲ ⪊ሆ ... 10

Ⲷ 1Ⲣ Ⱚዊ㌎Ữᰖ ... 10

Ⲷ 2Ⲣ Ⱚ⭪ ... 11

Ⲷ 3Ⲣ ◖▶⃊⪎ ... 14

Ⲷ 4Ⲣ ❺㫒ㄲṆ㬦ᳶ... 17

Ⲷ 3ⰿ ᇪᷲ Ἆⲛ㪯 Ⱚዊ㌎Ữᰖ... 19

Ⲷ 1Ⲣ ⚲㋲㨎▷ ... 19

Ⲷ 2Ⲣ ❶Ⲷ㤢 ⲶⰫ ... 33

1. Ἆⲛ㪯 ⮺ᡞⲞᷲ ... 33

2. ᅺₚᡞ ◖▶ ⃊⪎ ... 34

3. ✾⮞㌇ ₩ ❺㫒ㄲṆ㬦ᳶ ... 35

Ⲷ 4ⰿ ❾㩲 ₩ ᅺナ ... 40

Ⲷ 1Ⲣ ╛Ⱚ○ㅎ ኢ☧⯲ ᅊ㨂㕪╛ ... 40

1. ❶㩲㡒 ... 40

2. ❾㩲 ᅊᆖ ₩ 㡣ႚ ... 44

Ⲷ 2Ⲣ ⪾✾㗦ᔲⰎ㝒ᅞ ✾㗦ⰒᲢ✾Ⴏ⯲ ᅊ㨂㕪╛ ... 54

1. ❶㩲㡒 ... 54

2. ❾㩲 ᅊᆖ ₩ 㡣ႚ ... 56

Ⲷ 5ⰿ ᅊ ᳺ ... 58

(7)

ll

㣶ὃヂ

Table 2-1 Ⱚ⭪⯲# ∞ᷲ ... 11

Table 3-1 ႛ ⬮☦⯲ ῖṆⲛ 㝓○ ₩ 㔆ዊ ... 21

Table 4-1 ⭪㪯 Ⱂᆏᅊ㨂⯲ 㔆ዊ ... 41

Table 4-2 Ⱂᆏᅊ㨂⯲ 㪯╛ ₩ 㔆ዊ ... 42

Table 4-3 ႛႛ⯲ ᅊ㨂 㔆ዊ ₩ ㅎⲛ ... 55

(8)

lll

ᡞὃヂ

Fig. 1-1 ╆⭊✾⮂✾㝒㨇ᆏ ☦☧ ↎Ⱓ 737-300 ㈮ᰗ╆ᅺ ... 2

Fig. 1-2 ⧦ᳶ㧲㨇ᆏ ☦☧ 243㡒 ᡳㅎ㞦☪╆ᅺ... 2

Fig. 1-3 ☪╛㩢⭃ᆏ㧳⩪▶ ᅊ㨂㕪╛᜿ᲿⰎ ᄚ╆ⶖዊ⩪ ₒ㋲ᜮ ⪛㨿 ... 3

Fig. 1-4 ⃃╆► 㛆ᆖ ᄚ╆ ... 4

Fig. 1-5 ㆢ⯦㞦ᄚ╆ ... 5

Fig. 1-6 Ⱚ∞㕪╛ℯ ... 5

Fig. 1-7 ⫚Ⲟᷲ 㕪╛ℯ ... 6

Fig. 2-1 Ⱚዊ㌎Ữᰖ ... 10

Fig. 2-2 Ⱚ⭪⯲# ⴟᷲ ... 12

Fig. 2-3 ⪆ᲆႚ⹚# 㪯㕶⯲# ◖▶⃊⪎ ... 14

Fig. 2-4 0.78mm# ႞ᅃ⯲# ᆏ႞∞㨎᜿⯞# ႚ⹚ᜮ# 1024Ⴖ⯲# 㫚◖▶# ⃊⪎ ... 15

Fig. 2-5 㫚# 㭂ᆖ⯲# ⭪Ṇ ... 17

Fig. 2-6 INA128⯞# Ⰾ⭃㧶# 㫚◖▶# ❺㫒⯲# ⸷㢇㬦ᳶᡞ ... 18

Fig. 3-1 ⮺ᡞἎⲞᷲ⯲# ⭪Ṇ ... 19

Fig. 3-2 ⚲㋲㨎▷# ὂ᠒ ... 20

Fig. 3-3 Fudfn# ⩠⯞# ᧦# ⮺ᡞⶖ㞦⚲⯲# ⅚㫮⩪# ᧊Ḓ# ㌂㛆ዤⰎ# ⚲㋲㨎▷ ... 22

Fig. 3-4 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⲟዊⰿ# ⚲㋲㨎▷# ᅊᆖ ... 23

Fig. 3-5 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⲟዊⰿ# ⚲㋲㨎▷# ᅊᆖ(crack : L10, W1, D4 [mm]) ... 25

Fig. 3-6 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⱚዊⰿ⯲# ⚲㋲㨎▷# ᅊᆖ(crack ⩠ ᜮ ᅗ⭊) ... 28

Fig. 3-7 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⱚዊⰿ⯲# ⚲㋲㨎▷# ᅊᆖ(crack : L2, W1, D4 [mm], ... 30

(9)

ly

Fig. 3-8 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⱚዊⰿ# ⚲㋲㨎▷# ᅊᆖ(crack : L10,

W1, D4 [mm]) ... 32

Fig. 3-9 ❶ⲶⰫ㧶# ⮺ᡞἎⲞᷲ ... 33

Fig. 3-10 ᅺₚᡞ# ◖▶# ⃊⪎ ... 34

Fig. 3-11 ✾⮞㌇㬦ᳶ ... 35

Fig. 3-12 ᇪᷲ㪯# Ⱚዊ㌎Ữᰖ# ሆᡳ⯞# ⮞㧶# ❺㫒ㄲṆ# ⊮᳷᝾Ⰾ⧞ኒ᱂ ... 36

Fig. 3-13 ᅺរ⪇㙏ᆖ㧞㗊# 㬦ᳶᡞ ... 36

Fig. 3-14 㫚◖▶⫚# ᇪᷲ⸷㢇㬦ᳶ+INA128,⯲# 㬦ᳶᡞ ... 37

Fig. 3-15 㡣㫶㫮# 㬦ᳶᡞ ... 38

Fig. 3-16 ᇪᷲ㪯# Ⱚዊ㌎Ữᰖ⩪# ⯲㧶# ᇪᷲ# Ⱚዊⰿ⯲# ႚ❶㫮 ... 38

Fig. 4-1 √❷❶㩲㡒 ... 40

Fig. 4-2 Ⱂᆏ# ᅊ㨂⯲# 㪯╛# ₩# 㔆ዊ ... 42

Fig. 4-3 㧖ᳶቺ⪎# ⲶⰫ# ⃃ℯ ... 43

Fig. 4-4 ⮺ᡞἎⲞᷲḖ# Ⱚ⭪⯖ᳶ# マ㕷㧶# ᇪᷲ㪯# Ⱚዊ㌎Ữᰖ⩪# ⯲㧶# 㧖ᳶቺ⪎⯲# # ᄚ㈶ ... 44

Fig. 4-5 ᅊ㨂# ዒⰎ# ₩# Ⱂႚ# ⶖ㞦⚲⩪# ⯲㧶# Ⱚዊ⪛╛ ... 45

Fig. 4-6 8nK}⯲# ⮺ᡞἎⲞᷲ⩪▶# ႛႛ⯲# √❷# 㣶Ἆᅊ㨂⯲# 㕪╛ᅊᆖ ... 46

Fig. 4-7 43nK}⯲# ⮺ᡞἎⲞᷲ⩪▶# ႛႛ⯲# √❷# 㣶Ἆᅊ㨂⯲# 㕪╛ᅊᆖ ... 47

Fig. 4-8 ⮺ᡞἎⲞᷲℯ⩪# ⯲㧶# ⶖ㞦⚲⅞# Ⱂᆏᅊ㨂# 㕪╛# ᅊᆖ ... 51

Fig. 4-9 VR/x|TOTALᆖ ❾Ⲷ ᅊ㨂⯲ ㅎⲛᆖ⯲ ╛ᆚᆚᅞ. ... 52

Fig. 4-10 ⮺ᡞἎⲞᷲℯ⩪# ⯲㧶# 㧖ᳶቺ⪎# 㕪╛# ᅊᆖ ... 53

Fig. 4-11 ⪾✾㗦ᔲⰎ㝒ᅞ# ✾㗦ⰒᲢ✾Ⴏ# ❶㩲㡒(Unit: mm, thickness: 10mm) ... 55

Fig. 4-12 ⮺ᡞἎⲞᷲℯ⩪# ⯲㧶# ⪾✾㗦ᔲⰎ㝒ᅞ# ✾㗦ⰒṆ✾Ⴏ# ᅊ㨂㕪╛# ᅊᆖ ... 56

Fig. 4-13 ❾Ⲷ# ᅊ㨂# ㅎⲛᆖ# ᅞ╊ᢶ# ㅎⲛᆖ⯲# ᆚᅞ ... 57

(10)

y

ዊ㫒 ▾἟

PSI Pre-Service Inspection ISI In-Service Inspection NDT Nondestructive Testing RT Radiation Testing UT Ultrasound Testing MT Magnetic Particle Testing MFLT Magnetic Flux Leakage Testing ECT Eddy Current Testing

PT Penetration Testing LT Leakage Testing VT Visual Testing AE Acoustic Emission IRT Infrared Ray Testing

C-MFL Cross-type Magnetic Flux Leakage DC-MFL Direct Current Magnetic Flux Leakage V-MFL Vertical-type Magnetic Flux Leakage STIC Sheet-Type Magnetic Induced Current

CIC-MFL Combined Induced Current-Magnetic Flux Leakage MFPT Magnetic Fluid Penetration Testing

MR Magnetic Resistance

GMR Giant Magnetic Resistance FSO Full Scale Operational range AC Alternating current DC Direct current

(11)

yl SSS Single Hall sensor scanning

LIHaS Linearly Integrated Hall Sensor Array AIHaS Area type Itegrated Hall sensor Array HPF High Pass Filter

LPF Low Pass Filter

CMRR Common Mode Rejection Ratio RMS Root-Mean-Square A-STS Austenitic stainless steel

MAX Maximum value of the differential RMS of Hall voltage to the STIC direction[V/mm]

MIN Minimum value of the differential RMS of Hall voltage to the STIC direction [V/mm]

S/N Signal-to-Noise ratio

B Magnetic Flux Density [Wb/m2] V Hall Voltage [V]

S Sensor-resoluation

VRMS/x The Differential of VRMS to Scanning Direction(x-direction) L Length of Crack [mm]

W Width of Crack [mm]

D Depth of Crack [mm]

儑 Skin depth [mm]

f Frequency [Hz]

(12)

yll

⧞ᰲ ㅂⰪ

INSP Inspectable crack length AC Alternating current H Hall Sensor

RMS Root-Mean-Square CF Cut off Frequency

TOTAL Total of Sensor Output

C Crack

(13)

ylll

ABSTRACT

Non-Destructive Evaluation of Paramagnetic Metal Using the Sheet Type Induced Current and Matrix Type Hall Sensors Array

Youngmin Park

Advisor: Prof. Jinyi Lee, Ph.D.

Dept. of Information and Comunication Eng.

Graduate School of Chosun University

Large mechanical structures such as aircrafts and power generation plants are operated in corrosive environment under high temperature and high pressure. In such conditions, cracks can easily develop, initiate and propagate. These cracks lead to various types of fractures in the abovementioned large mechanical structures. And the fractures not only result in the loss of economy and even worse, of life but also environment pollution. Therefore, cracks need to be inspected with equipment having high detection capability before they can initiate fractures.

In this paper, a non-destructive testing method of metallic structures by visualization of alternating magnetic field is proposed. Up to now, the alternating magnetic field has been visualized by using the yoke-type magnetizer and linearly integrated Hall sensors array. Also, the static magnetic field has been visualized by using the matrix-type Hall sensors array.

However, the 2-dimensional alternating magnetic field has not been visualized in real time.

To realize the visualization system of a 2-dimensional alternating magnetic field, that is, an AC-type magnetic camera, a sheet-type induced current, matrix-type Hall sensors array and signal processing circuits were developed. An alternating magnetic field is distorted by a crack on a metallic structure. Therefore, the AC-type magnetic camera can inspect cracks.

(14)

l{

The crack inspection ability of the developed AC-type magnetic camera was verified by non-destructive testing of austenitic stainless steel and aluminum alloy. Austenitic stainless steel is used in nuclear power generation plants. Austenitic stainless steel is a paramagnetic metal, but it can have a ferromagnetic structure in certain environments. This ferromagnetic characteristic has obstructed the inspection of cracks in the previous non-destructive testing.

Also, aluminum alloys are used in aircrafts. The fatigue cracks and corrosion of an aging aircraft have to be inspected and evaluated quantitatively.

The developed AC-type magnetic camera and crack inspection method of metallic structures can be used in the non-destructive testing of large mechanical structures.

Furthermore, this inspection method, with its accurate prediction ability, can also be used for damage tolerance engineering. The lifetime evaluations of aged structures and machines, which have a high accident probability, can be carried out more accurately.

(15)

4

Ⲷ 1ⰿG ▶ ᳺ

㨇ᆏዊ, ⮺Ⱂ ⭊ⶖ✾㗦Ⰾ◲, ᳶ㎭ ⩮⹞ ᦋ⯲ រ㪯ዊዊ ₩ ႛⴟ ሆⴊῖ ᦋ⯚ ᘬ

⯚ ⩪ᖢ⹚ ₩ ⮞㩲ῖ, ᅺ⧯ႚ✾ ᦋ⯞ ↎⮺㧲ᅺ, √❷, ᅺ⫂ ᅺ⧯ᆖ Ⴓ⯚ ⪎⧟㧶 㫲 ᅗ⩪ ᘒ㈶ᢲ⩎ Ⱒ᝾. ᧊ᰖ▶, 㨏➆ √㤢 ₩ ☦ⱆ⯲ Ⲷⴊ ᆏⲯ ⶫ⩪ ₶╷㧶 ᅊ㨂Ⰾ ᔲ ⹞ᡳ, 㧖ᳶ ₩ √❷ ᦋ⩪ ⯲㧶 㣶Ἆ 㫓⯚ ᕎ√ ᅊ㨂, ╆⭃Ⱚ √ⶖ⯲ ᦋ⯲ ↏㨃 ⲛⰒ ῒⲶᳶ Ⱂ㧲⪆ ☪╛Ⰾ ⨖ዊᢲἎ, ኣᅃ㰢 ⹞Ⲟᢲ⩎ ╆ᅺ⩪ ⰎḎᄦ ᢶ᝾. ᅊᆖ ⲛ⯖ᳶ ṣរ㧶 Ⱂⲛ余ᅗⲶⲛ ☪❾⑪Ṧ ⧞ᝢᰖ 㫲ᅗ ⪾⪖ ᦋ ሇႚⲛ⯖ᳶᡞ 㔊 ῒⲶ Ḗ Ⱆ⯖㕆 ⚲ Ⱒ᝾.

