• 검색 결과가 없습니다.

Vehicle Model - Brake Model

N/A
N/A
Protected

Academic year: 2022

Share "Vehicle Model - Brake Model"

Copied!
79
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

H d li S

Hydraulic Systems

(2)

Vehicle Model - Brake Model

Brake Model

Font Wheel Brake

Pedal

Vacuum Booster

Master Cylinder

Proportionnig Valve

Wheel

Rear Wheel Vacuum

Vacuum Booster

Master Cylinder

Proportioning Valve

Brake Pedal

Fundamental structure of a hydraulic brake

(3)

Conservation of Mass, Force and Pressure

mi mo

m   qq

)

i Volume A dx 1 1 A dx 2 2

1

2 1

2

)

i Volume A dx A dx dx A dx

A

 

)

iii Force fp A

2

2 1

) Pr

ii essue pp   gh

1 1 1

2 2 2

)

iii f p A

f p A

Force

2

2 1 1 2

1

( )

f A f P P

A

L L A

1 1 2

3 2 1

2 2 1

L L A

f f f

L L A

 

(4)

Hydraulic Excavator y

Boom Up Arm Dump

Dump

Swing(선회)

Boom Down Arm Crowd

Bucket

Crowd Down Crowd

Bucke tt Dump

Travel(주행)

(5)

유압굴삭기 회로도

(6)

Hydraulic Brake Systems

Brake System

1 ) Wheel Cylinder 2 ) Brake Light 3 ) Brake Pedal 4 ) Rear Brake Lines

5 ) Stop Light Switch (Mechanical) 6 ) Front/Rear Balance Valve 6 ) Front/Rear Balance Valve 7 ) Pressure Differentiavl Valve 8 ) Brake Warning Lamp

9 ) Brake Fluid 10) Brake Pad

11) Master Cylinder

11) Master Cylinder

(7)

Vehicle Model - Brake Model

Brake Model

Font Wheel Brake

Pedal

Vacuum Booster

Master Cylinder

Proportionnig Valve

Wheel

Rear Wheel Vacuum

Vacuum Booster

Master Cylinder

Proportioning Valve

Brake Pedal

Fundamental structure of a hydraulic brake

(8)

Applications of Fluid Power

• Pneumatically controlled dexterous

hand • Space shuttle Columbia

• Hydraulically powered dexterous • Space shuttle vehicle

arm

(9)

Applications of Fluid Power

• Hydraulically powered Sky-tram • Hydraulically driven turntable

• Hydraulic power brush drive • Oceanography

(10)

유압기술의 응용 – 자동변속기 유압제어 회로

(11)

유압기술의 응용 - 판금 프레스

(12)

선형 액츄에이터(Linear Actuators)의 응용

지게차

Press

Motion Simulator

지게차

비행기 조종익

Robot

Robot

(13)

Hydraulic Systems : Landing Gear System y y g y

Landing gear system of AIRBUS A330

(14)

Why hydraulic ? y yd au c

Internal combustion Engine Turbine

Electric motor Electric motor

Hydraulic actuator

……

(15)

Why hydraulic ? y yd au c

1. smaller and lighter

horsepower to weight ratio > 2 hp/lb horsepower to weight ratio > 2 hp/lb 2. heat/lubrication – long component life 3. no saturation and losses

- saturation and losses in magnetic materials of electrical machine - torque limit only by safe stress levels

4 high natural frequency/high speed of response/high loop gains 4. high natural frequency/high speed of response/high loop gains

- electrical motors, a simple lag device from applied voltage to speed 5. dynamic breaking with relief valve without damage

5. dynamic breaking with relief valve without damage

(16)

Disadvantages sad a ages

1. not so readily available

2. small allowable tolerances result in high costs 3. hydraulic fluids imposes upper temperature limit.

