• 검색 결과가 없습니다.

x² D G @ /† < Ɠ § Ó ü t o † < Æõ , " fÖ ¦ 100-715

N/A
N/A
Protected

Academic year: 2021

Share "x² D G @ /† < Ɠ § Ó ü t o † < Æõ , " fÖ ¦ 100-715"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

1 l

x² D G @ /† < Ɠ § Ó ü t o † < Æõ , " fÖ  ¦ 100-715

­

£ ÷ 7 B† : ;

Ä

º$ 3 @ /† < Ɠ § ì ø ͕ ¸^ ‰õ † < Æõ , „  · ¡ ¤ ¢ - a Å Ò 565-701 (2004¸   10 Z 4 6{ 9  ~ à Î6 £ §)

/ å

L5 Å q\ P  o† < Æ7 £ x‚ à ÌZ O `  ¦ s 6   x # Œ n+ þ A Si (100)l ó ø Í 0 A\  10Å Òl _  Si

1−x

Ge

x

€ ª œ Ä ºÓ ü t ½ ¨› ¸\  ¦ $ í  © œ 

%

i  . GeH

4

/SiH

4

Û ¼q \  ¦ : Ÿ x K  Ge † < ÊÄ »| ¾ Óõ  SiGe € ª œ Ä ºÓ ü t 8 £ x_  ¿ ºa \  ¦ › ¸] X  % i Ü ¼ 9, $ í  © œ ) a r 

«

Ñ[ þ t_  ½ ¨› ¸& h , F g† < Æ& h  : £ ¤$ í `  ¦ S X ‰ “   l  0 AK " f TEM, HR-XRD, SEMõ  PL`  ¦ s 6   x # Œ ì  r$ 3  % i 



. ½ ¨› ¸& h Ü ¼– Ð GeH

4

/SiH

4

Û ¼q  5 % s  “   r « Ñ[ þ t“ É r SiGe € ª œ Ä ºÓ ü t 8 £ x õ  Si  © œ# 4 8 £ x_  > €  s  { 9

& ñ >  $ í  © œ÷ &  H  כ `  ¦ S X ‰ “  ½ + É Ã º e ” % 3 t ë ß –, Õ ª s  © œ_  Û ¼q \ " f  H € ª œ Ä ºÓ ü t 8 £ x s  ç  H{ 9  >  $ í  © œ

÷

&t  · ú §“ ¦ islands– Ð + þ A$ í ÷ &  H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3  . ¢ ¸ô  Ç, Si

1−x

Ge

x

€ ª œ Ä ºÓ ü t 8 £ x s  e ” > ¿ ºa s  © œ

\

" f islands– Ð + þ A$ í ÷ &  H  כ `  ¦ M-B ü < P-B — ¸4 S q`  ¦ s 6   x # Œ s  : r& h Ü ¼– Ð ì  r$ 3  % i  . ¢ ¸ô  Ç, Si

1−x

Ge

x

€

ª œ Ä ºÓ ü t 8 £ x_  F g† < Æ& h  : £ ¤$ í \ " f GeH

4

/SiH

4

Û ¼q  7 £ x † < Ê\    " f SiGe € ª œ Ä ºÓ ü t 8 £ x \  K { © œ 



 H photoluminescence(PL) ’    ñ ± ú “ É r \  -t A á ¤ Ü ¼– Ð s 1 l x   H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3 Ü ¼ 9, PL ’    ñ

×

 æ NP ’    ñ  H 1.035 \ " f 0.894 eVÜ ¼– Ð TO ’    ñ  H 0.980 \ " f 0.849 eV– Ð s 1 l x   H  כ `  ¦ S X ‰ “   ½ + É Ã º e ”

% 3  . s  Qô  Ç \  -t  ’    ñ s 1 l x s – РÒ'  GeH

4

/SiH

4

Û ¼q \    " f Ge † < ÊÄ »| ¾ Ó (x)`  ¦ S X ‰ “  ½ + É Ã

º e ” % 3  .