㧶 ⪢ᳶ 2011ᗞ 4⭮ 1Ⱆ ₒሇ ▶√ ⧞Ṇⴊᔲⶖ 㧖ᝣ✾ ᆏ㨇⩪▶ ❓Ⴗ 118἟⯞

㕶⭊ᅺ Ⰾᷳ㧶 ╆⭊✾⮂✾㝒㨇ᆏ 737 ⋞㨣ዊႚ ㌲Ṇ㢆ᝢ⧞ ╢㔆ᰖỲ㘺ᳶ 㨿㧲ᜮ ⶫ ዊᕎ 㢇₶⯦Ⰾ ᥾Ṋ 㭞 ㄶⰿ⩪ ⨗ 150cm ⲯᡞ⯲ ሆủⰎ ᔲᜮ ╆ᅺႚ ₶╷㧲⪚

᝾ [1]. ᝾㨣㰢 Ⱂ἟㧖㨎ᜮ ⩠⩢⯖ᔲ, ⹚ኢዦ⹚ 300㡒 Ⰾ╛⯲ ╆⭊✾⮂✾㝒㨇ᆏ⯲

⭎㨇✾㎚⶞Ⰾ ㇶ☦ᢲ⩢ᅺ, 79រ⯲ ╆⭊✾⮂✾㝒㨇ᆏዊႚ ⰎᷳⰎ ⶫគᢶ ╛㕶⩪▶

ᄚ╆㧶 ᅊᆖ, ኒ ⶫ 2រ⯲ ⋞㨣ዊ⩪▶ ቺ⪎Ⰾ ₶╷㧶 ᄝⰎ ₷㪚⳦ᅺ, 19រ⯲ 㨇ᆏዊ ᜮ ῒⲶႚ ₶╷ᢲ⹚ ⧤⧞ ᝾❶ ⭎㨇㧲ᄦ ᢲ⩢᝾.

㧶㡒, ₒሇ⪊⃃㨇ᆏㅇ(Federal Aviation Administration, FAA)⯲ Ⱚᵦ⩪ ⯲㧲Ἆ 2010 ᗞ 3⭮⯲ ᄚ╆ᅊᆖ 15ᗞᢶ ⪊❷⯲ 㨇ᆏዊ ᄚ╆⩪▶ 10រ⯲ 㨇ᆏዊ⯲ ᡳㅎ⩪▶ ቺ

⪎Ⰾ 㫯Ⱂᢲ⩢ᅺ, 11រᜮ 㨇ᆏዊ ⬒√Ḗ ⹚⹚㨎ⶖᜮ 㔎ṗ⩪ ቺ⪎Ⰾ ₶╷㧶 ᄝ⯞ ↎ ᅺ㧲ᅺ Ⱒ᝾.

Ⰾ⫚ ⮺╆㧶 ╆ᄎ⯖ᳶᜮ 1988ᗞ ₶╷㧲⪚៲ ⧦ᳶ㧲㨇ᆏ ⋞╛ッᷳ ╆ᅺḖ ᥾

⚲ Ⱒ᝾ [2]. 1988ᗞ 4⭮ 28Ⱆ, 㧲⫚Ⰾ 㰪ᳶ⫚ 㫒ᘚᶊᶂ႞⯞ ⋞㨣㧲៲ ⧦ᳶ㧲㨇ᆏ

☦☧ 243㡒 㨇ᆏዊ(B737-200)⩪▶ ₶╷㧶 㢇₶ᳶ ᡳㅎ ╛គ Ⱆ√∞Ⰾ ᔺ⧞ႚἎ▶

Ṣ㭞Ⰾ ㌎㭦ᶂⰎᆏ㨇⩪ ⋞╛ッᷳ㧲⪚᝾. Ⰾ ᆖⲯ⩪▶ Ⴗ❾❓῎⭪ 1἟Ⰾ 㨇ᆏዊ ⬒

√ᳶ ⌂Ჾ ᔲႚἊ ╆ṷ㨢⯖ᔲ, ᔲỒ⹚ 94἟⯚ ῎╆㨢᝾.

(16)

5

Ⱚᵦ㈶ㄲ: http://www.koreadaily.com/news/read.asp?art_id=1178949 Fig. 1-1 ╆⭊✾⮂✾㝒㨇ᆏ ☦☧ ↎Ⱓ 737-300 ㈮ᰗ╆ᅺ

Ⱚᵦ㈶ㄲ: http://www.hansfamily.kr/1107 Fig. 1-2 ⧦ᳶ㧲㨇ᆏ ☦☧ 243㡒 ᡳㅎ㞦☪╆ᅺ

(17)

6

Fig. 1-3 ☪╛㩢⭃ᆏ㧳⩪▶ ᅊ㨂㕪╛᜿ᲿⰎ ᄚ╆ⶖዊ⩪ ₒ㋲ᜮ ⪛㨿

Ⰾᲆ㧶 ᅊ㨂⯲ ₶╷ᆖ ○ⰿ⯚ (1) Ⲷⴊᆖⲯ⩪ ₶╷㧶 ᅊ㨂Ⰾ ○ⰿ㧲ᜮ ᅗ⭊⫚, (2) ႚᡳ㭞⩪ Ⱎ⯲⯲ ⭪Ⱂ⩪ ⯲㧲⪆ ₶╷㧲ᅺ ○ⰿ㧲ᜮ ᅗ⭊ᳶ ᔲ᚞⩎ ⹢ ⚲ Ⱒ᝾.

ႛ ᅗ⭊⩪ Ⱒ⩎▶ ╆⭃Ⲟ ᄚ╆(PSI, Pre-Service Inspection)⫚ ╆⭃ዊ႞ⶫ ᄚ╆(ISI, In-Service Inspection)⩪ ⯲㧲⪆ ⲛⲢ㧲ᄦ ⮺㨎㧶 ᅊ㨂⯞ ᄚ㈶㧲ᅺ ↎⚲㧲ᡞ᳷ ᢲ⩎

Ⱒ᝾. 㧶㡒 㨇ᆏዊᜮ ⹚╛ ⭎☻⚲គᆖ ឆṆ, ⭎㨇ⶫ ᆏⶫ⩪▶ ⲯ⹚㧲⪆ ⲯ⋞㧺 ⚲

⩠᝾ᜮ ㊂⨗Ⲫ⯞ ႚ⹚ᅺ Ⱒ᝾. ᧊ᰖ▶ 㨇ᆏዊႚ ッᷳ㧲⪆ ᝾⯦ Ⰾᷳ ₩ ⭎㨇❶ዦ⹚

ዊㅎḖ 㢆㨂㧶 ሆ○㤢⯲ ╆⭃ዊ႞ⶫ ᄚ╆(ISI, In-Service Inspection)Ḗ Ṣㅪ⨖ 㨂⯚

Ṿ⭊ ⶫ⬮㧶 ᆖⲶⶫ⯲ 㧲ᔲⰎ᝾.

㧶㡒, ↎᝾ Ⱛ⯚ ☪╛⯞ ↎᝾ ⋺Ḓ ❶႞ᕎ⩪ ᄚ㈶㧲ᅺ 㡣ႚ㧺 ⚲ Ⱒ᝾ᜮ ᄝ⯚

(1) ᄚ╆ᅊᆖ⩪ ↎᝾ ᘬ⯚ ❺ᵊ○⯞ √⪆㧺 ⚲ Ⱒ⯖Ἂ, (2) ⪢㊻㧺 ⚲ ⩠⩢៲ Ⱛ⯚

☪╛ᡞ ᄚ㈶㧺 ⚲ Ⱒ᝾ᜮ ⰿⲪ⯞ ႚ⹚ᜮ 㧶㡒, (3) ᄚ╆ⶖዊ⯲ 㫯ⰿ⩪ ⯲㧶 ṣរ㧶 ᅗⲶⲛ Ⰾ᥷(ᄚ╆ ᅗ⋞ ₩ ❶႞⯲ ⲢႪ, ᄚ╆Ḗ ⮞㧶 ⭎Ⲟⲯ⹚㬹⚲ Ⴊ㈯)⯞ ⩕⯞

⚲ Ⱒ᝾. Ⱆ₲ⲛ⯖ᳶ ☪╛㩢⭃ᆏ㧳(Damage Tolerance) [3, 4]⩪▶ᜮ 㧖ᳶ❶㩲ᦋ⯞ 㙏㧲

⪆ ሆⴊῖ⯲ 㩢⭃㧺 ⚲ Ⱒᜮ ᅊ㨂㔆ዊ(tolerance size, Fig. 1-3⩪▶ᜮ critical crack size ᳶ 㣶ዊ)Ḗ ᅊⲯ㧶᝾. ⸣, ሆⴊῖ⩪ ⴎⱆ㧲ᜮ ᅊ㨂⯲ 㔆ዊႚ 㩢⭃㔆ዊḖ ㆢᆖ㧲Ἆ ኣᅃ㰢 ⹞Ⲟ㧲⪆ 㞦គ⩪ ⰎḎᄦ ᢶ᝾. ᧊ᰖ▶, ₒᆏሊ ᄚ╆Ⲣヂ▶(F-15K, FSMP)⩪

(18)

7

⯲㧲Ἆ Ⲟ⚺㧶 ISI ᄚ╆ⶖዊ(NINSP)ᜮ Fig. 1-3⩪ ᔲ㕚ᕒ ₮⫚ ႳⰎ ᄚ㈶ႚ᜿ᅊ㨂㔆ዊ (aINSP, Inspectable crack length)⩪▶ 㩢⭃ᅊ㨂㔆ዊ(critical crack size)⩪ ⰎḎᜮ ❶႞(life from inspectable crack length to safety limit)⯲ 50%Ḗ ዊ⶚⯖ᳶ 㧶᝾. ᧊ᰖ▶, Fig. 1-3(a)

⩪ ᔲ㕚ᕒ ₮⫚ Ⴓ⯚ System 1⩪ ⋞㧲⪆ ↎᝾ Ⱛ⯚ ☪╛⯞ ᄚ㈶㧲ᅺ ⲯᱣⲛ⯖ᳶ 㡣

ႚ㧺 ⚲ Ⱒᜮ System 2(Fig. 1-3(b))Ḗ Ⰾ⭃㧲Ἆ, ᄚ╆❺ᵊᡞ⯲ ᅺᡞ㫮(aINSP⯲ ㇶ☦㫮)

₩ ᄚ╆ⶖዊ⯲ ⰿዊ㫮(NINSP⯲ 㫯ⰿ)ႚ ႚ᜿㨎 ⹞᝾.

⋞㞦ᇎᄚ╆ℯ(Non-Destructive Testing)⯖ᳶ រ⅚ᢲᜮ ⴟᰲ⯲ ☪╛ ᅞ㊻ ዊ⚺⩪ᜮ

⃃╆►㛆ᆖᄚ╆(RT, radiation testing), ㆢ⯦㞦㕪╛ℯ(UT, ultrasound testing), Ⱚ∞㕪╛ᄚ

╆(MT, magnetic particle testing), ᚞▾Ⱚ☧㕪╛ℯ(MFLT, Magnetic flux leakage testing),⫚

Ⲟᷲ㕪╛ℯ(ECT, eddy current testing), ㌂㛆㕪╛ℯ(PT, penetration testing), ᚞▾ᄚ╆(LT, leakage testing), ⮻⧢ᄚ╆(VT, visual testing), ⯦㨿⃃㈶ᄚ╆(AE, acoustic emission), ⲛ⬒

►㕪╛ℯ(IRT, infrared ray testing) ᦋ ⪆ᲆ ႚ⹚ႚ Ⱒ᝾ [5].

⃃╆►㛆ᆖᄚ╆(RT, radiation testing)ᜮ ⃃╆►⯞ Ⰾ⭃㧲⪆ ⃃╆►Ⰾ ῖ⹢ᆖ⯲ ╛ 㫒Ⱛ⭃ ⶫ 㛆ᆖ ₩ 㯻⚲ᢲᜮ ○⹢⯞ Ⰾ⭃㧲ᜮ ᄝⰎ᝾. ❶㩲ㅎ ᕎ√⯲ ∢⪊☧√⩪

រ㧲⪆ ∢⪊☧√⯲ ₚᡞႚ ❶㩲ㅎ⯲ ₚᡞ⫚ ヂⰎႚ ╷ዊዊ ᧦ῒ⩪ ⰎḖ 㛆ᆖ㧲ᜮ

⃃╆►⯲ ⨫⩪ ヂⰎႚ ╷ᅂ 㛆ᆖ ╆⹞╛⩪ ᄚᅺ ⩎ᣪ⭎ ⲯᡞḖ ᆚナ㨂⯖ᳶ⠂ ❶㩲 ㅎ⯲ ᕎ√ ╛㕶Ḗ ⧦⧞↖ ⚲ Ⱒᜮ ⃃ℯⰎ᝾. 㧲⹚Ṧ, ⃃╆►⩪ រ㧶 ⧢ⲞᆚṆႚ ⬮ ሆᢶ᝾.

