• 검색 결과가 없습니다.

A Study on the Machinability of Plastic Mould Steel using AlTiN Coated Tool

N/A
N/A
Protected

Academic year: 2022

Share "A Study on the Machinability of Plastic Mould Steel using AlTiN Coated Tool"

Copied!
187
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

2 0 1 0 年 8 月 博 士 學 位 論 文

코팅공구를 이용한 플라스틱 AlTiN

금형강의 절삭특성에 관한 연구

朝 鮮 大 學 校 大 學 院

機械工學科

(2)

코팅공구를 이용한 플라스틱 AlTiN

금형강의 절삭특성에 관한 연구

A Study on the Machinability of Plastic Mould Steel using AlTiN Coated Tool

년 월 일

2010 8 25

朝 鮮 大 學 校 大 學 院

機械工學科

(3)

코팅공구를 이용한 플라스틱 AlTiN

금형강의 절삭특성에 관한 연구

指導敎授

論文 工學博士學位 論文으로 提出 .

2010 年 4 月 日

朝 鮮 大 學 校 大 學 院

機 械 工 學 科

(4)

의 을 함.

李承哲 博士學位論文 認准

委 員長 東亞大 學校 敎授 全 彦 燦 朝鮮大 學校 敎授 金 鍾 寬 朝鮮大 學校 敎授 尹 聖 雲 朝鮮大 學校 敎授 韓 吉 永 朝鮮大 學校 敎授 曺 圭 宰

2010 年 6 月 日

朝 鮮 大 學 校 大 學 院

(5)

LIST OF FIGURES ··· Ⅳ LIST OF TABLES ··· Ⅶ LIST OF PHOTOGRAPHS ··· Ⅷ NOMENCLATURES ··· Ⅸ ABSTRACT ··· Ⅻ

1

연구배경 및 연구동향

1.1 ··· 1 연구 목적

1.2 ··· 5

2 이론적 배경

고속가공의 개요

2.1 ··· 7 볼 엔드밀의 가공

2.2 ··· 11 가공방법의 분류

2.2.1 ··· 11 상 방향 절삭과 하 방향 절삭

2.2.2 ··· 13 커숲

2.2.3 ··· 14 볼 엔드밀 형상과 절삭분력의 관계

2.2.4 ··· 20

볼 엔드밀의 표면거칠기

2.2.5 ··· 33 볼 엔드밀 공구의 마모

2.2.6 ··· 40 물리증착법

2.3 ··· 42

(6)

원자현미경

2.4 ··· 52

3 실험장치 및 실험방법

실험장치

3.1 ··· 56 시험편 및 절삭공구

3.2 ··· 63 시험편

3.2.1 ··· 63 절삭공구

3.2.2 ··· 66 실험방법

3.3 ··· 67

4 AlTiN코팅 공구의 분석

코팅 공구의 표면조도 분석

4.1 AlTiN ··· 70 코팅 공구의 경도시험

4.2 AlTiN ··· 74 코팅 공구의 표면분석

4.3 AlTiN ··· 77

5 실험결과 및 고찰

재료형상에 따른 상 하 방향의 절삭력 고찰

5.1 ․ ··· 82

경사 재료의 절삭 깊이에 따른 절삭력 분석

5.1.1 15° ··· 82

경사 재료의 절삭 깊이에 따른 절삭력 분석

5.1.2 30° ··· 85

경사 재료의 절삭 깊이에 따른 절삭력 분석

5.1.3 45° ··· 88

곡면 내 외면 재료의 절삭 깊이에 따른 절삭력 분석

5.1.4 ․ ··· 91

코팅공구 층수에 따른 절삭력 분석

5.2 AlTiN ··· 94

표면거칠기에 대한 분석

5.3 ··· 101 재료형상에 따른 표면거칠기 고찰

5.3.1 ··· 102

코팅공구 층수에 따른 표면거칠기 고찰

5.3.2 AlTiN ··· 107

코팅 공구의 마모특성

5.4 AlTiN ··· 111

(7)

코팅 층수에 따른 공구의 마모특성

5.4.2 AlTiN ··· 119

6 ··· 126

참고문헌 ··· 127

부 록 ··· 134

절삭가공실험 모델링 1. ··· 134

2. ··· 137

재료형상별 절삭분력 및 표면거칠기 결과 3. ··· 140

절삭가공 프로그램 4. ··· 160

(8)