PACS numbers: 61.72.-y, 61.82.Fk, 72.80.Ey, 81.65.-b

Keywords: SiGe, / å L5 Å q \ P  o† < Æ 7 £ x‚ à ÌZ O , F g # Œl  µ 1 ÏF g ì  rF g l , X-‚    r] X  ì  rF g l 

I. " e  ] Ø

z 

´o – B H ì ø ͕ ¸^ ‰\  ¦ Si 1 −x Ge x õ  ° ú  “ É r s 7 á x] X ½ + Ë`  ¦ s 6   x ô 

Ç  ½ ™× ¼Ì “ s_   ' pt m # Qa A l Õ ü t \  & h 6   x l  0 AK " f MBE [1], UHV-CVD [2] ü < RTCVD [3] 1 p x_  $ í  © œl Õ ü t s  / å L5 Å q

•

¸– Ð µ 1 τ   “ ¦ e ”  . { 9 ì ø Í& h Ü ¼– Ð œ í“ ¦5 Å q ™ è  [4]ü < F g ™ è



 [5]1 p x`  ¦ ½ ¨‰ & ³ l  0 AK " f  o½ + ËÓ ü t ì ø ͕ ¸^ ‰\  ¦ ƒ  ½ ¨ % i 



 H X <,  o½ + ËÓ ü t ì ø ͕ ¸^ ‰_  $ í  © œõ  / B N& ñ \  × ¼  H ° ú כq ø ß – q 6   x õ

 € ª œ| 9 _  \ x } Œ • $ í  © œl Õ ü t_  # Q 9¹ ¡ § Ü ¼– Ð “  K  t F K   t

  o½ + ËÓ ü t ì ø ͕ ¸^ ‰  H œ í“ ¦5 Å q ™ è ü < F g ™ è \  ô  Ç& ñ & h Ü ¼

–

Ð s 6   x ÷ &# Q M ® o  . t ë ß –, Si 1 −x Ge x õ  ° ú  “ É r s 7 á x] X ½ + Ë`  ¦

€

ª œ  ½ ¨› ¸– Ð $ í  © œ # Œ œ í“ ¦5 Å q ™ è , • ¸  › ' a õ  F g ™ è _  6

£

x6   x$ í [ þ t s  ´ ú §s  ˜ Г ¦ “ ¦ e ”   [1,6,7].

t ë ß –, Siõ  Ge_   â Ä º     © œÃ º s   H 4.2 %& ñ • ¸– Ð Si`  ¦ l ó ø ÍÜ ¼– Ð  6   x r  Ge $ í ì  r| ¾ Ó\     Õ ª     © œÃ º 

E-mail: hycho@dongguk.edu;

Tel: +82-2-2260-3203; Fax: +82-2-2277-3619

s

 0 % ∼ 4.2 % # 3 0 As  . s      Ò& ñ ½ + Ë_  s   H

$ í

 © œr  dislocations   cluster + þ A$ í | ¨ c à ºe ”  . Kasper [8]1 p x \  _ K  % ƒ6 £ § Ü ¼– Ð     Ò& ñ ½ + Ë ë  H ] j\  ¦ Si/SiGe_  s  7

á

x] X ½ + ˽ ¨› ¸\ " f ƒ  ½ ¨÷ &% 3  . s [ þ t“ É r Si õ  Ge_  4 %_ 

 

   Ò& ñ ½ + Ë\  @ /ô  Ç ë  H ] j\  ¦ SiGe_  Ge0 l x • ¸ 7 £ x r ( ” Ü ¼

–

Ð" f K     9“ ¦ % i  . Õ ª Q   f ”  lattice-matched

~ Ã

Ì} Œ • $ í  © œ\  @ / # Œ e ” > ¿ ºa , 3 " é ¶ $ í  © œ, Ge segre- gate1 p x s  Å Òכ ¹ è ß –& h Ü ¼– Ð z Œ ™ e ”  . ¢ ¸ô  Ç, / å L5 Å q\ P  o† < Æ7 £ x