4 fluid contamination: dirt and contamination 4. fluid contamination: dirt and contamination

5. basic design procedures are lacking and difficult, complexity of hydraulic 5. basic design procedures are lacking and difficult, complexity of hydraulic

control analysis

6 fl ibl li d i i l i d/

6. not so flexible, linear, accurate, and inexpensive as electronic and/or

electromechanical devices

(17)

Hydraulic Systems yd au c ys e s

장점

 무게당 동력의 크기가 크다 . (고압 사용, 시스템의 크기가 작다.) ( , )

 제어의 용이성과 정확도 (허용오차: 1/10,000인치)

 응답이 빠르다 .

 윤활성 방청성 우수 보수 용이

 윤활성 , 방청성 우수, 보수 용이

 내부 발생 열 제거 용이 , 내열성 우수

단점 단점

 오일의 유속에 제한 --> 액츄에이터의 속도 한계

 누유 (leakage)로 인해 시스템이 불결

 작동유에 기포가 흡입되면 (aeration) 압축성이 커져 작동 불량

 캐비테이션 (cavitation)이 발생하면 기기 파손, 소음 발생, 고장

(18)

Primary Functions of a Hydraulic Fluid

유압 동력 전달

유압동력의 전달과정 유압동력의 전달과정

(19)

Conservation of Mass, Force and Pressure

mi mo

m   qq

)

i Volume A dx 1 1 A dx 2 2

1

2 1

2

)

i Volume A dx A dx dx A dx

A

 

)

iii Force fp A

2

2 1

) Pr

ii essue pp   gh

1 1 1

2 2 2

)

iii f p A

f p A

Force

2

2 1 1 2

1

( )

f A f P P

A

L L A

1 1 2

3 2 1

2 2 1

L L A

f f f

L L A

 

(20)

Hydraulic Systems y y

H d li

Tank

Control valve Hydraulic pump

P

1

P

2

Tank

Load

(70 ~ 210 ) Hydraulic actuator bar

) ( P 1 P 2 A

FP  

(21)

Gear Pumps (External)

– fixed displacement pump

uses spur gear (teeth are parallel to the axis of the gear)

– uses spur gear (teeth are parallel to the axis of the gear)

– noisy at relatively high speeds

(22)

Internal Gear Pump

INTERNAL GEAR PUMP INTERNAL GEAR PUMP

EscEsc

S S

End Pause / Restart

S S

Pause / Restart

(23)

Internal Gear Pump

G t P

• Gerotor Pump

(24)

Internal Gear Pump

L b P

• Lobe Pump

(25)

Simple Vane Pump

SIMPLE VANE PUMP SIMPLE VANE PUMP

EscEsc

S S

End Pause / Restart

(26)

Balanced Vane Pump

BALANCED VANE PUMP BALANCED VANE PUMP

EscEsc

S S

End

Pa se / Restart S S

Pause / Restart

(27)

Piston Pump (Swash Plate Type)

(28)

Piston Pump

(29)

Pump

Electric

Motor or

Motor or

Engine

(30)

Hydraulic Pump

h h f h d li

– the heart of a hydraulic system

– converts mechanical energy into hydraulic energy – 유압공학에서 다루는 펌프는 hydrostatic pump 유압공학에서 다루는 펌프는 hydrostatic pump

– 밀어내기식, 용적식 (positive displacement) 펌프 – 작동 cycle

• 흡입(빨아들임), 공간차단, 압축 및 토출(밀어냄), 공간차단 – Displacement (배제용적)

h f fl id j d l i

• the amount of fluid ejected per revolution

• unit: cm 3 /rev, cc/rev, cm 3 /rad, cc/rad

(31)

Pump 구동에 필요한 Torque

• Mechanical power supplied to pump

HT

• Hydraulic power delivered by pump

H mT

:

H p PQ

P pressure rise across the pump

 :

p p p

Q delivery rate

• 두 관계식으로부터

h h

T th   PQ thP Dp

th p

T PQ P D T PD

 

 여기서 D p : 펌프 배제용적 [ m 3 / rad ]

(32)

Hydraulic Motors and Actuators

(33)

Hydraulic Systems : Valve-motor Combination y y

(34)

Application of Hydraulic Motors

(35)

Gear Motors

(36)

Gear Motors

• 구조는 기어 펌프와 거의 동일

• 탱크로 연결되는 드레인(drain) 라인이 있다.