LIST OF FIGURES

Fig. 2.1 Idealized cutting speed-cutting temperature ··· 8

Fig. 2.2 Rough cutting characteristic ··· 10

Fig. 2.3 ··· 12

Fig. 2.4 Upward cutting and downward cutting ··· 13

Fig. 2.5 Flat surface machined by a ball end mill cutter ··· 14

Fig. 2.6 Cusp height on convex surface(External cutting) ··· 15

Fig. 2.7 Cusp height on concave surface(Internal cutting) ··· 15

Fig. 2.8 Domain of application for proposed cusp height equation in step down cutting convex surface ··· 19

Fig. 2.9 Domain of application for proposed cusp height equation in step over cutting convex surface ··· 19

Fig. 2.10 Shape of the ball end mill ··· 21

Fig. 2.11 Cutting forces in  plane ··· 22

Fig. 2.12      and  coordinate systems ··· 23

Fig. 2.13 Effective diameter for ball-end mill ··· 25

Fig. 2.14 Contact area of tool according to the inclined material ··· 29

Fig. 2.15 Contact area of tool according to the semicircular processing ··· 30

Fig. 2.16 ··· 32

Fig. 2.17 Cusp height in ball end milling ··· 35

Fig. 2.18 Relation of ball end mill and max roughness on inclined plane ··· 37

Fig. 2.19 Microscopic view of milled surface ··· 39

(9)

Fig. 2.21 PVD coating process ··· 44

Fig. 2.22 Evaporation precess ··· 46

Fig. 2.23 Sputtering process ··· 47

Fig. 2.24 Ion plating process ··· 49

Fig. 2.25 Structure according to the Al content ··· 51

Fig. 2.26 The cantilever used in AFM and needle is image ··· 53

Fig. 2.27 The measurement principle of AFM ··· 54

Fig. 2.28 Contact mode and Non-contact mode ··· 55

Fig. 3.1 Schematic diagram of measuring equipment ··· 59

Fig. 3.2 Modelling of inclined plane material(15°, 30°, 45°) ··· 65

Fig. 3.3 Modelling of the circular material (half circle of Φ60mm)· 65 Fig. 3.4 Geometry of ball end mill ··· 66

Fig. 4.1 Surface roughness of AlTiN coating layer measured by AFM ··· 73

Fig. 4.2 Hardness Values of AlTiN layer ··· 76

Fig. 4.3 Quantitative values of the composition of AlTiN coating layer using SEM-EDX ··· 79

Fig. 4.4 Composition ratio of Al and Ti of the coating tool ··· 80

Fig. 4.5 The thickness of AlTiN coating layer using SEM ··· 81

Fig. 5.1 Cutting forces according to depth of cut(Inclined plane 15°) ··· 84

Fig. 5.2 Cutting forces according to depth of cut(Inclined plane 30°) ··· 87

Fig. 5.3 Cutting forces according to depth of cut(Inclined plane 45°) ··· 90

(10)

Fig. 5.5 Cutting forces according to AlTiN coating layer

(Inclined material) ··· 97 Fig. 5.6 Cutting forces according to AlTiN coating layer

(Φ 60mm circular material)l ··· 100 Fig. 5.7 Results of surface roughness according to depth of cut

(Inclined material) ··· 103 Fig. 5.8 Results of surface roughness according to depth of cut

(Φ 60mm circular material) ··· 106 Fig. 5.9 Results of surface roughness according to AlTiN coating

layer (Inclined material) ··· 108 Fig. 5.10 Results of surface roughness according to AlTiN coating

layer (Φ 60mm circular material) ··· 110 Fig. 5.11 Results of wear test according to material conditions ···· 116 Fig. 5.12 Results of tool wear test of tool chisel edge ··· 118 Fig. 5.13 Results of wear test according to AlTiN coated layers · 120

(11)

LIST OF TABLES

Table 2.1 Classification of dry process··· 43

Table 3.1 Machine specifications ··· 57

Table 3.2 Specifications of experimental apparatus ··· 57

Table 3.3 Mechanical properties of KP-4 ··· 64

Table 3.4 Chemical compositions of KP-4 ··· 64

Table 3.5 Specification of ball end mill ··· 66

Table 3.6 Cutting conditions of Inclined material ··· 69

Table 3.7 Cutting conditions of Φ 60mm circular material ··· 69

Table 4.1 Surface roughness of AlTiN coating layer ··· 73

Table 4.2 Hardness values of AlTiN coating layer ··· 96

Table 5.1 Experimental conditions of wear test ··· 113

(12)