Ⱚᵦ㈶ㄲ: http://www.k2velosi.com/safety-training-services/non-testing.php Fig. 1-4 ⃃╆► 㛆ᆖ ᄚ╆

(19)

8

(a) Imperium Inc.DAV(Digital Acoustic Video) (b) 㩢ᝢ㎎ ሆⴊῖ

Ⱚᵦ㈶ㄲ: http://www.imperiuminc.com Fig. 1-5 ㆢ⯦㞦ᄚ╆

ㆢ⯦㞦㕪╛ℯ(UT, ultrasound testing)⯚ ❶㩲ㅎ⩪ ㆢ⯦㞦Ḗ Ⲟឆ❶㎶ ❶㩲ㅎ ᕎ⩪

ⴎⱆ㧲ᜮ ∢⪊☧(Discontinuity)⯖ᳶ√㗊 ₲╆㧶 ㆢ⯦㞦⯲ ⩪ᖢ⹚⨫, ㆢ⯦㞦⯲ ⹞㨣

❶႞ ᦋ⯞ ∞▷㧲⪆ ∢⪊☧⯲ ⮞㋲ ₩ 㔆ዊ ᦋ⯞ ⲯ㫯㧲ᄦ ⧦⧞ᕎᜮ ⃃ℯⰎ᝾. ㆢ

⯦㞦㕪╛ᄚ╆⯲ ⲛ⭃⯚ ❶㩲ㅎ ᕎ⩪ ⴎⱆ㧲ᜮ ∢⪊☧⯲ 㔆ዊ ₩ ⮞㋲ ㊻ⲯ⯚ ῖᳺ

❶㩲ㅎ⯲ 㔆ዊ, ᣪ፲, ❶㩲ㅎ⯲ ⱆ⹢, ቺⰖᡞ, √❷╛㕶 ᦋ Ṿ⭊ ᆫ℮⮞㧲ᄦ ⲛ⭃㧲 Ἂ, Ⰾ⬒⩪ᡞ ⮺☧ ㊻ⲯ, ㏲㔆Ṇ㝒 ᄚ╆ ᦋ ኒ ⲛ⭃℮⮞ႚ Ṿ⭊ ᖭ⩎⹚ᅺ Ⱒ᝾.

(a) PHC PILE⯲ ⭃ⲫⰎ⯦ √⮞ Ⱚ∞㕪╛ (b) ℺⩎ṛ ᅊ㨂⯲ Ⱚ∞㕪╛

Ⱚᵦ㈶ㄲ:http://cafe.naver.com/noonejo/3026 Fig. 1-6 Ⱚ∞㕪╛ℯ

(20)

9

Ⱚ∞㕪╛ℯ(MT, magnetic particle testing)⯚ ႯⰪ○ㅎ ❶㩲ㅎ⯲ 㣶Ἆ ₩ 㣶Ἆ ₮ ᳶ ₫⩪ Ⱒᜮ ᅊ㨂⯞ ᄚ㈶㧲ᜮ ᄚ╆⃃ℯⰎ᝾. ᄚ╆⃃ℯ⯚ ❶㩲ㅎ⩪ Ⱚⰿ(Magneti field)⯞ ᄒ⩎ Ⱚ㫮❶㕂 㭞 Ⱚ∞(Magnetic Particle)⯞ ⲛ⭃㧲ᅺ ᅊ㨂√⩪ ₶╷ᢶ ᚞▾

Ⱚⰿ(Magnetic Flux Leakage)⯖ᳶ Ⱂ㨎 㪯○ᢶ Ⱚ∞⹚❶(Magnetic Particle Indication)Ḗ ᆚナ㧲⪆ ᅊ㨂⯲ 㔆ዊ, ⮞㋲ ₩ 㪯╛⯞ ᄚ㈶㧺 ⚲ Ⱒ᝾. ᧊ᰖ▶ ⧯Ჿ⭃ዊ ₩ ሆⴊ ῖ⯲ ⭃ⲫ√ ᄚ╆, ዊᅞ √㤢⯲ ⲶⰫ ₩ ᆏⲯᄚ╆ ₩ 㝓㰢 ႯⰪ○ㅎᳶ ⲶⰫᢶ ❶㩲 ㅎ⯲ ╆⭃ ⶫ⩪ ᔲ㕚ᔲᜮ ᅊ㨂⯞ ᄚ㈶㧲ᜮ ↎⚲ᄚ╆⩪ ᖪṆ ⲛ⭃ᢶ᝾.

᚞▾Ⱚ☧㕪╛ℯ(MFLT, Magnetic flux leakage testing)⯚ ሆⴊῖ⩪ Ⲟዊⰿ ᪪ᜮ Ⱚ ዊⰿ⯞ Ⱂႚ㧲⪚⯞ ᧦, ☪╛⯲ ⴎⱆ ₩ 㔆ዊ⩪ ዊⰒ㧲⪆ ☪╛ ⶖ⅚⩪▶ Ⱚዊⰿ⯲

∞㢆ႚ ⅚㫮㧲ᜮ ⭪ṆḖ Ⰾ⭃㧶᝾. Ⰾ᧦, Ⱚዊⰿ⯲ ∞㢆Ḗ Ⱚዊ◖▶⩪ ⯲㧲⪆ ㊻ⲯ 㧲⪆ ☪╛⯞ ᄚ㈶㧶᝾.

⫚Ⲟᷲ㕪╛ℯ(ECT, eddy current testing)⯚ ᇪᷲႚ 㯪Ḏᜮ ㏮Ⱆ⩪ ⲞᡞㅎḖ ႚዦ Ⰾ 㧲Ἆ ㏮Ⱆ ⶖ⮞⩪ ₶╷ᢶ Ⱚᅞႚ ᡞㅎ⩪ Ⱛ⭃㧲ᄦ ᢶ᝾. ㏮Ⱆ⯲ Ⱚᅞᜮ ᇪᷲ⩪

(a) 㨇ᆏዊ㣶Ἆ ₒ☦ᅊ㨂 ᄚ╆ (b) ⫚Ⲟᷲ 㕪╛ℯ⯲ ⭪Ṇ Ⱚᵦ㈶ㄲ:http://www.qualitydigest.com/dec03/articles/01_article.shtml

Fig. 1-7 ⫚Ⲟᷲ 㕪╛ℯ

(21)

:

⯲㨎 ₶╷ᢶ ᄝⰎ⁚ᳶ ᡞㅎḖ ᆚ㙏㧲ᜮ Ⱚ☧⯲ ⃃㨿⯚ ❶႞ⲛ⯖ᳶ ⅚㫮㧶᝾. Ⰾ᧦

ᡞㅎ⩪ᜮ ᡞㅎḖ ᆚ㙏㧲ᜮ Ⱚ☧⯲ ⅚㫮Ḗ ⃃㨎㧲ᜮ ዊⲞᲿⰎ ╷ዎ᝾. Ⰾᲆ㧶 㪞╛

⯞ ⲞⰪዊ ⮺ᡞ(Electromagnetic Induction)ᰖ 㧲Ἂ Ⰾ ዊⲞᲿ⩪ ⯲㨎 ᡞㅎ⩪ 㪯○ᢶ ⲞᷲḖ ⫚Ⲟᷲᰖ 㧶᝾. ⫚Ⲟᷲᜮ Ⲟᡞㅎ(❶㩲ㅎ)⩪ ∢⪊☧Ⰾ ⴎⱆ㧲Ἆ ኒ 㔆ዊ⫚

∞㢆ႚ ⅚㫮㧲ᄦ ᢲᜮ᠊ ⰎḖ Ⰾ⭃㧲⪆ ∢⪊☧√Ḗ ᄚ㈶㧲ᜮ ⃃ℯⰎ ⫚Ⲟᷲ 㕪╛

ᄚ╆Ⰾ᝾.

㌂㛆㕪╛ℯ(PT, penetration testing)⯚ ሆⴊῖ⩪ ∞╆㧶 㪯ᆫ⧻ㅎႚ ╖㛆⧯ 㪞╛⩪

⯲㧲⪆ ☪╛ √⮞⩪ ✾Ἂ᥶ᜮ ⭪ṆḖ Ⰾ⭃㧶᝾. ╛ዊ 㪯ᆫ⧻ㅎḖ ក⧞ᕒ 㭞, Ⱚ⬒

►⯞ ⴊ╆㧲Ἆ ☪╛√⮞⩪ Ⱞᷲ㧶 㪯ᆫㅎ⩪ ⯲㧲⪆ ☪╛⯞ ᄚ㈶㧺 ⚲ Ⱒ᝾.

᚞▾ᄚ╆(LT, leakage testing)ᜮ ❶㩲ㅎ ᕎ√ ₩ ⬒√⯲ ⧯Ჿヂ ᦋ⩪ ⯲㨎▶ ዊㅎ ᔲ ⧻ㅎḖ ណᅺ Ⱒᜮ ዊₚ⭃ዊ, Ⲛⰿ❶▾ ₩ ⃊ᆚ ᦋ⩪▶ ⮺ㅎ⯲ ᚞㈶, ⮺Ⱏ ⪆√

Ḗ ᄚ╆㧲ᄊᔲ, ⮺㈶ᱣ⯞ ᄚ㈶㧲ᜮ ⃃ℯⰎ᝾.

⮻⧢ᄚ╆(VT, visual testing)ᜮ ሆⴊῖ⯲ ☪╛⯞ ⮻⧢ ᪪ᜮ CCD ㌎Ữᰖᳶ ᆚナ㧲

⪆ ☪╛ ⪆√Ḗ 㞪គ㧲ᜮ ⃃ℯⰎ᝾.

⮞⩪▶ ╛⚺㧶 ⋞㞦ᇎ ᄚ╆ℯ⯚ ႛႛ⯲ ⰿគⲪ⯞ ႚ⹚ᅺ Ⱒ᝾. Ⱚ∞㕪╛ℯᆖ

⫚Ⲟᷲ 㕪╛ℯ ኒṆᅺ ᚞▾Ⱚ☧ 㕪╛ℯᆖ Ⴓ⯚ ⲞⰪዊⲛ 㪞╛⯞ Ⰾ⭃㧶 ⋞ᇎᇎ ᄚ

╆⃃ℯ⯚ ኢ☧ ሆⴊῖ⯲ 㣶Ἆ 㫓⯚ 㣶Ἆ ኖ⃃⩪ ⴎⱆ㧲ᜮ ᅊ㨂⯞ ᄚ㈶㧲ᜮ᠊ ⮺⭃

㧶 ⃃ℯⰎ᝾. ኒᲆᔲ, Ⱚ∞㕪╛ℯ⯚ ⲞㄲṆ(Precleaning) ₩ 㭞ㄲṆ(Post-cleaning) ᆖ ⲯⰎ 㧞⬮㧲Ἂ ⹛㙏ℯ⯲ ᅗ⭊ Ⲟዊႚ ⲫㆣᢲᜮ √⮞⩪ ሇ√ⲛⰒ ႚ⪎Ⰾᔲ ☪╛Ⰾ

₶╷㧺 ⚲ Ⱒᅺ, ᪪㧶 ⮺╆ ᅊ㨂 㪯㕶⯲ ሆ∞Ⰾ ⩎Ჾ⭦ ⲯᱣⲛⰒ 㡣ႚႚ ⩎᳏᝾.

㧶㡒, ᚞▾Ⱚ☧㕪╛ℯ⯚ ᅊ㨂⯞ 㢆㨂㧶 ❶㩲㡒 㣶Ἆ ኖ⃃⯲ Ⱚዊⰿ⯲ ∞㢆Ḗ ⲯᱣⲛ⯖ᳶ ㊻ⲯ㧲⪆, ᅊ㨂⯲ ⮺῎ ₩ ⮞㋲⑪ ⧞ᝢᰖ, ኒ 㔆ዊᡞ ㈮ⲯ㧲ᜮ ⲯᱣ 㡣

ႚႚ ႚ᜿㧲᝾ᜮ ⰿⲪ⯞ ႚ⹚ᅺ Ⱒ᝾. ኒᲆᔲ, ᅊ㨂⯲ ᚞▾Ⱚ☧Ⰾ ᆏ႞ⲛ, Ⴏᡞⲛ⯖

ᳶ ₒ☦㧲ዊ ᧦ῒ⩪ Ⱚዊ◖▶Ḗ ❶㩲㡒 㣶Ἆ⩪ ⲫኖ❶㎶⨖ 㧺 㧞⬮ႚ Ⱒ᝾. ᪪㧶, គⰖ ◖▶⯲ ✾㌮⩪ ⯲㧶 ㊻ⲯ ₩ 㨎▷⩪ ዊⰒ㧲⪆ Ṩ⯚ ❶႞Ⰾ ☦⬮ᢲᜮ ᄝ⯚ 㨎 ᅊ㨎⨖ 㧺 ῒⲶⶫ 㧲ᔲⰎ᝾. ⫚Ⲟᷲ㕪╛ℯ⯚ ╛Ⱚ○ ⱆᵦ⯲ 㣶Ἆ 㧖ᳶቺ⪎ᆖ, ⨯⯚

(22)

;

ᆍ⩪ ⴎⱆ㧲ᜮ ᕎ√ᅊ㨂 ₩ √❷ᅊ㨂⯞ ᄚ㈶㧲ᅺ 㡣ႚ㧲ᜮ᠊ ╆⭃ᢲᅺ Ⱒᜮ ⶫ⬮

㧶 ዊ⚺ ⶫ 㧲ᔲⰎ᝾. ኒᲆᔲ, Ⱂⲫ㧶 ㏮Ⱆ႞ ႞◇⯲ ⪛㨿⯖ᳶ ᆏ႞∞㨎᜿⯞ ᘬⰎ ᜮ᠊ 㧶ᅞḖ ႚ⹚ᅺ Ⱒ᝾. ᅊᆖⲛ⯖ᳶ Ṩ⯚ ⚲⯲ ㏮Ⱆ⯞ ⃊⪎㧺 ⚲ ⩠⩎▶ 㕪╛ ☧ ᡞႚ ⋺Ḏ⹚ ὕ㧲᝾ᜮ គⲪ⯞ ႚ⹚ᅺ Ⱒ᝾.

Ⰾᲆ㧶 គⲪ⯞ ና↏㧲ዊ ⮞㧲⪆, Ⲟ◒ᅞⲛ⯖ᳶᡞ ⋞㞦ᇎᄚ╆ ⃃ℯ⯚ ᝾⯦ᆖ Ⴓ

⯚ ㈮◒ᳶ ₶Ⲟ㧲ᅺ Ⱒ᝾. ⸣, ዊⴎ⯲ ᄚ╆⩪ ╆⭃ᢲᜮ ῖṆⲛ ⚲គ⯞ Ⰾ⭃㧶 ᄚ╆

⃃ℯ⯲ ⴟ㨃㫮, Ⲟዊ ⲞⰪ∞⨖⯲ ዊ⚺₶Ⲟ⯖ᳶ ㅂគዊ⚺⯞ Ⰾ⭃㧶 ㆢⲯₚ㫮, ㆢᅺ

☧㫮, ᄚ╆ᆏⲯ⯲ Ⱚᡳ㫮, ᄚ╆ᅊᆖ⯲ 㫮╛㫮 ₩ ᄚ╆ᅊᆖ⯲ ↎ⴎ ⃃ℯ⩪ រ㧶 ⪊ ሆႚ 㫶₶㰢 Ⰾᶂ⩎⹚ᅺ Ⱒ᝾.