• 장점

• 장점

– 구조 간단 – 값이 싸다 값이 싸다

– 유압유 중의 이물질에 의한 고장이 생기기 어렵다.

– 가혹한 운전 조건에 비교적 잘 견딜 수 있다.

• 단점

– 누설 유량이 많다.

토크 변동이 크다 – 토크 변동이 크다.

– 베어링 하중이 크므로 수명이 좀 짧다.

(37)

Hydraulic Systems : Valve-piston Combination y y p

Valve-piston combination

Valve-piston combination

(38)

Hydraulic Excavator y

Boom Up Arm Dump

Dump

Swing(선회)

Boom Down Arm Crowd

Bucket

Crowd Down Crowd

Bucke tt Dump

Travel(주행)

(39)

Hydraulic Excavator

(40)

Automotive Application

Active

Suspension p

(41)

선형 액츄에이터(Linear Actuators)의 응용

지게차

Press

Motion Simulator

지게차

비행기 조종익

Robot

Robot

(42)

Rough terrain forklift driven by hydraulic cylinders

(43)

유압 실린더의 종류

단동형 (Si l ti )

 플런저 램형 (단동식)  피스톤형 (단동식)

• 단동형(Single acting) 복동형 (Double acting)

 단로드형 (복동식)  양로드형 (복동식)

• 단로드형(Single rod) 양로드형 (Double rod)

 단로드형 (복동식)  양로드형 (복동식)

• 축심고정형/ 축심회전형 f t t

•속도는 일반적으로 10m/min 이내, 5m/min 이상이면 쿠션장치 필요

– foot type

– flange type

– trunnion type trunnion type

– clevis type

(44)

Double-acting Cylinder Design

(45)

Cylinder Construction

(46)

Hydraulic Valves

• 밸브의 정의

유체동력원(fluid power source)의 흐름 방향 – 유체동력원(fluid power source)의 흐름 방향,

유량, 압력을 제어하기 위하여 기계적인 운동 (mechanical motion)을 사용하는 장치

(mechanical motion)을 사용하는 장치

(47)

Types of Valves: shearing elements

(48)

Types of Valves: seating elements

(49)

Directional Control Valve

• 방향제어 밸브 (Directional control valve)

회로 내에서 작동신호에 따라 유체의 경로 결정

회로 내에서 작동신호에 따라 유체의 경로 결정

(50)

Hydraulic Systems : Single Stage Electrohydraulic Servovalve y y g g y

Schematic of a single stage electrohydraulic servovalve connected to a motor with

inertia load

(51)

Solenoid-Actuated Valves

Solenoid-actuated, three-position,

Solenoid actuated, three position, spring-centered, four-way,

directional control valve

Single solenoid-actuated two-position

Single solenoid actuated, two position, spring-offset, four-way,

directional control valve

(52)

Operation of Solenoid to Shift of Valve

(53)

Hydraulic Systems : Two-stage Electrohydraulic Servovalve

Schematic of a two-

stage electrohydraulic

servovalve with force

feedback controlling

a motor with inertia load

(54)

Solenoid-controlled, Pilot-operated Valve

(55)

Servo Valve Structure

 Moog 760 Series

 Moog 30 Series

(56)

Operation of Servo Valve

N N

N N

S S

N S

S

S

(57)

Operation of Servo Valve: Torque Motor

 Torque Motor

 Hydraulic Amplifier

(58)

Operation of Servo Valve: Valve Spool

 Valve Spool

(59)