LIST OF PHOTOGRAPHS

Photo. 3.1 Experimental setup for measurements of machining

characteristics ··· 58

Photo. 3.2 Installation of tool dynamometer and material processing 58 Photo. 3.3 Photograph of experimental apparatus ··· 60

Photo. 3.4 Tool Microscope System ··· 60

Photo. 3.5 AFM equipment ··· 61

Photo. 3.6 Auto vickers hardness testing system ··· 64

Photo. 3.7 SEM-EDX equipment ··· 64

Photo. 4.1 Results of AFM to AlTiN coated layers ··· 72

Photo. 4.2 Images of AlTiN coating layer measured by Auto vickers hardness testing system ··· 75

Photo. 4.3 Mounting of AlTiN layer ··· 78

Photo. 5.1 Auxiliary instruments for the measurement of surface roughness (Angle Plate, -X, -Y Stage, Rotary Stage) ··· 101

Photo. 5.2 Auxiliary instruments for the measurement of tool wear 113 Photo. 5.3 Wear progression of AlTiN coated carbide tool (Inclined plane 15°, Upward cutting, AltiN layer 3 ) ··· 121

Photo. 5.4 Wear progression of AlTiN coated carbide tool (Inclined plane 30°, Upward cutting, AltiN layer 3 ) ··· 122

Photo. 5.5 Wear progression of AlTiN coated carbide tool (Inclined plane 45°, Upward cutting, AltiN layer 3 ). ··· 123

Photo. 5.6 Wear progression of AlTiN coated carbide tool ( Internal cutting, Upward cutting, AltiN layer 3 ) ··· 124

Photo. 5.7 Wear progression of AlTiN coated carbide tool ( Externall cutting, Upward cutting, AltiN layer 3 ) ··· 125

(13)

NOMENCLATURES

∆ : Length of the projected infinitesimal edge on the a-axis

: Axial depth of cut

: Equivalent depth of cut

: Y position of an infinitesimal cutting edge

: Z position of an infinitesimal cutting edge

: Feed rate in the x direction

: Feed rate in the c direcction

Equivalent feed

Feed rate[mm/rev]

 Infinitesimal force components in the a-b-c coordinate system

 : Infinitesimal force components in the      coordina- te system

 : Infinitesimal force components in the  coordin- ate system

 : Radial force accting on an infinitesimal cutting edge

 : Tangential force acting on an infinitesimal cutting edge

 : Cutting edge inclination angele

: Length from the end of the collet to the surface creating point by a flute

: Effective tool length not to be hele

Length from the end of the collet to the force acting

(14)

: Number of infinitesimal cutting edges in the ball part

: Number of infinitesimal cutting edges in the end mill part

: Number of flutes

: Number of infinitesimal cuttin gedges to the concerning infinitesimal cutting edge

: Number of total infinitesimal cutting edges

 : Tool radius

: Tool rotating radius for an infinitesimal cutting edge

 : Tool radius in x-y plane at the axial location 

: Cutting velocity

: Chip flow velocity

 Y direction work boundary measured from the current toolaxis

∆ : Axial step of divided edge at the end mill part

 : Angle from -Y axis to the reference flute bottom

: Initial Angle from -Y axis to the reference flute bottom

: Effective rake angle

: Helix angle of the end mill part

: Normal rake angle

∆ : Tool rotational angular step

 : Angle from -Y axis to the concerning cutting edge

 : Angle between V-Vc plane and a-b plane

: Tool deflection in X-axis

: Tool deflection in Y-axis

: Chip flow angle

(15)

 : Angle from the base point to the concerning infinitesimal cutting edge

∆ : Angle appropriate to single infinitesimal cutting edge in the end mill

 : Angle between x-y plane and a-b plane

 : Amount of eccentricity

∅ : Angle from the center of ball part to the concerning infinitesimal cutting edge

: Angle of chip load extended by feed

∆∅ : Angular step of divided edges at the ball part

: Angular position of initial run out of the tool

(16)

ABSTRACT

A Study on the Machinability of Plastic Mould Steel using AlTiN Coated Tool

Lee, Seung-Chul

Advisor : Prof. Cho, Gyu-Jae, Ph.D.

Department of Mechanical Engineering Graduate School of Chosun University

In this research, KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the Φ 8mm cemented carbide ball end mill. Coated KP-4 was processed with various conditions.