ⲚⰪႚ 㢆㨂ᢶ ⪊ሆ ኒᶓ⩪▶ᜮ ╛⚺㧶 ⋞㞦ᇎ ᄚ╆ ዊℯ ⶫ Ⱚ∞ 㕪╛ℯ, ᚞

▾ Ⱚ☧ 㕪╛ℯ, ⫚Ⲟᷲ 㕪╛ℯ, ㌂㛆 㕪╛ℯ ᦋ⯲ គⲪ ₩ Ⲷ⨗⯞ 㨎ᅊ㧲ዊ ⮞㧲

⪆ ⚶⚲ ሇ╊ ⭪ㄶዊ⚺Ⱂ Ⱚዊ㌎ỮᰖḖ Ⴖ₶㨎 ⫮᝾. Ⱚዊ㌎Ữᰖᜮ Ⱚዊⰿ ∞㢆Ḗ

ႚ❶㫮㧺 ⚲ Ⱒ⯖Ἂ, Ⰾᲆ㧶 ⭪ṆḖ Ⰾ⭃㧲Ἆ ኢ☧ ሆⴊῖ⯲ ⋞㞦ᇎ ᄚ╆ ₩ 㡣ႚ

⩪ ⲛ⭃㧺 ⚲ Ⱒ᝾.

⹚ኢዦ⹚⯲ Ⱚዊ㌎Ữᰖ ዊ⚺⯚ ⬮㔆㪯 ⲞⰪ▷⩪ ⯲㧲⪆, ❶㩲㡒 㣶Ἆኖ⃃⯲ ⴛ ᅺ ዎ ⪛⪇⩪ Ⱚዊⰿ ᪪ᜮ ⮺ᡞⲞᷲḖ Ⱂႚ㧲ᅺ, 㬧᥷㧲ᜮ ✾㌮㪯 Ⱚዊ㌎Ữᰖ⩪ រ 㧶 ⪊ሆႚ ⶖᷲḖ Ⰾᶂ⩢᝾. ᪪㧶, Ṿ㝒ṇ✾㪯⯖ᳶ 2ヂ⭪ ⃊⪎㧶 㫚◖▶, ሆᡳⲞ⭪

⯲ ✾⮞㌇ ₩ ㈶Ჿ❺㫒ⴊⲯ㬦ᳶ⯲ Ⅻ᳆ㄲṆ⩪ ⯲㧲⪆ ⲯⰪዊⰿ⯞ ⅞ᡞ⯲ ዊᅞⲛ Ⰾ☻ⰿ㋲ ⩠Ⰾ ❾❶႞ ႚ❶㫮㧶 ₮ Ⱒ᝾ [14-16].

㧲⹚Ṧ ᆏ႞╛⯲ 2ヂ⭪ Ἆⲛ╛⯲ ᇪ™ⲞⰪዊⰿ⯞ ⅞ᡞ⯲ ዊᅞⲛ Ⰾ☻ⰿ㋲ ⩠ Ⰾ ❾❶႞ ႚ❶㫮㧲ᜮ ዊ⚺⯚ ❾㪞ᢲ⹚ ὕ㧶 ₮, → ⪊ሆḖ 㙏㧲⪆ 㨎ន ዊ⚺⯞ Ⴖ

₶㧲⪚᝾. ⸣, ↎᝾ ᖭ⯚ Ἆⲛ⩪ ᇪ™ⰿዊⰿ⯞ Ⱂႚ㧲ዊ ⮞㧲⪆, Ἆⲛ㪯 ⮺ᡞⲞᷲⰒ

ႚⰿ㋲Ḗ Ⴖ₶ ₩ ⚲㋲㨎▷㧲ᅺ, ❶Ⲷ㤢⯞ ⲶⰫ㧲⪚᝾. ᪪㧶 㧖㊻ⲯㅎ⯲ 㣶Ἆ⩪ ⮞

㋲㧶 ቺ⪎⩪ ⯲㧲⪆ ⫶ᅻᢲᜮ Ⲟዊⰿ ₩ Ⱚዊⰿ⯞ ㊻ⲯ㧲ዊ ⮞㧲⪆ 2ヂ⭪⯖ᳶ ⃊

⪎㧶 㫚◖▶ ₩ ✾⮞㌇㬦ᳶ, ❺㫒ㄲṆ㬦ᳶḖ Ⴖ₶㧲⪚᝾. Ⰾᲆ㧶 ሆ○⩪ ⯲㧶 ᇪᷲ

Ἆⲛ㪯 Ⱚዊ㌎Ữᰖ⯲ 㭂⯂○⯞ ᄚ⸷㧲ዊ ⮞㧲⪆, ႯⰪ○ㅎ⫚ ╛Ⱚ○ㅎႚ 㫖ⱆᢶ ሆ

(23)

<

ⴊⱆ(⪾✾㗦ᔲⰎ㝒ᅞ ✾㗦ⰒᲢ✾Ⴏ) ₩ ╛Ⱚ○ㅎ(⧦ᶂₒ᜞ 㨃ኢ)⯲ 㡣㞪 ❶㩲㡒⩪

Ⱂᆏᅊ㨂 ₩ 㧖ᳶቺ⪎⯞ ᡞⰟ㧲ᅺ, ⰎḖ ᄚ╆ ₩ 㡣ႚ㧲⪚᝾ [11-13].

→ ᘖῒ⯚ ㆷ 5ⰿ⯖ᳶ ሆ○ᢶ᝾. Ⲷ1ⰿ⯚ ▶ᳺⰎἊ, Ⲷ2ⰿ⯚ Ⱚዊ㌎Ữᰖ⯲ ⭪ Ṇ ₩ ⴟᰲ⯲ ⪊ሆḖ ☦Ⴖ㧶᝾. Ⲷ3ⰿ⯚ ᇪᷲἎⲛ㪯 Ⱚዊ㌎ỮᰖḖ Ⴖ₶㧲ዊ ⮞㧶 ዊ₲ዊ⚺Ⱂ Ἆⲛ㪯 ⮺ᡞⲞᷲ Ⱂႚℯᆖ Ἆⲛ㪯 Ⱚዊ◖▶ ⃊⪎, Ⅻ᳆㪯 ❺㫒ㄲṆ㬦ᳶ

⩪ រ㧲⪆ ▾἟㧶᝾. Ⲷ4ⰿ⯚ ᇪᷲἎⲛ㪯 Ⱚዊ㌎Ữᰖ⯲ ⮺⭃○⯞ ᄚ⸷㧲ዊ ⮞㧲⪆

⪾✾㗦ᔲⰎ㝒ᅞ ✾㗦ⰒᲢ✾Ⴏᆖ ⧦ᶂₒ᜞ 㨃ኢ⩪ ᡞⰟ㧶 Ⱂᆏᅊ㨂 ₩ 㧖ᳶቺ⪎⯞

ᄚ㈶㧶 ᅊᆖḖ ↎ᅺ㧶᝾. Ⲷ5ⰿ⯚ ᅊᳺⰎ᝾.

(24)

43

Ⲷ 2ⰿG ⭪Ṇ ₩ ⴟᰲ⯲ ⪊ሆ

Ⲷ 1ⲢG Ⱚዊ㌎Ữᰖ

Fig. 2-1 Ⱚዊ㌎Ữᰖ#

Ⱚዊ㌎Ữᰖᜮ Fig. 2-1⩪ ᔲ㕚ᔶ ₮⫚ ႳⰎ Ⱚ⭪, Ⱚዊ◖▶⃊⪎, ⰪዊᲦ⸢, ❺㫒 ㄲṆ 㬦ᳶ ₩ AD⅚㫲ዊ, Ⱂ㗊㠲Ⰾ✾, ㎎㦂㗊(㦞ᳶ◒▶) ₩ ᦮✾㦦ᲢⰎᳶ ሆ○ᢶ᝾.

⹛ᷲⰪዊⰿ [6, 7], ᇪᷲⰪዊⰿ, Ⲟዊⰿ, ⮺ᡞⲞᷲ, ⮺ᡞἎⲞᷲ [14-21], ⹚Ⱚዊ⫚

Ⴓ⯚ Ⱚ⭪⯖ᳶ√㗊⯲ ⲞⰪዊⰿ⯞ ❶㩲㡒⩪ ⰟᲿ㧲Ἆ, ႯⰪ○ㅎ ᪪ᜮ ᅊ㨂⯲ ⴎⱆ⩪

ዊⰒ㧲⪆ ⲞⰪዊⰿ⯲ ⫶ᅻⰎ ₶╷㧶᝾. Ⰾᲆ㧶 ⫶ᅻ⯚ ᆏ႞╛⯲ Ⱚዊⰿ⯲ ∞㢆Ḗ

⅚㫮❶㔾ᄦ ᢲἊ, ⰪዊᲦ⸢ [10]⩪ ⹫☧ᢶ᝾. ᪪㧶, ⃊⪎ᢶ Ⱚዊ◖▶⩪ ⯲㧲⪆ Ⱚዊ ⰿ⯲ ∞㢆ᜮ ⧞ᔺᳶኒ Ⲟዊ❺㫒⯲ ∞㢆ᳶ ⅚㫮㧲ᄦ ᢲἊ, ⰎḖ AD⅚㫲ዊḖ Ⰾ⭃㧲 Ἆ ᦮⹚㗒 Ⲟዊ❺㫒⯲ ∞㢆ᳶ ㎎㦂㗊⩪ ⰟᲿ㧺 ⚲ Ⱒᄦ ᢶ᝾. → ⰿ⩪▶ᜮ ⹚ኢዦ

⹚ ⪊ሆᢲ⩎ ⫂ Ⱚ⭪, Ⱚዊ◖▶⃊⪎, 㬦ᳶ⩪ រ㧲⪆ ႞គ㰢 ⭪ṆḖ ▾἟㧶᝾.

(25)

44

Ⲷ 2ⲢG Ⱚ⭪

❶㩲 រ╛ㅎ⯲ ⱆ⹢ ₩ ὃⲛ⩪ ᧊ᰖ ⮺㭂㧲ᄦ ᅊ㨂⯞ 㕪╛㧺 ⚲ Ⱒᡞ᳷ ⪆ᲆ

ႚ⹚ 㪯㕶⯲ Ⱚ⭪(magnetic source)⯞ ⪊ሆ Ⴖ₶㧲⪆ ⫮᝾. រ㣶ⲛⰒ ⃃ℯⰎ ᇪヂⰪ 㫮ℯ(C-MFL, cross type magnetic flux leakage) [23], ☦㪯⹛ᷲⰪ㫮ℯ(DC-MFL, direct current magnetic flux leakage), ⚲⹛Ⱚ㫮ℯ(V-MFL, vertical type magnetic field leakage), ⮺ ᡞἎⲞᷲℯ(STIC, sheet type induced current) [14-21], ↏㨃⮺ᡞⲞᷲ-᚞▾Ⱚ☧ℯ (CIC-MFL, complex induced current-magentic flux leakage) [24-26] ₩ Ⱚ○⮺ㅎ㌂㛆ℯ (MFPT, magnetic fluid penetration testing)Ⰾ᝾. ႛႛ⯲ ❶㩲 រ╛ㅎ⩪ រ㧶 Ⱚ⭪⯲ ► 㕷 ₩ 㝓⹯⯞ Table 2-1⩪ ᔲ㕚ᕒ᝾.

Table 2-1 Ⱚ⭪⯲# ∞ᷲ#

Magnetic Source

Type Abbreviation Specimen

Material Character Application

Cross type magnetic flux

leakage

C-MFL Ferromagnetic

Crack inspection regardless of crack

direction

ISI of streel and iron structure

Direct current magnetic flux

leakage

DC-MFL Ferromagnetic

Small size NDT system. Suitable in scan type mangetic

camera

PSI in the steel-iron production line. ISI in

train wheel

Plate type magnetic

flux leakage P-MFL Ferromagnetic

NDT of pipe.

Suitable in area type magnetic camera

ISI of steel structure.

ISI of wire production In-side solenoid

magnetic flux leakage

IS-MFL Ferromagnetic ISI of steel pipe

Vertical type magnetic flux leakage

V-MFL

Ferromagnetic, Paramagnetic

and Mixed ferromagnetic &

paramagnetic

NDT of metal.

Suitable both of scan- and area-type

magentic camera.

ISI of aircraft and nuclear power plant Sheet type induced

current STIC

Improved sheet type induced

current

I-STIC Suitable in scan type

mangetic camera

ISI of aircraft and nuclear power plant

Combined induced current-magentic

flux leakage

CIC-MFL

NDT of metal regardless of kinds.

Suitable in scan-type magnetic

camera

PSI in steel manufacturing line.