Basic Modeling of Dynamic Cylinder

• Generalized Flow - Continuity equation dP

V

Q 0  dV 11 1 dt Q dt

e

1 0

 

dt dP V

dt

Q 2 dV 2 2 2

0

+ 부호를 그림과 같이 설정하고, 위의 식을 단순화함.

dt dt e

2 

dt dP u V

A Q

e 1 1 1

1

dt

dP u V

A Q

e 2 2 2

2

• Equation of motion

1 v

Q Q 2

P 1 P 2 f L

dt bv m dv A

P A

P 1 12 2   

load

P 1 2

V 1 V

2

f

L

(60)

Hydraulic Servo System

P

0

P

S

P

0

:

P supply pressure

y y

S :

P supply pressure

2 2

( ) /

QC   a x PP   m s   spool

x

Q

2

Q

1

1 ( 1 ) /

: , :

d S

Q C a x P P m s

a area gradient x displacement

    

P

2

P

1

servo system

: density , C

d

: discharge coefficient

y 2

piston 2 2 0

2 ( )

2 ( 0)

Q C

d

a x P P

C a x P P

    

2 ( 0  0)

C

d

a x P P

    

(61)

Hydraulic Servo System

no leakage, no compressibility

y y

1 2 1 2 1 2

1 2 2 , 1 2 2

s s

L S L S L

Q Q P P P P P P

P P P P P P P P P P

      

        

1 , 2

2 2

S L S L

P P P P

PP

  

1 2

2

2

S L

d S L

P P

Q Q Q C a x C x P P

        

P S L

Q A dy C x P P dt

d

    

S L

dy C x P P

dt   

(62)

Hydraulic Servo System

, , ,

S L L L L

d y C x P P y y y x x x P P P

dt            

( , ) ( ) ( )

L L

L x P x P L L

L

dt

dy f f

f x P x x P P

dt x P

 

      

 

1 1

( ) ( ) ( )

S L

2

L L

S L

d y C P P x x C x P P

dt P P

        

0 , L 0 , d y 0

if x P

  dt

1 S

dt

dy C P x K x

dt    

( ) 1

. ( )

K T F Y s

X s S

  

(63)

Hydraulic Servo System : Compressibility

VP

 

y y p y

V

1

P

1

V

2

P

2

1

, V P

where Compressibility

 

mRT PV

1 P

V

 

1 2 2 1

, ( )

1

V V

P dP V V V V V dV

dP

         

1 ;

1 1 1

B

B

V dP K Bulk modulus dV

dP dV K dV

  

     1

V

B

V

dP dV

K

   

(64)

Bulk Modulus

체적탄성계수 – 비 압축성의 척도

– 체적탄성계수가 클수록 유체는 더 큰 강성을 갖고 있어 압축되기 가 어렵다 .

P V

P

 

– 전형적인 유압유의 체적탄성계수: 250,000psi (1,720MPa)

V V V

V   

 

 /

종류 압축률

[cm

2

/kgf]

체적탄성계수 [kgf/cm

2

]

비고

5 4

석유계작동유 6.0 X 10

-5

5.2~7.2 X 10

-5

1.7 X 10

4

1.4~1.9 X 10

4

항공작동유

(MIL H 5606A)

5.0 X 10

-5

2.0 X 10

4

압력 40~60kgf/cm

2

각종 연료유 5 0 X 10

-5

2 0 X 10

4

각종 연료유 5.0 X 10

5

2.0 X 10

4

수-글리콜

W/O 형 에멀젼 인산에스테르

2.9 X 10

-5

4.4 X 10

-5

3.3 X 10

-5

3.5 X 10

4

2.3 X 10

4

3.0 X 10

4

20

o

C, 700kgf/cm

2

인산에 테

(65)

Hydraulic Servo System

P P P

0 , 0

xAA

y y

P

0

P

S

12 11 21 22

P

0

x

11 0 1

( ) 2 ( )

d S

QC Aax PP Flow equations :