‚ Ã

ÌZ O  (RTCVD)  © œu   H Gibbons [9]1 p x \  _ K  r • ¸ ÷ &% 3  Ü

¼ 9, $ í  © œ ì ø Í6 £ x`  ¦  Ø Ô>  on-off ½ + É Ã º e ”    H  © œ& h õ   8 Ô

 ¦ # Q l ó ø ͓ : r • ¸ü < Ä »| ¾ Ó_  & ñ S X ‰ô  Ç › ¸] X s  € 9 à º& h “   ë  H ] j

&

h s  e ” t ë ß –, s  Qô  Ç ë  H ] j& h `  ¦ K    l  0 AK " f RTCVD

$ í

 © œr _  Ä »| ¾ Ó ë  H ] jü < 2 " é ¶ $ í  © œ\  @ /ô  Ç › ¸| `  ¦ S X ‰ w n  

#

Œ “ ¦¾ ¡ §0 A_  SiGe 8 £ x`  ¦ + þ A$ í ½ + É € 9 כ ¹$ í s  @ /¿ º@ /“ ¦ e ”  .

s

\  ‘ : r ƒ  ½ ¨\ " f  H  ^ ‰ > hµ 1 Ïô  Ç RTCVD\  ¦ s 6   x 

#

Œ Si l ó ø Í 0 A\  SiGe € ª œ Ä ºÓ ü t`  ¦ $ í  © œ % i Ü ¼ 9, $ í  © œ ) a

SiGe € ª œ Ä ºÓ ü t_    & ñ $ í , Ge † < ÊÄ »| ¾ Ó, SiGe \ x } Œ •_  $ í

-483-

(2)

Fig. 1. Schematic diagram of (a) p-i-n Si 1 −x Ge x struc- ture and (b) cross-sectional TEM image of 10-staked SiGe quantum well.



© œ5 Å q • ¸, > h| Ä Ì& h “   e ” > ¿ ºa \  ¦ S X ‰ “   % i Ü ¼ 9, y Œ •y Œ •_  : £ ¤

$ í

\  @ /K " f SiGe € ª œ Ä ºÓ ü t_  ½ ¨› ¸ü < F g† < Æ& h , „  l & h  : £ ¤

$ í

`  ¦ › ¸  % i  .

II. ÷ m Ç ] M ö

/ å

L5 Å q\ P  o† < Æ7 £ x‚ à ÌZ O `  ¦ s 6   x # Œ 10Å Òl _  Si 1 −x Ge x

€

ª œ Ä ºÓ ü t`  ¦ n+ þ A (100)~ ½ ӆ ¾ Ó_  Sil ó ø Í0 A\  $ í  © œ % i  .

Si 1 −x Ge x € ª œ Ä ºÓ ü t`  ¦ $ í  © œ l  0 AK " f €  $  900 C \ " f SiH 4 Û ¼\  ¦ s 6   x # Œ Si buffer 8 £ x`  ¦ $ í  © œô  Ç Ê ê, $ í  © œ“ : r

•

¸\  ¦ ? / 9 700 C \ " f Si 1 −x Ge x € ª œ Ä ºÓ ü t`  ¦ $ í  © œ % i “ ¦, Ge † < ÊÄ »| ¾ Ó`  ¦    or v l  0 AK " f SiH 4 õ  GeH 4 _  Û ¼q 

\

 ¦ › ¸] X  # Œ Ge † < ÊÄ »| ¾ Ó`  ¦ › ¸] X  % i  . GeH 4 /SiH 4 Û ¼ q

  H 4.2 % \ " f 20 % t     or &  10Å Òl _  Si 1 −x Ge x

€

ª œ Ä ºÓ ü t`  ¦ $ í  © œ % i  . $ í  © œ ) a r « э  H TEM (transmis- sion electron microscopy) õ  SEM`  ¦ s 6   x # Œ é ß –€  `  ¦ › ' a

¹

1 Ï % i “ ¦, r « Ñ_    & ñ $ í `  ¦ S X ‰ “   l  0 AK  “ ¦ì  r K 0 p x X-

‚ 

 r] X  (high resolution X-ray diffraction)`  ¦ s 6   x # Œ ì  r

$

3  % i  . ¢ ¸ô  Ç, r « Ñ_  F g† < Æ& h  : £ ¤$ í `  ¦ S X ‰ “   l  0 AK 

"

f PL (photoluminescence)`  ¦ s 6   x % i Ü ¼ 9, # Œl  F g Ü ¼

–

Ð 514.5 nm_  Ar+ Y Us $ \  ¦ s 6   x # Œ 10K\ " f Ó  o^ ‰| 9 

™

è– Ð Í ‰ ty Œ • ) a Ge  Ž Ø  ¦ l \  ¦ s 6   x # Œ z  ´+ « >`  ¦ % i  .