ISI of aircraft and nuclear power plant Magnetic fluid

penetration testing MFPT All material Opened surface crack

ISI of aircraft and nuclear power plant

(26)

45

ỖⲚ, Fig. 2-2(a)⯲ ᇪヂⰪ㫮ℯ(C-MFL, cross type magnetic flux leakage) [10]⯚ ᚞▾

Ⱚ☧㕪╛ℯ(MFLT, magnetic flux leakage testing) ᪪ᜮ Ⱚ∞㕪╛ℯ(MT, magnetic particle testing)⯲ ᅗ⭊ ᅊ㨂 ዒⰎ ⃃㨿Ⰾ Ⱚ㫮⃃㨿ᆖ ⚲㡣Ⱆ ᧦, ᅊ㨂⯞ 㕪╛㧲ዊ ᅾᰚ㧶 Ⲫ⯞ ↎⫞㧲ዊ ⮞㧲⪆ Ⲷ❶ᢶ ⃃ℯⰎ᝾. Ṣⶖ↎ᜮ ᣪ Ⴖ⯲ Ⱚና⯞ ႚ⹚ᜮ ᣪ ➧⯲

ና႞❷ Ⱚ㫮ዊḖ ▾㋲㧲ᅺ ᇪ™ ⲞᷲḖ ⰟᲿ㧲Ἆ, Ⱚ㫮ዊ⮞⯲ ❶㩲㡒⯚ ▶ᳶ ⹛ႛ

Ⰾ ᢲᜮ ⃃㨿⯖ᳶ ᇪヂ Ⱚ㫮ᢶ᝾. Ⰾ᧦, ᅊ㨂⯲ ዒⰎ ⃃㨿Ⰾ ⩎ᜪ ⽗Ⰾᰖᅺ 㧲៮ᰖ ᡞ, ₲᥶❶ ᚞▾Ⱚ☧⯞ ⮺ዊ㧲⪆ 㕪╛㧺 ⚲ Ⱒᄦ ᢲἊ, ⲯᱣⲛ⯖ᳶ ᅊ㨂⯞ 㡣ႚ㧺

⚲ᡞ Ⱒ᝾. ᪪㧶, Fig. 2-2(b)⯲ ⹛ᷲⰪ㫮ℯ(DC-MFL, direct current magnetic flux leakage)

⯚ ☦㪯Ⱚ㫮ዊḖ ⴊₚ㧲ᄦ ⃊⪎ᢶ Ⱚዊ◖▶⯲ ⰎἎ⩪ ▾㋲㧲⪆, ⲶㄺⲶႯ ᆏⲯ⯲

ᅊ㨂 ᄚ㈶ ₩ ᅺ☧ㄺᡞ ヂ᷶⯲ ⋞㞦ᇎ ᄚ╆⩪ ⲛ⭃㧶 ₮ Ⱒ᝾.

(a) ᇪヂⰪ㫮ℯ(C-MFL) (b) ⹛ᷲⰪ㫮ℯ(DC-MFL)

(c) ⚲⹛Ⱚ㫮ℯ(V-MFL) (d) ⮺ᡞἎⲞᷲℯ(STIC)

Fig. 2-2 Ⱚ⭪⯲# ⴟᷲ#

(27)

46

Fig. 2-2(c)⯲ ⚲⹛Ⱚ㫮ℯ(V-MFL, vertical type magnetic field leakage)⯚ Ⱚዊ ◖▶⯞

⚲➇ 㬦 Ⴊ⯚ ㏮Ⱆ ⧢⩪ ⮞㋲ ❶㔾ᅺ, ㏮Ⱆ⩪ ᇪᷲ Ⲟ⭪⯞ Ⱂႚ 㧲⪚⯞ ᧦ ❶㩲 រ

╛ㅎ⩪ ⚲⹛⃃㨿⯖ᳶ ᇪ™ Ⱚᅞႚ ⮺ᡞ ᢶ᝾. Ⰾ᧦ ᅊ㨂⩪ ⯲㧶 Ⱚዊⰿ⯲ ⅚㫮⫚

⮺ᡞⲞᷲ⯲ 㯪㝒ᲆ⹪⯞ ㊻ⲯ㧲⪆ ᅊ㨂⯞ 㕪╛㧺 ⚲ Ⱒ᝾.

Fig. 2-2(d)⯲ ⮺ᡞἎⲞᷲℯ(STIC, sheet type induced current)⯚ ❶㩲㡒⯲ 㣶Ἆ⩪ Ἆ ⲞᷲḖ ⮺ᡞ㧲ᅺ, ᅊ㨂⯲ ⴎⱆ⩪ ዊⰒ㧲ᜮ ἎⲞᷲ⯲ ⫶ᅻ⯞ ⮺ᡞ㧲ᜮ ⃃❷Ⰾ᝾. ⸣

㏮Ⱆ(coil)⩪ ᇪᷲⲞᷲḖ ⰟᲿ㧲Ἆ, ႯⰪ○ㅎ ㏮⩎(core)⩪ ᇪᷲ ⰪዊⰿⰎ ₶╷㧶᝾.

Ⰾ ᧦ ㏮⩎Ḗ 㙏ᆖ㧲ᜮ ᡳ㞪(copper sheet)⩪ᜮ ᇪᷲ ἎⲞᷲႚ ⮺ᡞᢶ᝾ [14-21]. ᡞ Ⲟ○ ❶㩲㡒⯞ ᡳ㞪⩪ ኖⲫ㧲Ἆ ❶㩲㡒⯲ 㣶Ἆ ኖ⃃⩪ ⮺ᡞἎⲞᷲႚ ⮺ᡞᢲᅺ, ᅊ 㨂⯲ ⴎⱆ⩪ ⯲㧲⪆ ᅊ㨂⯲ ⨫ ►គ⩪▶ ⮺ᡞἎⲞᷲ⯲ ⫶ᅻⰎ ₶╷㧲⪆ Ⱚዊⰿ⯲

∞㢆ႚ ⅚㫮㧲ᄦ ᢶ᝾. Ⰾᲆ㧶 Ⱚዊⰿ ∞㢆⯲ ⅚㫮Ḗ Ⴊ⹚㨂⯖ᳶ⠂, ႯⰪ○ㅎ, ╛Ⱚ

○ㅎ, ႯⰪ○ㅎ ₩ ╛Ⱚ○ㅎႚ 㫖ⱆᢶ ሆⴊῖ⯲ ᅊ㨂⯞ ᄚ㈶㧺 ⚲ Ⱒᄦ ᢶ᝾.

(28)

47

Ⲷ 3ⲢG ◖▶⃊⪎

Ⱚዊⰿ⯲ ∞㢆Ḗ ⲯᱣⲛ⯖ᳶ ㊂᥷㧲ዊ ⮞㧶 Ⱚዊ◖▶ᳶᜮ 㫚◖▶, ⰪዊⲚ㨇 (MR, magnetic resistance) ◖▶, ᄊរⰪዊⲚ㨇(GMR, giant magnetic resistance) ◖▶ᦋ⯞

᥾ ⚲ Ⱒ᝾. GMR ◖▶ᜮ 2007ᗞᡞ ᘒ⅂ῖṆ㧳╛⯞ ⚲╛㧶 GMR 㭂ᆖ⩪ ዊㆢ㧶 ㆢ

☦㪯 Ⱚዊ◖▶ᳶ⠂, ⋞㞦ᇎᄚ╆∞⨖⩪▶ ኒ 㫶⭃ᡞႚ ዊរᢲᅺ Ⱒ⯦⯞ ᝾⚲⯲ ᘖῒ

⩪▶ ↎ᅺ㧲ᅺ Ⱒ᝾. ኒᲆᔲ, 㫚◖▶(⨗ 911⃊ ⸷㢇)⩪ ⯲㧲Ἆ, 佳4mT⯲ Ⲟሆ႞ᡳⰫ

℮⮞(FSO, full scale operational range)⩪▶ 2.51V/mT⯲ ႪᡞḖ ❾㪞㧲ᅺ Ⱒᜮ ₮, ↎ᅺ ᢶ GMR◖▶ ᪪ᜮ SDT(spin dependent tunneling)◖▶⩪ ⋞㧲⪆ 5~10⃊⯲ FSOḖ ႚ⹚

Ἆ▶, 10~100⃊ ⲯᡞ⯲ ᅺႪᡞḖ ❾㪞㧲⪚᝾. ៮⭋Ⰾ 㣶⶚㡒ヂᡞ 0.01V ⲯᡞᳶ⠂ ⨗ 4儙T ⲯᡞ⯲ ㊻ⲯⲯₚᡞḖ ႚ⹞᝾.

(a) SSS(Signle Sensor Scanning) (b) Single LIHaS(Linearly integrated Hall sensor array)

(c) Differential LIHaS(Linearly integrated Hall sensor array)

(d) AIHaS(Area type integrated Hall sensor array)

Fig. 2-3 ⪆ᲆႚ⹚# 㪯㕶⯲# ◖▶⃊⪎#

(29)

48

᧊ᰖ▶, Ⱚዊ㌎Ữᰖ⩪▶ᜮ ⶖᳶ 㫚◖▶Ḗ ╆⭃㧲⪆ ⫮᝾. ⸣, Fig. 2-3(a)⫚ ႳⰎ 1Ⴖ⯲ Ⱚዊ◖▶Ḗ 2ヂ⭪ 㡣Ἆ╛⩪▶ ⲯₚ㧲ᄦ ✾㌮㧲ᜮ ⃃ℯ(SSS, single sensor scanning), Fig. 2-3(b)⫚ Fig. 2-3(c)ㄲᲖ ►㪯⯖ᳶ ⴊₚ㧲ᄦ ⃊⪎㧶 Ⱚዊ◖▶Ḗ 1ヂ⭪

⯖ᳶ ✾㌮㧲ᜮ ⃃ℯ(LIHaS, linearly integrated Hall sensor array), Fig. 2-3(d)⫚ ႳⰎ Ἆⲛ 㪯⯖ᳶ ⃊⪎㧶 Ⱚዊ◖▶Ḗ Ⰾ⭃㧲ᜮ ⃃ℯ(AIHaS, area type integrated Hall sensor array) Ⰾ Ⱒ᝾. ⴊₚ㧲ᄦ ◖▶Ḗ ⃊⪎ 㧲ᜮ ⃃ℯ⩪ᜮ Single LIHaS(Fig. 2-3(b)), Differential LIHaS(Fig. 2-3(c)) ᣪ ႚ⹚ ⃃ℯ⯞ ╆⭃㧲⪆ ᅊ㨂⯞ 㕪╛㧲ᅺ Ⱒ᝾. Single LIHaSᜮ InSb 㫚◖▶Ḗ 0.52mm ᪪ᜮ 0.78mm႞ᅃ⯖ᳶ 1⪎ᳶ ⃊㋲㨂⯖ᳶ⠂ ⴟᰲ⩪ ╛⭃⯖ᳶ 㞪Ṿᢲᜮ 㟂㔾⹚ᢶ 㫚◖▶(╖○, HE12AF1U12)Ḗ ╆⭃㧶 ᅗ⭊⩪ ⋞㨎 ᘬ⯚ ᆏ႞∞

㨎᜿, ◖▶⯲ 㧚 ⚲⫚ 㟂㔾⹚⯲ 㔆ዊ, PCB⩪ ⃊⪎㧶 ◖▶႞⯲ ᘬⰎ ヂⰎ, ᅗ╆ᳶ Ⱂ㧶 ₮Ⰾ⩎✾ ⪾ヂ ₩ Ⴊᡞ ⪾ヂḖ ↎⫞㧶 ⃃ℯⰎ᝾ [6]. 㧲⹚Ṧ, Single LIHaS⯲

ᅊ㨂 ᚞▾ Ⱚ☧⯚ ⶖ⅚ Ⱚዊⰿ ₩ Ⱚ㫮ዊ⯲ Ⱚና⯖ᳶ√㗊 ₶╷㧶 Ⱚⰿ⩪ ⪛㨿⯞

₵⧞ 㢆㫮ᢲᜮ គⲪ⯞ ႚ⹚ᅺ Ⱒ᝾. ⰎḖ ↎⫞㧶 ⃃ℯⰎ Differential LIHaSⰎ᝾ [7].

Differential LIHaSᜮ InSb 㫚◖▶Ḗ 0.52mm ᪪ᜮ 0.78mm႞ᅃ⯖ᳶ 2⪎ᳶ 㡣㨣㧲 ᄦ ⃊㋲㧲⪚᝾, ヂᡳ㪯 㫚◖▶ᜮ Ⱆ₲ⲛⰎ 㫚◖▶⫚ᜮ ឆṆ 㢆㫮ᢲ⹚ ⧤ᅺ ႛႛ⯲

㫚◖▶⩪ ╛Ⰾ㧶 ⰪዊⰿⰎ ⰟᲿᢺ ᧦Ṧ ኒ ヂⰎḖ ㈶Ჿ㧲ዊ ᧦ῒ⩪ ⬒√Ⱚዊⰿ⯲

⪛㨿⯞ ㇶ☦㫮 㧺 ⚲ Ⱒ᝾ᜮ ⰿⲪ⯞ ႚ⹚ᅺ Ⱒ᝾.

(a) 0.78mm ᆏ႞∞㨎᜿⯲ 1024Ⴖ 㫚◖▶ ⃊⪎ (b) 㪞ₒᅗ 㫯រ╆⹞

Fig. 2-4 0.78mm# ႞ᅃ⯲# ᆏ႞∞㨎᜿⯞# ႚ⹚ᜮ# 1024Ⴖ⯲# 㫚◖▶# ⃊⪎#

(30)

49

᪪㧶, 0.78mm ₩ 0.52mm⯲ ᆏ႞∞㨎᜿⯞ ႚ⹚ᜮ AIHaSᜮ 1,024Ⴖ⯲ InSb 㫚◖

▶⩪ ⯲㨎▶ ㊻ⲯᢶ᝾. NiZn ferrite wafer⩪ InSb Hall sensorḖ 0.78mm ႞ᅃ⯖ᳶ 32佴 32Ⴖ(1,024Ⴖ)Ḗ ⃊⪎㧲ᅺ, Ⱚㅎ ⲶⰫ㧶 ◖▶ Ⲟ⭃ PCB⩪ ❾ⰿ㧶 㭞, wire ball bonding⩪ ⯲㧲⪆ ᅊ►㨂⯖ᳶ▶ 24.96佴24.96mm2⯲ ⪛⪇⩪▶ 0.78mm⯲ ᆏ႞∞㨎᜿

⯞ ႚ⹞᝾.

㪞ⱆ 0.5mm ∞㨎᜿⯲ SSS, 0.52mm ₩ 0.78mm⯲ ᆏ႞∞㨎᜿⯞ ႚ⹚ᜮ LIHaS, 0.78mm ₩ 3.5mm⯲ ᆏ႞∞㨎᜿⯞ ႚ⹚ᜮ AIHaS(Fig. 2-3(d))ႚ Ⴖ₶ᢲ⩎ Ⱒ᝾.