Q 1 Q 2 P supply pressure

s

:

11 0 1

12 0 1

( ) ( )

( ) 2 ( 0 )

d S

d

Q C A ax P P

Q C A ax P

 

  

P

1

P

2

y

A

p

1 11 12

Q Q Q

 

21 0 2

( ) 2 ( )

2

d S

Q C A ax P P

   

22 0 2

( ) 2 ( 0 )

Q C

d

A ax P

   

 

(66)

Hydraulic Servo System

Assume no leakage Q 1Q 2

y y

0,

1 1 y

dP dV

1

1 1 ( )

dt V dt

V Q

   

   1

1

( ) 0,

1 1 1 1

V Q y

dp dp

1 2

1 2

1 2

1 1 1 1

(

p

), (

P

)

dp dp

Q A y Q A y

dt V dt V

1 2

1 2

( )

( )

p

p

my A p p by

my by A p p

  

  

 

 

Equation of motion :

(67)

Hydraulic Servo System Model y y

( )

b A

  1 2

1

1 1

( )

1 1 ( )

p

p

my by A p p

dp Q A y

dtV

  

 

 

1

2

2 2

1 1 (

P

)

dt V

dp Q A y

dt V

    

1 11 12 0 1 0 1

2 2

( ) ( ) ( ) ( 0 )

d S d

Q Q Q C A ax P P C A ax P

 

   

   

           

   

   

2 22 21 0 2 0 2

2 2

( ) ( 0 ) ( ) ( )

d d S

Q Q Q C A ax P C A ax P P

Q Q

 

   

   

           

   

   

1 2

QQ

(68)

Hydraulic Servo System : Linearization

1 2 1 2 0

QQQQ

y y

1 2 1 2

0 1 2 0 1 2

0

2 2 2 2

( ) ( ) ( ) ( )

d S d S

Q Q Q Q

C A ax P P P C A ax P P P

   

   

   

          

   

   

0,

2 2 2 2

( ) ( )

when x

C ax P P P P P P

   

 

  

 1 2 1 2 

0 1 2 1 2

( ) ( )

2 2 2 2

( ) ( ) 0

d S S

d S S

C ax P P P P P P

C A P P P P P P

 

 

 

 

 

C A

d

0  ( P

S

P 1 )  P 2  P 1  ( P

S

P 2 )   0 To make an identical equati

   

   

 

 

1 2 1 2 1 2

, P

s

,

s s

on   P P PPPP   P P

1 2 , 1 , 2

2 2

s L s L

L

P P P P

let P   P PP   P  

(69)

Hydraulic Servo System : Linearization y y

1 0 0

1 1

( ) ( ) ( ) ( )

d s L d s L

Q C ax A P P C A ax P P

 

     

Operating point : x  0, p

L

 0 ( , )

L L L

QQ x P

1 1

1 ( , ) 1 (0, 0) 0, 0 ( 0) 0, 0 ( 0)

L L

L x p x p L

L

Q Q

Q x p Q x p

x p

 

     

  

1

0, 0 1

2 1

1

x pL d S

Q C a p K

x Q

  

   

1

0, 0 0 2

1

x pL d

L S

Q C A K

p p

Q K x K p Q Q

  

     

 

1 2 2

1 2

,

L L

L

Q K x K p Q Q

dp dp dp

p p p

   

   

(70)

Hydraulic Servo System

p L

my by     A p

y y

1

1 2

1 1

1 1 1 1

(

L p

) (

L p

)

dp Q A y K x K p A y

dt V V

 

2

1 2

2

1 1 (

L

)

p

dp K x K p A y

dt V

1 2

1 2

1 1 (2 2 2 )

L

L p

let V V

dp K x K p A y

   

   

1 2

( )

( ) ( ) :

( )

L p

x p y

dt V

Y s cubic equation form X

 

  ( )

( ) q f

X s

(71)