For example, in Φ 60 circular material of inner and outer surface and material's slope of 15°, 30° and 45° the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, surface roughness, and the wear of tool were studied. According to the results, some important conclusions were found as follows:

(17)

1. When slope angle condition( was chosen as he largest cutting component force by material shape is showed. In case of the curved surface processing, the cutting component force in inner surface, smearins appeared in, is higher than outer surface.

the cutting component force according to the processing direction is higher in the down ward direction because of the over cut.

2. The larger slope angle, the lower surface roughness by material shape showed and surface roughness of inner surface is higher than outer surface. The difference of the surface roughness according to the processing direction is

AlTiN coating layers is

3. According to the coating results, AlTiN was coated from one layer to four layers in cemented carbide ball end mill,

flank wear according to the shape of the material was the fastest in case of the material's slope of 15°, and then, the wear of tool was proceeded as a sequence of the material's slope of 30°

and 45°. In the curved surface, rate of wear in inner surface is more faster than outer surface.

4. The wear by AlTiN coating tool layers showed a good result in 1st, 4th, 2nd, 3rd layer order. Especially, the wear condition is stable state in 3rd coating layer in spite of the processing time for more than

(18)
(19)
(20)

Φ

Φ

Φ

Φ

(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

   

   

≅ 



 

(32)
(33)



 

α θ

α θ

곡면의 외면가공(Convex)을 나타내고 이 영역에서, Cusp의 높이는 다음과 같 이 유도할 수 있다.



 tan   

 (2)

  cos cos  

   or sin sin  

   (3)

(34)

  tan 

      

  sin 

  (4)

 ≥ 



      cos 



    sin 

  (5)

 ≤ 



cos     

sin    

(6)

(35)

α θ α θ

곡면의 내면가공(Concave)를 나타내고 이 영역에서, Cusp의 높이는 다음과 같 이 유도할 수 있다.



 tan   

 (7)

  cos cos    

   or sin sin    

   (8)

  tan 



  cos     

  sin     

  (9)

 ≤ 



      cos 



   sin 

 (10)

 ≤ 



   sin 

    cos       (11)

(36)

  

(37)
(38)
(39)

  



        



 ∙cos

 

 ∙sin

(40)

         

 ∙cos  ∙ sin

 

  ∙sin  ∙cos

     

     

 

 ∙sin ∙cos

 ∙cos ∙sin

 

(41)

(42)

max



max



(43)

max

  

 





 

 

cos



(44)
(45)
(46)
(47)
(48)





  



 

m ax

max

 

  







max

 

∙ 

∙ 

(49)



  

  

 

  





  





  

×  × 





(50)
(51)

 ≫ 

 cos

 

   

 

  

 

(52)
(53)

   cos

sin 





  sin

cos 

  



 sin ․sin

cos 

  



 cos ․ sin

cos 

  



(54)
(55)

   

    



 



 

(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)

 

(68)
(69)

 ∼

(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)

Φ

(81)

Workpiece material

Tensile strength

(kgf/ )㎟

Yielding strength (kgf/ )㎟

Elongation (%)

Hardness (HRC)

KP-4 104 86 23.13 32

Workpiece material

Chemical compositions(%)

C Si Mn Cr Mo

KP-4 0.41 0.3 1.0 1.1 0.27

(82)

Φ

(83)

φ

φ

(84)

φ

φ

Φ

φ

(85)



(86)

Φ 60mm circular material

(87)
(88)
(89)
(90)

Coating layer (1) Coating layer (2) Coating layer (3) Coating layer (4) 0.00

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Surface roughness(mm)

AlTiN coating layers

(91)
(92)
(93)

Carbide Tool Coating layer (1) Coating layer (2) Coating layer (3) Coating layer (4) 0

500 1000 1500 2000 2500 3000 3500 4000

Vickers hardness(HV)

AlTiN coating layers

(94)
(95)
(96)
(97)

Coating layer(1) Coating layer(2) Coating layer(3) Coating layer(4) 0

50 100 150 200 250 300 350 400 450 500

Component ratio

AlTiN coated layers

Atomic of Al Atomic of Ti

(98)
(99)

Φ

Φ

(100)
(101)

Fx Fy Fz 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Up Do(d=0.3mm) Inclined plane 150

Up Do(d=0.6mm) 1,000rpm, 1,300mm/min Up Do(d=0.9mm)

Cutting force(N)

Cutting component

(102)
(103)
(104)

Fx Fy Fz 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Up Do(d=0.3mm) Inclined plane 300