(31)

4:

Ⲷ 4ⲢG ❺㫒ㄲṆ㬦ᳶ

㫚◖▶⯲ ᅗ⭊⩪ᜮ 2Ⴖ⯲ ⰟᲿគⰪ⫚ 2Ⴖ⯲ ㈶ᲿគⰪᳶ ሆ○ᢶ᝾. ⰟᲿគⰪ⩪

ⲯⲞ⧯ ᪪ᜮ ⲯⲞᷲ ሆᡳ⩪ ⯲㧲⪆ Ⲟዊⰿ⯞ Ⱂႚ㧲ᅺ, ◖▶Ἆ⯲ ℯ►⃃㨿⯖ᳶ Ⱚ ዊⰿ⯞ Ⱂႚ㧲Ἆ, ㈶ᲿគⰪ႞⯲ Ⲟ⧯ヂႚ Ⱚዊⰿ⯲ ◒ዊ⩪ ⋞᳚㧲⪆ ⸷ႚ㧶᝾. ᧊ ᰖ▶, Ⱚዊⰿ⯲ ◒ዊḖ ⲯᱣⲛ⯖ᳶ ㊻ⲯ㧲ዊ ⮞㨎▶ᜮ ヂᡳ⸷㢇㬦ᳶႚ 㧞⬮㧲ᄦ ᢶ

᝾. ኒṆᅺ, 㧞⬮㧶 ⶖ㞦⚲រ⪇រ⯲ ❺㫒Ḗ ㈮㈶㧲ᄊᔲ ⰻ⯦⯞ Ⲷᄊ㧲ዊ ⮞㨎▶ᜮ ᅺរ⪇㙏ᆖ㧞㗊(HPF, high pass filter)⫚ Ⲛរ⪇㙏ᆖ㧞㗊(LPF, low pass filter)Ḗ ⲛⲢ㰢 Ⰾ⭃㨎⨖ 㧶᝾. ᪪㧶, Ⱚ⭪Ⰾ ᇪᷲⲞᷲ⩪ ⯲㧲⪆ ሆᡳᢲᜮ CIC-MFL, STIC ⩪▶ᜮ

◖▶⩪ ㈶Ჿᢲᜮ ❺㫒ႚ ᇪᷲⲞᷲ⯲ ⶖ㞦⚲⫚ ᡳⰖ㧲ᄦ ᢲ⁚ᳶ ⮞╛ヂ, ⹞㢇⅚㫮, ㇶរ㋲⅚㫮ᦋⰎ ᅊ㨂⯲ ⴎⱆ ₩ 㔆ዊ⫚ ᆚ᳂Ⱒᜮ ⮺㭂㧶 ⲯ↎ႚ ᢶ᝾.

㫚 㭂ᆖ 㪞╛(Fig. 2-5)⯞ Ⰾ⭃㧶 㫚 ◖▶ᜮ Ⲟᷲႚ 㯪Ḗ ⚲ Ⱒᜮ ₲ᡞㅎ ῖ⹢⩪

ⲯⲞᷲ IḖ 㯪Ḏᄦ 㧲ᅺ Ⲟᷲ⩪ ⹛ႛⰒ ⃃㨿⯖ᳶ BḖ Ⱂႚ㧲Ἆ Lorentz Forceႚ Ⲟ Ⱚ⯲ 㯪Ḟ⩪ Ⱛ⭃㧲ᄦ ᢲ⩎ ⲞⰪ ∞㢆⯲ ⫶ᅻⰎ ₶╷㧲ᄦ ᢶ᝾. Ⰾᳶ Ⱂ㨎 ㈶Ჿ ⨫ គ⩪ᜮ Ⲟ⮞ヂႚ ₶╷㧲ᅺ Ⰾᲆ㧶 ヂⰎᜮ ◖▶ Ἆ⩪ ⚲⹛⯖ᳶ Ⱏ╆㧲ᜮ ⬒√Ⱚⰿ

⯲ ◒ዊ⩪ ⋞᳚㧲ᄦ ᢶ᝾. Ⰾᲆ㧶 㫚 Ⲟ⧯(VH)⯚ Ⲟ⚺㧶 ₮⫚ ႳⰎ Eq. (1)ᳶ ᔲ㕚 ᕒ᝾. ⪆ዊ▶ kᜮ 㫚 ╛⚲ⰎἊ, ᜮ ႪⰪἎ(㲒䤯䆽)⩪ Ⱏ╆ᢲᜮ Ⱚዊⰿ⯲ ႛᡞⰎ᝾.

Ⱚᵦ㈶ㄲ:http://www.allegromicro.com/en/products/design/an/an295044.pdf Fig. 2-5 㫚# 㭂ᆖ⯲# ⭪Ṇ#

(32)

4;

H cos

V ˜ ˜ ˜k I B T (1)

ⲯⰪዊⰿ⯞ ႚ❶㫮㧲ᜮ Ⱚዊ㌎Ữᰖᜮ Ⰾᲆ㧶 ᚞▾ Ⱚ☧ ∞㢆⩪ ᧊Ḓ 㫚◖▶⯲

㈶ᲿⲞ⧯ ⸣, Ⲟ⮞ ヂⰎḖ ヂᡳ❷ ⪊╊⸷㢇ዊ(OP-Amp)Ḗ Ⰾ⭃㧲⪆ ㊻ⲯ㧶᝾. ᅺⲯ ₚ ヂᡳ ⸷㢇⯞ ⮞㧲⪆ ᘬ⯚ ᡳ╛❺㫒Ⲷᄊ⋞(CMRR, Common Mode Rejection Ratio) Ḗ Ⴐᜮ INA128Ḗ ᡞⰟ㧶 Fig. 2-6ᆖ Ⴓ⯚ 㬦ᳶႚ Ⰾ⭃ᢲᅺ Ⱒ᝾. INA128 㧶 Ⴖ⯲

⬒√ Ⲛ㨇(RG)⯞ ⪊ᅊ㧲ᜮ ᄝṦ⯖ᳶᡞ ✗ᄦ 0~80dB⯲ Ⰾ᥷Ⴌ⯞ ⩕⯞ ⚲ Ⱒ᝾. ヂᡳ

⸷㢇 㬦ᳶ⩪ ⪊ᅊᢲᜮ ᣪ Ⴖ⯲ Ⲟ⧯ 㦦ᳶ⩎(A1, A2)᥾⯚ Ⱛ⯚ ⪾ヂḖ Ⴐ⯖Ἆ▶ᡞ ᘬ

⯚ ⰟᲿ Ⱎ㧖៲✾Ḗ ↎Ⱂ᝾. ᪪㧶, ሆᡳ Ⲛ㨇Ⰾ RGⰎ╛⯖ᳶ ∢ቺ㪯 ᢲᜮ ᄝ⯞ 㩢⭃

㧺 ⚲ Ⱒ᝾. 㧶㡒, ヂᡳ ⸷㢇㬦ᳶ⯲ Ⰾ᥷⯚ Eq. (2)⩪ ᔲ㕚ᕒ ₮⫚ ႳⰎ R5 = R7, R8 = R9Ⱆ ᧦ R5ᆖ R8⩪ ⯲㧲⪆ ᅊⲯᢶ᝾.

8 4

5

2 40 2 25

1 1

40 1 50

G G

G

R R k k

Gain R R k R

k R

§  · :§  ˜ :·

¨ ¸ :¨ ¸

© ¹ © ¹

 :

(2)

Fig. 2-6 INA128⯞# Ⰾ⭃㧶# 㫚◖▶# ❺㫒⯲# ⸷㢇㬦ᳶᡞ#

(33)

4<

Ⲷ 3ⰿG ᇪᷲ Ἆⲛ㪯 Ⱚዊ㌎Ữᰖ

Ⲷ 1ⲢG ⚲㋲㨎▷

⮺ᡞἎⲞᷲ(STIC, Sheet Type Induced Current)ᜮ Fig. 3-1⩪ ᔲ㕚ᕒ ₮⫚ ႳⰎ 8Ⱚ 㪯⯲ ㏮⩎⯲ ⶫ➆⩪ 1ヂ ㏮Ⱆ⯞ Ⴊᅺ, 2ヂ ㏮Ⱆ(ᡳ㞪)⯞ 㙏ᆖ❶㔾ᜮ 㪯㕶ᳶ ⲶⰫᢶ

᝾. 1ヂ ㏮Ⱆ⩪ ᇪᷲⲞᷲ(IAC)Ḗ ⰟᲿ㧲Ἆ, 8Ⱚ㪯 ㏮⩎⩪ Ⱚዊⰿ(Magnetic flux)Ⰾ ₶╷

ᢲἊ, Ⰾ⩪ ዊⰒ㧲⪆ ᡳ㞪⩪ ⮺ᡞⲞᷲ(Induced current)ႚ ₶╷ᢶ᝾. ⰎḖ ❶㩲㡒⩪

ႚዦⰎ ⲫኖ❶㔾Ἆ, ❶㩲㡒⩪ Ἆⲛ㪯 ⮺ᡞⲞᷲႚ ₶╷㧲ᅺ, ᅊ㨂⩪ ⯲㧶 ⮺ᡞⲞᷲ

⯲ ⫶ᅻ ₩ Ⱚዊⰿ⯲ ∞㢆ႚ ⅚㫮㧲ᄦ ᢶ᝾. ⅚㫮ᢶ Ⱚዊⰿ⯲ ∞㢆Ḗ ㊻ⲯ㨂⯖ᳶ⠂, ᅊ㨂⯲ ⮺῎, ⮞㋲ ₩ 㔆ዊḖ ㈮ⲯ㧺 ⚲ Ⱒᄦ ᢶ᝾ [21, 22].

Fig. 3-1 ⮺ᡞἎⲞᷲ⯲# ⭪Ṇ#

(34)

53

Fig. 3-2 ⚲㋲㨎▷# ὂ᠒#

❶㩲㡒⩪ ⮺ᡞἎⲞᷲḖ ₶╷❶㏊⯞ ᧦, ႛႛ⯲ ⶖ㞦⚲⩪▶ ❶㩲㡒⯲ ዤⰎ⩪ ᧊ Ḓ Ⲟዊⰿ ₩ Ⱚዊⰿ⯲ ◒ዊ ₩ ⃃㨿Ⰾ ⩎ᩕᄦ ⅚㫮㧲ᜮ⹚Ḗ ⧦ዊ ⮞㧲⪆, Fig. 3-2

⩪ ᔲ㕚ᕒ ₮⫚ Ⴓ⯚ 3ヂ⭪ ὂ᠒⩪ ⯲㧲⪆ ⚲㋲㨎▷㧲⪚᝾. ⚲㋲㨎▷⯚ ╛⭃ ⲞⰪ ዊⰿ 㨎▷ 㦞ᳶኒ᱂Ⱂ ANSYS Program (Ver. 11.0 SP1 UP20070830, EMAG)⩪ ⯲㧶 ⮺ 㧶⬮☦㨎▷⯞ ⚲㨣㧲⪚᝾. ႛ ⬮☦⯲ ῖṆⲛ 㝓○ ₩ ⬮☦⯲ 㔆ዊḖ Table 3-1⩪ ⲯ Ṇ㧲⪚᝾.

1

X Y Z

AUG 10 2010 10:02:06 ELEMENTS

MAT NUM

Core Core

Coil

Sensing area

Specimen

Environment

Sheet type copper plate

Coil

(35)

54

Table 3-1 ႛ ⬮☦⯲ ῖṆⲛ 㝓○ ₩ 㔆ዊ

Item Material Magnetic

Properties Size [mm] Meshing size[mm]

ANSYS model type

Specimen Aluminum MURX1.000022

RSVX 2.82e-8 40 × 100 × 1 1 SOLID117

Core Silicon Steel

MURX 4000 RSVX 4.72e-8

25 × 40 × 0.35 2 cores with 30 slides of each.

2 SOLID117

Coil Copper MURX0.999994 RSVX 1.68e-8

21× 28 × 11 2 coils × 17

turns × 2.5A

2 SOLID117

Sheet type

copper plate Copper MURX0.999994 RSVX 1.68e-8

28 × 126.4 × 44

thickness 0.2 1 SOLID117 Sensing area Air MURX 1 40 × 100 × 1 1 SOLID117

Crack Air MURX 1 1 × 10 × 4 2 SOLID117 Environment Air MURX 1 50 ×170 ×70 5 SOLID117

(36)

55

Fig. 3-3, Fig. 3-4 ₩ Fig. 3-5⯚ ⧦ᶂₒ᜞ ❶㩲㡒(ᣪ፲ 5mm)⩪ ᅊ㨂Ⰾ ⩠⯞ ᧦⫚

ዒⰎႚ 2mm ₩ 10mmⰒ ᅊ㨂⩪▶ ⶖ㞦⚲⩪ ᧊Ḓ ႛ ዤⰎ⩪▶⯲ Ⲟዊⰿ⯲ ⚲㋲㨎

▷ ᅊᆖḖ ᔲ㕚ᕒ᝾.

Fig. 3-3⩪ ᔲ㕚ᕒ ₮⫚ ႳⰎ ⶖ㞦⚲ႚ ᘬ⯞⚲᳷ 㣶㧖㭂ᆖ⩪ ⯲㧲⪆ ❶㩲㡒⯲

㣶Ἆ⩪ ⮺ᡞⲞᷲႚ ⹫ⶫᢲᅺ Ⱒ⯦⯞ ⧦ ⚲ Ⱒ᝾. ᪪㧶, ⶖ㞦⚲ႚ ᕈ⯖Ἆ, ❶㩲㡒⯲

ዤ⯚ ᆍዦ⹚ ⮺ᡞⲞᷲႚ Ⱂႚᢶ᝾. ᧊ᰖ▶, Fig. 3-4 ₩ Fig. 3-5⩪ ᔲ㕚ᕒ ₮⫚ ႳⰎ Ⲛⶖ㞦⚲⩪▶ᜮ ᅊ㨂⯲ ⴎⱆ⩪ ዊⰒ㧶 ⫚Ⲟᷲႚ ❶㩲㡒 㣶Ἆ⩪▶ ᕎ√ዦ⹚ Ⲟ₲ⲛ

⯖ᳶ ₶╷㧲Ἂ, ᅊᆖⲛ⯖ᳶ ↎᝾ Ṩ⯚ ⰪዊⰿⰎ 㢇ᖭᄦ ₶╷㧲ᄦ ᢶ᝾. ₲Ἆ⩪ ᅺ ⶖ㞦⚲⩪▶ᜮ ᅊ㨂⯲ ►គ⩪ ⹫ⶫᢶ ⰪዊⰿⰎ ₶╷㧲ᄦ ᢶ᝾.