Hydraulic Servo System

Simplification : No compressibility, No leakage

y y

1 ( )

L p

my by p A

Q K K A K A

 

 

 

1 2 1

2 2

1

( )

L L p L p

p

Q K x K p A y p K x A y

K

A K

b A

     

 

    

 

  1

2 2

( )

p

my b y A

p

x

K K

Y s K

       

 

( )

( ) ( 1)

Y s K

X s s Ts

 

1 2

2 2

2 2

p

,

p p

K A mK

K T

K b A K b A

 

 

(72)

Appendix pp

(73)

예제 1: 실린더 구동 시스템

단로드형 복동실린더를 이용하여 테이블을 구동하고자 한다

• 단로드형 복동실린더를 이용하여 테이블을 구동하고자 한다.

– 피스톤 직경은 150mm, 로드 직경은 85mm이다.

피스톤 속도 12m/min 가속시간은 0 4s 이다 – 피스톤 속도 12m/min , 가속시간은 0.4s 이다 . – 실린더 배압은 5 이다.

– 피스톤행정은 1000mm이다

– 테이블의 중량은 1 ton 마찰계수는 0 22 이다

/ cm

2

kgf

– 테이블의 중량은 1 ton, 마찰계수는 0.22 이다.

– 실린더의 압력효율은 90%이다.

위의 조건에서 테이블을 전진시키는데 필요한 압력과 유량을 구하라 위의 조건에서 테이블을 전진시키는데 필요한 압력과 유량을 구하라 Q .

(1) 압력 p (2) 소요유량 Q

bl

Q p,

[답] (1) 5.48

(2) 211.9 l/min

/ cm 2

kgf table

(74)

Vehicle Model - Brake Model

Master cylinder

Fluid Reservoir

Fro m Vacuum

Booster Primary

Circuit Secondary

Circuit

. . . . . .

. ... . . . . . . . . . . . . .

.

Fout

To Brake Lines Booster

 Equation of motion of master cylinder piston :

 Equation of motion of master cylinder piston :

loss mc

out mc

mc cs

mc mc mc

mc x b x F A P F sign x F

m          (  )

pp

mc x

x

(75)

Font

Brake System

Brake Pedal

Vacuum Booster

Master Cylinder

Proportionnig Valve

Font Wheel

Rear Wh l Wheel

Apply brake with leak

w/o leak

(76)

Vehicle Model - Brake Model

Vacuum Booster

Vacuum Booster Diagram

(77)

Vehicle Model - Brake Model

Vacuum Booster Control Valve Model

Control Valve – Apply stage

(78)

Vehicle Model - Brake Model

Vacuum Booster Control Valve Model

Control Valve – Hold stage

(79)

Vehicle Model - Brake Model

Vacuum Booster Control Valve Model

Control Valve- Release stage

참조

관련 문서

주차 브레이크 (parking brake) 마스터 실린더 (master cylinder) 브레이크 페달 배력 장치.. (booster) 주차

1) Start/stop the pump with the START/STOP buttons on the front panel or START/STOP signal connected to the remote connector or SERIAL COMMUNICATION connector on the rear

The controls shall be water resistant, integrally mounted and shall include a power switch, solid state thermostat, pilot light, vacuum/pressure gauge, safety valve, low

However, the 432 Detector output does not change to the selected balance until the detector is autozeroed by a contact closure at the Auto Zero input terminals on the

BRAKE DISCS DISCHI FRENO FREINS À DISQUES BREMSSCHEIBEN DISCOS

The front panel design may differ by chassis. A front panel module mainly consists of power switch, reset switch, power LED, hard drive activity LED, speaker and etc.

Panel machining diagram Socket for installing DIN rail.. Mounting Plate for Motor

연구를 위해 주변 사람들로부터 표본을 추출하는 경우가 있다는 내용의 주어 진 글 다음에, 이를 기회 표본 추출이라고 하며 이런 표본은 대표성이 없다는