Up Do(d=0.6mm) 1,000rpm, 1,300mm/min Up Do(d=0.9mm)

Cutting force(N)

Cutting component

(105)
(106)
(107)

Fx Fy Fz 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Up Do(d=0.3mm) Inclined plane 450

Up Do(d=0.6mm) 1,000rpm, 1,300mm/min Up Do(d=0.9mm)

Cutting force(N)

Cutting component

(108)

Φ

(109)
(110)

Fx Fy Fz 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Up Do(d=0.3mm) Internal cutting

Up Do(d=0.6mm) 1,000rpm, 1,300mm/min Up Do(d=0.9mm)

Cutting force(N)

Cutting component

Fx Fy Fz

50 60 70 80 90 100 110 120 130 140 150 160 170

180 Up Do(d=0.3mm) External cutting

Up Do(d=0.6mm) 1,000rpm, 1,300mm/min Up Do(d=0.9mm)

Cutting force(N)

Cutting component

Φ 60mm

(111)
(112)
(113)

Coating layer( 1) Coating layer( 2) Coating layer( 3) Coating layer( 4) 60

80 100 120 140 160

180 Fx Cutting force Fy Cutting force Fz Cutting force

Cutting force(N)

AlTiN coated layers

Coating layer( 1) Coating layer( 2) Coating layer( 3) Coating layer( 4) 60

80 100 120 140 160 180

Fx Cutting force Fy Cutting force Fz Cutting force

Cutting force(N)

AlTiN coated layers

(114)

Coating layer( 1) Coating layer( 2) Coating layer( 3) Coating layer( 4) 60

80 100 120 140 160 180

Fx Inclined plane 450 Fy Down ward cutting

Fz Depth of cut 0.9mm

Cutting force(N)

AlTiN coated layers

Coating layer( 1) Coating layer( 2) Coating layer( 3) Coating layer( 4) 60

80 100 120 140 160 180

Fx Inclined plane 450 Fy Down ward cutting

Fz Depth of cut 0.9mm

Cutting force(N)

AlTiN coated layers

(115)
(116)

Coating layer( 1) Coating layer( 2) Coating layer( 3) 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Fx Cutting force Fy Cutting force Fz Cutting force

Cutting force(N)

AlTiN coated layers

Coating layer( 1) Coating layer( 2) Coating layer( 3) 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Fx Cutting force Fy Cutting force Fz Cutting force

Cutting force(N)

AlTiN coated layers

(117)

Coating layer( 1) Coating layer( 2) Coating layer( 3) 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Fx Cutting force Fy Cutting force Fz Cutting force

Cutting force(N)

AlTiN coated layers

Coating layer( 1) Coating layer( 2) Coating layer( 3) 50

60 70 80 90 100 110 120 130 140 150 160 170

180 Fx Cutting force Fy Cutting force Fz Cutting force

Cutting force(N)

AlTiN coated layers

(118)
(119)
(120)

an15 an30 an45 an15 an30 an45 an15 an30 an45 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Surface roughness(mm)

Depth of cut(mm) Up ward cutting

Down ward cutting

(121)

Φ

(122)
(123)

Internal external Internal external Internal external 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Surface roughness(mm)

Depth of cut(mm) Upward(Internal cutting)

Doward(External cutting)

Φ 60mm

(124)
(125)

Coating layer(1) Coating layer(2) Coating layer(3) Coating layer(4) 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Up-1,300--- Inclined plane 150 Up-1,300--- Inclined plane 300 Up-1,300--- Inclined plane 450 (d=0.3mm, 10,000rpm, 1,300mm/min)

Surface roughness(mm)

AlTiN coated layers

Coating layer(1) Coating layer(2) Coating layer(3) Coating layer(4) 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

2.0 Up-1,300--- Inclined plane 150 Up-1,300--- Inclined plane 300 Up-1,300--- Inclined plane 450 (d=0.9mm, 10,000rpm, 1,300mm/min)

Surface roughness(mm)

AlTiN coated layers

(126)
(127)

Coating layer(1) Coating layer(2) Coating layer(3) 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Upward---(Internal cutting) Upward---(External cutting) (d=0.3mm, 10,000rpm, 1,300mm/min)

Surface roughness(mm)

AlTiN coated layers

Coating layer(1) Coating layer(2) Coating layer(3) 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

2.0 Upward--- (Internal cutting) Upward--- (External cutting) (d=0.9mm, 10,000rpm, 1,300mm/min)

Surface roughness(mm)