(a) 1kHz (b) 5kHz

(c) 10kHz (d) 20kHz

Fig. 3-3 Fudfn# ⩠⯞# ᧦# ⮺ᡞⶖ㞦⚲⯲# ⅚㫮⩪# ᧊Ḓ# ㌂㛆ዤⰎ# ⚲㋲㨎▷# # (XY section view)

1

75 25067 50058

75050 100042 125033150025

175017200008 225000 AUG 31 2010 20:07:08 VECTOR

STEP=1 SUB =1 FREQ=1000 JT ELEM=14397 MIN=3346 MAX=105441

1

75 25067 50058

75050 100042 125033150025

175017200008 225000 AUG 31 2010 20:12:45 VECTOR

STEP=1 SUB =1 FREQ=5000 JT ELEM=14727 MIN=4408 MAX=68514

1

75 25067 50058

75050 100042 125033150025

175017200008 225000 AUG 31 2010 20:22:10 VECTOR

STEP=1 SUB =1 FREQ=10000 JT ELEM=14907 MIN=4960 MAX=110018

1

75 25067 50058

75050 100042 125033150025

175017200008 225000 AUG 31 2010 20:33:00 VECTOR

STEP=1 SUB =1 FREQ=20000 JT ELEM=14336 MIN=522.828 MAX=130881

(37)

56

(a) 1kHz (b) 5kHz

(c) 10kHz (d) 20kHz

Fig. 3-4 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⲟዊⰿ# ⚲㋲㨎▷# ᅊᆖ# # (crack : L2, W1, D4 [mm])

Fig. 3-5ᜮ ዒⰎႚ 10mmⰒ ᅊ㨂⩪▶ ⶖ㞦⚲⩪ ᧊Ḓ ႛ ዤⰎ⩪▶⯲ Ⲟዊⰿ⯲ ⚲

㋲㨎▷ ᅊᆖᳶ▶, ⶖ㞦⚲ႚ ᕈ⧞⹢⚲᳷ ⮺ᡞⲞᷲႚ ❶㩲㡒⯲ ዤⰎ ⃃㨿⯖ᳶ ↎᝾

ṨⰎ ₶╷㧲ᅺ Ⱒ⯦⯞ ᔲ㕚ᕒ᝾. ᪪㧶, ᅊ㨂⯲ ⨫គ⩪▶ ⮺ᡞⲞᷲ⯲ ⫶ᅻ⩪ ዊⰒ㧶

⫚Ⲟᷲႚ ₶╷㧲Ἂ, ኒ ⃃㨿⯚ ႛႛ ₲រ ⃃㨿Ⰾ᝾. ᧊ᰖ▶, ᅊ㨂⯲ ዒⰎႚ ⺁⯖Ἆ

▶ᳶ ╛♞ᢲ⩎ ᅊ㨂 ᄚ㈶᜿Ⰾ Ⲛ㧲ᣂ⯞ ⧦ ⚲ Ⱒ᝾.

1

2005 18698 35390

52082 68775 85467 102159

118852135544 152236 AUG 31 2010 17:53:00 VECTOR

STEP=1 SUB =1 FREQ=1000 JT ELEM=390 MIN=2005 MAX=152236

1

75 25067 50058

75050 100042 125033 150025

175017200008 225000 AUG 31 2010 19:45:06 VECTOR

STEP=1 SUB =1 FREQ=5000 JT ELEM=390 MIN=273.594 MAX=98299

1

75 25067 50058

75050 100042 125033150025

175017200008 225000 AUG 31 2010 19:53:55 VECTOR

SUB =1 FREQ=10000 JT ELEM=575 MIN=516.384 MAX=146154

1

75 25067 50058

75050 100042 125033 150025

175017200008 225000 AUG 31 2010 20:01:28 VECTOR

STEP=1 SUB =1 FREQ=20000 JT ELEM=390 MIN=165.968 MAX=156321

(38)

57

ዤⰎ 1kHz 5kHz

1mm

2mm

3mm

4mm

5mm

YZ Secti-on

view

1

75 250675005875050100042125033150025175017200008225000 AUG 31 2010 17:28:59 VECTOR

STEP=1 SUB =1 FREQ=1000 JT ELEM=370 MIN=800.94 MAX=204373

1

75 250675005875050100042125033150025175017200008225000 AUG 31 2010 17:20:05 VECTOR

STEP=1 SUB =1 FREQ=5000 JT ELEM=370 MIN=2424 MAX=168474

(39)

58

ዤⰎ 10kHz 20kHz

1mm

2mm

3mm

4mm

5mm

YZ Secti-on

view

Fig. 3-5 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⲟዊⰿ# ⚲㋲㨎▷# ᅊᆖ

(crack : L10, W1, D4 [mm])

1

75 250675005875050100042125033150025175017200008225000 AUG 31 2010 17:33:19 VECTOR

STEP=1 SUB =1 FREQ=10000 JT ELEM=582 MIN=810.862 MAX=174261

1

75 250675005875050100042125033150025175017200008225000 AUG 31 2010 17:42:53 VECTOR

STEP=1 SUB =1 FREQ=20000 JT ELEM=369 MIN=77.932 MAX=224061

(40)

59

Fig. 3-6, Fig. 3-7 ₩ Fig. 3-8⯚ ⶖ㞦⚲⅞ ႛ ዤⰎ⩪▶⯲ ⮺ᡞἎⲞᷲ⯲ ⫶ᅻ⩪ ዊ Ⱂ㧶 Ⱚዊⰿ⯲ ⚲㋲㨎▷ ᅊᆖᳶ▶, ቺ⪎Ⰾ ⩠⯞ ᧦, ቺ⪎⯲ ዒⰎႚ 2mm ₩ 10mm Ⱂ ႛႛ⯲ ᅗ⭊⯲ ⚲㋲㨎▷ ᅊᆖḖ ᔲ㕚ᕒ᝾.

Fig. 3-6⯚ ቺ⪎Ⰾ ⩠ᜮ ᅗ⭊, ⶖ㞦⚲⅞ ⮺ᡞἎⲞᷲ⯲ Ⱚዊⰿ⯲ ⚲㋲㨎▷ ᅊᆖ Ḗ ᔲ㕚ᕒ᝾. Ⱚዊⰿ⯚ Ⲟዊⰿ⩪ ⚲⹛Ⱂ ⃃㨿⯖ᳶ ₶╷㧲Ἂ, ↎᝾ Ⰾ㨎Ḗ ⭃Ⰾ㧲ᄦ 㧲ዊ ⮞㧲⪆ Ⱚዊⰿ 㨎▷ᅊᆖᜮ ╣ዮ⅞ᳶ ᅺⲯ㧲⪚᝾. ⸣, ㅇ╣⯚ ᕈ⯚ Ⱚዊⰿ, ⪊ ㅇ╣ ᪪ᜮ 㬃╣⯚ ᘬ⯚ Ⱚዊⰿ⯞ ᔲ㕚ᕒ᝾. 5kHz ₩ 10kHzᜮ ዤⰎ 3mm ኖ⃃⩪▶, 20kHzᜮ ዤⰎ 2mm⩪▶ ㅇ╣Ⰾ ᔲ㕚ᔲᅺ Ⱒ᝾. ⸣, ⶖ㞦⚲ႚ ᘬ⧞⹢⚲᳷ ዤⰎ⩪ ᧊ Ḓ Ⱚዊⰿ⯲ ◒ዊႚ ㅇ╣⩪ ႚዦ⭦⹚ᅺ Ⱒ⯦⯞ ⧦ ⚲ Ⱒ⯖Ἂ, Ⰾᜮ 㣶㧖㭂ᆖ⩪ ዊ Ⱂ㧶᝾. YZ section-viewᳶ√㗊ᡞ 㣶㧖㭂ᆖḖ ᆚナ㧺 ⚲ Ⱒ᝾.

Fig. 3-7⯚ ቺ⪎⯲ ዒⰎ 2mm, 㢇 1mm, ዤⰎႚ 4mmⰒ ᅗ⭊⩪ ⶖ㞦⚲⅞ ⮺ᡞἎ Ⲟᷲ⯲ ⫶ᅻ⩪ ዊⰒ㧶 Ⱚዊⰿ⯲ ⚲㋲㨎▷ ᅊᆖḖ ᔲ㕚ᕒ᝾. 1kHz⩪▶ᜮ ዤⰎ 4mm ዦ⹚ ㉃∞㧶 ⰪዊⰿⰎ ₶╷ᢲᅺ Ⱒ⯦⯞ ⧦ ⚲ Ⱒ⯖ᔲ, ᅊ㨂 ►គ⩪▶ ╛㫒 ₲រ⃃

㨿⯲ ⫚Ⲟᷲႚ ₶╷㧲⪆ ⰪዊⰿⰎ ╛♞ᢲ⩎, ᅊ㨂⩪ ዊⰒ㧶 Ⱚዊⰿ⯲ ◒ዊᜮ ᅊ㨂 ዒⰎႚ ዎ ᅗ⭊⩪ ⋞㧲⪆ 㔆⹚ ⧤᝾. ᪪㧶, Ⱚዊⰿᡞ 㣶㧖㭂ᆖ⩪ ⯲㧲⪆ ᘬ⯚ ⶖ㞦

⚲⩪▶ 㣶Ἆኖ⃃⩪ ⹫ⶫᢲᅺ Ⱒ⯦⯞ ⧦ ⚲ Ⱒ᝾.

Fig. 3-8⯚ Fig. 3-7ᆖ ቺ⪎⯲ 㢇 ₩ ዤⰎᜮ ᡳⰖ㧲ᔲ, ቺ⪎⯲ ዒⰎႚ 10mmⰒ ᅗ

⭊, ⶖ㞦⚲⅞ ⮺ᡞἎⲞᷲ⯲ ⫶ᅻ⩪ ዊⰒ㧶 Ⱚዊⰿ⯲ ⚲㋲㨎▷ ᅊᆖḖ ᔲ㕚ᕒ᝾. ᅊ 㨂⯲ ዒⰎႚ ዎ ᅗ⭊⩪ᜮ ᅊ㨂 ►គ⩪▶ ╛㫒 ₲រ⃃㨿⯲ ⫚Ⲟᷲႚ ₶╷㧲៮ᰖᡞ,

▶ᳶ ╛♞㧲ዊ ᅾᰚ㨂⯖ᳶ, ᅊ㨂 ዒⰎႚ ዎ ᅗ⭊ႚ ᅊ㨂 ᄚ㈶᜿Ⰾ ᮊ⩎ᔲ᝾. ᪪㧶, 1kHz, 1mm⩪▶ 㨎▷㧶 ₮⫚ ႳⰎ ᝾Ḓ ⶖ㞦⚲⩪ ⋞㧲⪆ Ⱚዊⰿ⯲ ∞㢆ႚ ᅊ㨂⯲

⨫ ►គ⩪▶ 㢇 ᖭᄦ ₶╷㧲ᅺ Ⱒ⯦⯞ ⧦ ⚲ Ⱒ᝾.

(41)

5:

ዤⰎ 1kHz 5kHz

1mm

2mm

3mm

4mm

5mm

YZ Secti-on

view

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010

21:05:38 VECTOR

STEP=1 SUB =1 FREQ=1000 B ELEM=15207 MIN=.423E-04 MAX=.138E-03

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 21:00:03 VECTOR

STEP=1 SUB =1 FREQ=5000 B ELEM=14218 MIN=.542E-06 MAX=.152E-03

(42)

5;

ዤⰎ 10kHz 20kHz

1mm

2mm

3mm

4mm

5mm

YZ Secti-on

view

Fig. 3-6 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⱚዊⰿ⯲# ⚲㋲㨎▷# ᅊᆖ#

(crack ⩠ᜮ ᅗ⭊)#

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 20:54:34 VECTOR

STEP=1 SUB =1 FREQ=10000 B ELEM=14306 MIN=.777E-07 MAX=.199E-03

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 20:48:33 VECTOR

STEP=1 SUB =1 FREQ=20000 B ELEM=14009 MIN=.149E-05 MAX=.132E-03

(43)

5<

ዤⰎ 1kHz 5kHz

1mm

2mm

3mm

4mm

5mm

YZ

Secti-on view

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 21:32:43 VECTOR

STEP=1 SUB =1 FREQ=1000 B ELEM=972 MIN=.371E-04 MAX=.135E-03

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 21:35:26 VECTOR

STEP=1 SUB =1 FREQ=5000 B ELEM=12 MIN=.537E-06 MAX=.186E-03

(44)

63

ዤⰎ 10kHz 20kHz

1mm

2mm

3mm

4mm

5mm

YZ Secti-on

view

Fig. 3-7 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⱚዊⰿ⯲# ⚲㋲㨎▷# ᅊᆖ#

(crack : L2, W1, D4 [mm],#

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 21:37:48 VECTOR

SUB =1 FREQ=10000 B ELEM=12 MIN=.106E-06 MAX=.198E-03

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 21:41:20 VECTOR

STEP=1 SUB =1 FREQ=20000 B ELEM=390 MIN=.187E-06 MAX=.142E-03

(45)

64

ዤⰎ 1kHz 5kHz

1mm

2mm

3mm

4mm

5mm

YZ Secti-on

view

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 21:28:21 VECTOR

STEP=1 SUB =1 FREQ=1000 B ELEM=987 MIN=.155E-04 MAX=.126E-03

1

.900E-07.334E-04.667E-04.100E-03.133E-03.167E-03.200E-03.233E-03.267E-03.300E-03 AUG 31 2010 21:26:03 VECTOR

STEP=1 SUB =1 FREQ=5000 B ELEM=341 MIN=.380E-06 MAX=.193E-03

(46)

65

ዤⰎ 10kHz 20kHz

1mm

2mm

3mm

4mm

5mm

YZ Secti-on

view

Fig. 3-8 ⶖ㞦⚲⅞# ⮺ᡞἎⲞᷲ⯲# ⫶ᅻ⩪# ዊⰒ㧶# Ⱚዊⰿ# ⚲㋲㨎▷# ᅊᆖ#

(crack : L10, W1, D4 [mm])#

1

.900E-07 .334E-04.667E-04

.100E-03.133E-03 .167E-03.200E-03

.233E-03.267E-03 .300E-03 AUG 31 2010 21:23:48 VECTOR

STEP=1 SUB =1 FREQ=10000 B ELEM=370 MIN=.425E-07 MAX=.228E-03

1

.900E-07 .334E-04.667E-04

.100E-03.133E-03 .167E-03.200E-03

.233E-03.267E-03 .300E-03 AUG 31 2010 21:20:33 VECTOR

STEP=1 SUB =1 FREQ=20000 B ELEM=370 MIN=.961E-07 MAX=.187E-03

(47)

66

Ⲷ 2ⲢG ❶Ⲷ㤢 ⲶⰫ 1. Ἆⲛ㪯 ⮺ᡞⲞᷲ

Ⲟ⚺㧶 ₮⫚ ႳⰎ ⮺ᡞἎⲞᷲ(STIC, Sheet Type Induced Current)ᜮ 8Ⱚ㪯⯲ ㏮⩎

⯲ ⶫ➆⩪ 1ヂ ㏮Ⱆ⯞ Ⴊᅺ, 2ヂ ㏮Ⱆ(ᡳ㞪)⯞ 㙏ᆖ❶㔾ᜮ 㪯㕶ᳶ ⲶⰫᢶ᝾. 1ヂ ㏮ Ⱆ⩪ ᇪᷲ Ⲟᷲ(IAC)Ḗ ⰟᲿ㧲Ἆ, 8Ⱚ㪯 ㏮⩎⩪ ⰪዊⰿⰎ ₶╷ᢲἊ, Ⰾ⩪ ዊⰒ㧲⪆

ᡳ㞪⩪ ⮺ᡞⲞᷲႚ ₶╷ᢶ᝾. ⰎḖ ❶㩲㡒⩪ ႚዦⰎ ⲫኖ❶㔾Ἆ, ❶㩲㡒⩪ Ἆⲛ㪯

⮺ᡞⲞᷲႚ ₶╷㧶᝾. Ⰾᲆ㧶 ⭪Ṇ⩪ ዊ→㧲⪆, Fig. 3-9⩪ ᔲ㕚ᕒ ₮⫚ Ⴓ⯚ STIC⯞

❶ⲶⰫ㧲⪚᝾. ዒⰎ 370mm, 㢇 100mm, ᣪ፲ 0.1mmⰒ ᡳ㞪Ⰾ Ⰾ⭃ᢲ⩢⯖Ἂ, 㝓㰢

◖▶⃊⪎ √ኖ⩪▶ᜮ 㢇⯞ 70mmᳶ ㈯☦㧲⪆ ⮺ᡞἎⲞᷲႚ ⹫ⶫᢲᡞ᳷ 㧲⪚᝾. ᪪ 㧶, ㏮⩎ᜮ ᅺ㛆Ⱚ⯂⯞ ႚ⹚ᜮ ❾Ṇ㏲Ⴏ⩪ ⯲㧲⪆ ⲶⰫ㧲⪚⯖Ἂ, 17㬦⯲ ሦ⚲Ḗ ႚ

⹚ᜮ ㏮Ⱆ⩪ 2.5A, 1~20kHz⯲ ⲞᷲḖ ⰟᲿ㧲⪚᝾. ᪪㧶, ㏮Ⱆ ₩ ㏮⩎ᜮ 2ႶḖ ⰿッ 㧲⪆ ⮺ᡞⲞᷲႚ ↎᝾ ṨⰎ ⮺ᡞᢲᡞ᳷ 㧲⪚᝾.

Fig. 3-9 ❶ⲶⰫ㧶# ⮺ᡞἎⲞᷲ#

(48)

67

2. ᅺₚᡞ ◖▶ ⃊⪎

Fig. 3-10(a)ᜮ NiZn 㠲ᰖⰎ㝒 ⮂Ⰾ㠖⩪ 2ヂ⭪⯖ᳶ ⃊⪎㧶 InSb 㫚◖▶Ḗ ᔲ㕚ᕒ

᝾. 㫚◖▶ᜮ 780um⯲ ႞ᅃ⯖ᳶ 32㨣 32⪎ᳶ ⃊⪎ᢲ⩎ Ⱒ⯖Ἂ, Fig. 3-10(b)⩪ ᔲ㕚 ᕒ ₮⫚ ႳⰎ ⃊►ᢲ⩎ Ⱒ᝾. ⸣, ႛႛ⯲ 㫚◖▶ᜮ ⪎⃃㨿⯖ᳶ Ⲟ⭪ᆏኣ►Ⰾ, 㨣⃃

㨿⯖ᳶ ❺㫒㈶Ჿ►Ⰾ ᆏ㙏⃊⪎ᢲ⩎ Ⱒ᝾. Ⰾᲆ㧶 ሆⴊ⩪▶ᜮ ⪎⃃㨿⯲ 㧲ᔲ⯲ Ⲟ⭪

ᆏኣ►⯞ ⪊ᅊ㧲ᅺ, 㨣⃃㨿⯖ᳶ ❺㫒㈶Ჿ►⯞ Ⅻ᳆㪯 ❺㫒ㄲṆ㬦ᳶ⩪ ⯲㧲⪆ ႛႛ

⯲ 㫚Ⲟ⧯⯞ ㈶Ჿ㧺 ⚲ Ⱒ᝾. ᧊ᰖ▶, ⪎⃃㨿⯲ Ⲟ⭪ᆏኣ►⯞ ™Ⴂ⧞ ႚἎ▶ ヂ᳚

ᳶ ⪊ᅊ, ⸣ ✾⮞㌇㧲ᅺ ㈶ᲿⲞ⧯⩪ រ㧶 ❺㫒ㄲṆ㬦ᳶḖ ᡳዊ㫮㧲Ἆ 24.96佴 24.96mm2⯲ ⪛⪇⩪▶ 0.78mm⯲ ᆏ႞∞㨎᜿⯞ ႚ⹚ᜮ Ⱚዊⰿ⯲ ∞㢆Ḗ ⲯᱣⲛ⯖ᳶ

㊻ⲯ㧺 ⚲ Ⱒ᝾ [27, 28].

+d,Ἆⲛ㪯⯖ᳶ# 5ヂ⭪# ⃊⪎㧶# 㫚◖▶# +e,ሆᡳⲞ⭪⯲# ✾⮞㌇# ₩㈶Ჿ❺㫒# ⴊⲯ㬦ᳶ#

Fig. 3-10 ᅺₚᡞ ◖▶ ⃊⪎

(49)

68

3. ✾⮞㌇ ₩ ❺㫒ㄲṆ㬦ᳶ

✾⮞㌇ 㬦ᳶḖ ሆ㪞㧲ዊ ⮞㧲⪆ → ⪊ሆ⩪▶ᜮ Fig. 3-11ᆖ Ⴓ⯚ ✾⮞㌇ 㬦ᳶḖ Ⴖ₶㧲⪚᝾. ✾⮞㌇ 㬦ᳶᜮ TR, FET ₩ Decoderᳶ ሆ○ᢲᅺ, 30ms⯲ ✾⮞㌇ 㠞✾⩪

⯲㧲⪆ 450mA⯲ ⰟᲿⲞᷲႚ ╛ዊ Fig. 3-10(b)⯲ 㧲ᔲ⯲ ⪎⃃㨿⯖ᳶ 㫚◖▶⩪ ⰟᲿ ᢶ᝾.

Fig. 3-11 ✾⮞㌇㬦ᳶ

(50)

69

Fig. 3-12 ᇪᷲ㪯 Ⱚዊ㌎Ữᰖ ሆᡳ⯞ ⮞㧶 ❺㫒ㄲṆ ⊮᳷᝾Ⰾ⧞ኒ᱂

ᅺរ⪇ 㙏ᆖ㧞㗊(HPF, Hihg-Pass-Filter), ヂᡳ㪯 ⪊╊⸷㢇㬦ᳶ(OP-Amp) ₩ ᇪᷲ-

⹛ᷲ❺㫒 ⅚㫲 㬦ᳶ(RMS to DC converter circuit)ᳶ ሆ○ᢲᜮ ᇪᷲ㪯 Ⱚዊ㌎Ữᰖ⯲ ᅗ

⭊, Fig. 3-12⩪ ᔲ㕚ᕒ ₮⫚ ႳⰎ OP-Amp⯲ ⲞἎᆖ 㭞Ἆ⩪ HPF ₩ ᇪᷲ-⹛ᷲ❺㫒

⅚㫲 㬦ᳶḖ ㈮ႚ㧲⪚᝾.

Fig. 3-13⯚ ㍾㟂❶㗊, Ⲛ㨇 ₩ OP-Ampᳶ Ⰾᶂ⩎⹞ ᅺរ⪇㙏ᆖ㧞㗊Ḗ ᔲ㕚ᕒ 㬦ᳶᡞⰎ᝾. HPF⯲ cut-off ⶖ㞦⚲ᜮ ᝾⯦ ❷ Eq. (3)⩪ ⯲㧲⪆ ᅊⲯᢲἊ, → ⪊ሆ⩪

▶ᜮ Ⲛ㨇ᆖ ㏲᠎▶Ḗ ⴊⲢ㨂⯖ᳶ⠂, 100~10kHz⯲ cut-off ⶖ㞦⚲Ḗ ❾㪞㧲⪚᝾.

݂

௖௙

ଶగோ஼ (3)

Fig. 3-13 ᅺរ⪇㙏ᆖ㧞㗊 㬦ᳶᡞ

(51)

6:

᪪㧶, OP-Ampᜮ Fig. 3-14⩪ ᔲ㕚ᕒ ₮⫚ ႳⰎ RGႬ⯞ ⴊⲯ㨂⯖ᳶ⠂, ᝾⯦ ❷ Eq. (4)⯖ᳶ 㣶㪞ᢲᜮ ⸷㢇⋞Ḗ 㬧᥷㧺 ⚲ Ⱒ⯖Ἂ, → ⪊ሆ⩪▶ᜮ 72dB⯲ ⸷㢇⋞Ḗ 㫶⭃㧲⪚᝾.

8 4

5

2 40 2 25

1 1

40 1 50

G G

G

R R k k

Gain R R k R

k R

§  · :§  ˜ :·

¨ ¸ :¨ ¸

© ¹ © ¹

 :

(4)

Fig. 3-14 㫚◖▶⫚ ᇪᷲ⸷㢇㬦ᳶ(INA128)⯲ 㬦ᳶᡞ

᪪㧶, Fig. 3-15ᜮ AD637(ANALOG DEVICE, Wideband RMS-to-DC Converter)⯞ Ⰾ⭃

㧶 RMS-to-DC ⅚㫲 㬦ᳶᡞⰎᅺ, CAVḖ ⴊⲢ㨂⯖ᳶ⠂ DC ㈶ᲿႬ⯲ Ṇ㦦(Ripple) Ⴌ

⯞ ⶞Ⱆ ⚲ Ⱒ᝾. HPF⯲ ᡞⰟ⩪ ⯲㧲⪆ DC○∞Ⰾ Ⲷᄊᢲᅺ AC○∞⯲ ⹞㢇⯚

RMS-to-DC ⅚㫲 㬦ᳶ⩪ ⯲㧲⪆ DC❺㫒ᳶ ⅚㫲ᢶ᝾ [29].

DC❺㫒, ⸣ ᅊ㨂⯲ ⴎⱆ⩪ ዊⰒ㧶 ⫚Ⲟᷲ⯲ ◒ዊḖ AD⅚㫲ዊ ₩ Ⱂ㗊㠲Ⰾ✾⩪

⯲㧲⪆ ⰟᲿ ₩ ❺㫒ㄲṆ㧶᝾.

(52)

6;

Fig. 3-15 ᇪᷲ-⹛ᷲ❺㫒 ⅚㫲 㬦ᳶ(RMS to DC converter circuit)#

#

G G G

300Hz_150mAG 500Hz_150mA 1kHz_150mAG

G G G

5kHz_150mAG 10kHz_150mA 20kHz_150mAG Fig. 3-16 ᇪᷲ㪯 Ⱚዊ㌎Ữᰖ⩪ ⯲㧶 ᇪᷲ Ⱚዊⰿ⯲ ႚ❶㫮

(53)

6<

Ⰾ╛⯲ ❺㫒ㄲṆ㬦ᳶḖ Ⰾ⭃㧲⪆ ᇪᷲⲞᷲḖ ႚ❶㫮㧺 ⚲ Ⱒ⯦⯞ 㫯Ⱂ㧲ዊ ⮞ 㧲⪆, ⹛ᅗ 6.5mm⯲ ⭪㪯㏮Ⱆ⩪ 300Hz~20kHz⯲ ᇪᷲⲞᷲ(150mA)Ḗ ⰟᲿ㧲⪆ ₶╷

❶㕂 ᇪᷲⰪዊⰿ⯞ ⪛╛㫮㧲⪚᝾. Fig. 3-16⯚ ᇪᷲⰪዊⰿ⯲ ∞㢆Ḗ ⚲⹛⃃㨿(Ⲟ⭪ᆏ ኣ⃃㨿)⯖ᳶ ₒ∞㧶 ⪛╛⯞ ᔲ㕚ᕎἊ, 300Hz⩪▶ 20kHz⯲ 㢇ᖭ⯚ ⶖ㞦⚲⪛⪇⩪▶

ᇪᷲⰪዊⰿ⯞ ⪛╛㫮㧺 ⚲ Ⱒ⯦⯞ ⧦ ⚲ Ⱒ᝾.

참조

관련 문서

On his part, CEO of Express Roads Authority, Saud Al-Naqqi said that the heavy rains of the previous day led to clogging parts of the express

Kuwait will celebrate on Sunday the fourth anniversary of the UN honoring and proclamation of His Highness the Amir, Sheikh Sabah Al-Ahmad Al-Jaber Al-Sabah as

• 이명의 치료에 대한 매커니즘과 디지털 음향 기술에 대한 상업적으로의 급속한 발전으로 인해 치료 옵션은 증가했 지만, 선택 가이드 라인은 거의 없음.. •

The magnetic field due to the induced current has opposite sign to the change in the magnetic flux.. 자기유도로 생기는 전류는 자기다발의 변화를

• Because the application of an external magnetic field causes both an alignment of the internal dipole moments and an induced magnetic moment in a magnetic material,

Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian

In the current context, where the interconnectedness of the global economy has intensified greatly and the importance of a collective response to

produces a magnetic field which can be guided by a magnetic yoke to a linear Hall sensor; the output of the sensor is proportional to the electric current..