AlTiN coated layers

(128)
(129)
(130)

Φ Φ

(131)

Φ

(132)
(133)

20 30 40 50 60 70 80 90 100 110 120 0.0

0.1 0.2 0.3 0.4 0.5

Flank wear(mm)

Cutting time(min) inclination of 15o

inclination of 30o inclination of 45o

20 30 40 50 60 70 80 90 100 110 120

0.0 0.1 0.2 0.3 0.4 0.5

Flank wear(mm)

Cutting time(min) internal cutting

external cutting

(134)

Φ

(135)

20 30 40 50 60 70 80 90 100 110 120 0.0

0.1 0.2 0.3 0.4 0.5

Chisel edge wear(mm)

Cutting time(min) intermal cutting

extemal cutting

(136)
(137)

20 30 40 50 60 70 80 90 100 110 120 0.0

0.1 0.2 0.3 0.4 0.5

Flank wear(mm)

Cutting time(min) Coating layer(1)

Coating layer(2) Coating layer(3) Coating layer(4)

(138)
(139)
(140)
(141)
(142)
(143)

Φ

Φ

(144)

(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)
(172)
(173)
(174)
(175)
(176)

0.952 0.934 1.067 0.842 0.932 1.052 0.882 0.888 0.937 0.823 0.813 0.913 0.763 0.832 0.985 0.652 0.763 0.965

(177)
(178)
(179)
(180)
(181)
(182)
(183)
(184)
(185)
(186)
(187)

저작물 이용 허락서

학 과 기계공학과 학 번 20077334 과 정 박사

성 명 (한글) 이 승 철 (한문) 李 承 哲 (영문) Lee, Seung-Chul

주 소 광주광역시 동구 학동 무등파크맨션 2동 803호

연락처 e-mail : cjf9400@hanmail.net

논문제목

한글 코팅 공구를 이용한 플라스틱 금형강의 절삭특

( ) AlTiN

성에 관한 연구 영문

( ) A study on the machinability of plastic mould steel using AlTiN coated tool

본인이 저작한 위의 저작물에 대하여 다음과 같은 조건 아래 조선대학교가 저작물을 이용할 수 있도록 허락하고 동의합니다.

다 음

- -

저작물의 구축 및 인터넷을 포함한 정보통신망에의 공개를 위한 저작물

1. DB

의 복제 기억장치에의 저장 전송 등을 허락함, ,

위의 목적을 위하여 필요한 범위 내에서의 편집과 형식상의 변경을 허락 2.

함 다만 저작물의 내용변경은 금지함( , )

배포 전송된 저작물의 영리적 목적을 위한 복제 저장 전송 등은 금지

3. ㆍ , ,

4. 저작물에 대한 이용기간은 5년으로 하고, 기간종료 3개월 이내에 별도의

의사 표시가 없을 경우에는 저작물의 이용기간을 계속 연장함

해당 저작물의 저작권을 타인에게 양도하거나 출판을 허락을 하였을 경우 5.

에는 1개월 이내에 대학에 이를 통보함

조선대학교는 저작물 이용의 허락 이후 해당 저작물로 인하여 발생하는 6.

타인에 의한 권리 침해에 대하여 일체의 법적 책임을 지지 않음

소속 대학의 협정기관에 저작물의 제공 및 인터넷 등 정보통신망을 이용 7.

한 저작물의 전송ㆍ출력을 허락함

동의여부 : 동의( 0 ) 반대( )

년 월

2010 8

작자 : 이 승 철 ( )인

참조

관련 문서

[r]

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, "Do This and Live: Christ's Active Obedience as the

Hot embossing is a technique of imprinting nanostructures on a substrate (polymer) using a master mold (silicon tool).. Master/mold

Micro- and nano-sized pores were formed on the surface of the alloy using PEO and anodization methods, and the pore shape change according to the Zr

ƒ CNC lathe can achieve multi-functional machining using attached milling turret, sub-spindle, etc.

Microstructure of coated layers of (a) hydroxyapatite, (b) 7H3TCP and (c) 7H3W on zirconia substrate and their element composition on coated surface... XRD analysis

미국, 유 럽 등 여러 나라에서는 American Geriatrics Society의 Beers criteria, British Geriatrics Society의 Screening Tool of Older People's Prescriptions (STOPP)와 Screening

52 Sheet resistance and carrier mobility of the spin-coated Al substrates by using PTFE or PTFE/CNT powder with a different CNT contents · ·