III. + s ÇÊ Ý õ m Í w Š²  o

Fig. 1(a) “ É r $ í  © œ„  \  [ O >   ) a 10 Å Òl _  Si 1 −x Ge x

€

ª œ Ä ºÓ ü t ½ ¨› ¸\  ¦ • ¸d ” ô  Ç Õ ªa Ë >s  . Si 1 −x Ge x € ª œ Ä º Ó

ü

t ½ ¨› ¸  H 210 nm ¿ ºa _  Si buffer 8 £ x0 A\  10Å Òl _  Si 1 −x Ge x € ª œ Ä ºÓ ü t`  ¦ $ í  © œ % i Ü ¼ 9, Si  © œ# 4 8 £ x õ  cap- ping8 £ x_  ¿ ºa   H 37 nm ü < 126 nm– Ð y Œ •y Œ • “ ¦& ñ % i  .

GeH 4 ü < SiH 4 _  Û ¼q \  ¦ s 6   x # Œ Ge † < ÊÄ »| ¾ Ó (x)`  ¦ › ¸ ] X

 % i Ü ¼ 9, Ge † < ÊÄ »| ¾ Ó\    É r $ í  © œÒ  ¦`  ¦ > í ß – l  0 A 

#

Œ Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  $ í  © œr ç ß –“ É r “ ¦& ñ % i  . Fig.

Fig. 2. HR-XRD spectra with different gas ratio of GeH 4 /SiH 4 (a) 4.2 % (b) 5 % (c) 10 % (d) 15 % (e) 20 % in 10-staked Si 1 −x Ge x quantum well superlattice.

1(a)_  ½ ¨› ¸– Ð $ í  © œ ) a r « Ñ[ þ t ×  æ \ " f Si 0.8 Ge 0.2 € ª œ Ä º Ó

ü

t 8 £ x_  é ß –€   TEM   õ \  ¦ Fig. 1(b) \    ? /% 3  . Õ ª a Ë

>\ " f ^  ¦ à º e ” 1 p w s  10Å Òl _  SiGe € ª œ Ä ºÓ ü t 8 £ x s  ç  H{ 9 

>  $ í  © œ÷ &# Q e ”   H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” Ü ¼ 9, SiGe € ª œ  Ä

ºÓ ü t 8 £ x õ  Si  © œ# 4 8 £ x õ _  > €   © œI       Ò& ñ ½ + Ë\  _  ô 

Ç   † < Ê[ þ t s  + þ A$ í ÷ &# Q e ” t  · ú §  H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3 



.

GeH 4 ü < SiH 4 _  Û ¼q \  ¦ › ¸] X  # Œ $ í  © œ ) a r « Ñ[ þ t_  Ge † < ÊÄ »| ¾ Ó`  ¦ › ¸] X  # Œ $ í  © œ ) a Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_ 

¿

ºa ü < $ í  © œ ) a r « Ñ[ þ t_    & ñ $ í `  ¦ S X ‰ “   l  0 AK " f “ ¦ ì

 r K 0 p x X‚    r] X  z  ´+ « >`  ¦ à º' Ÿ  % i  . Fig. 2  H GeH 4 ü <

SiH 4 _  Û ¼q \    É r Si (004) ~ ½ ӆ ¾ Ó_  “ ¦ì  r K 0 p x X‚    r ] X

   õ \  ¦ ˜ Ð# Œï  r  . XRD   õ \  ¦ s 6   x # Œ Ge † < ÊÄ »| ¾ Óõ 

¿

ºa \  ¦ · ú ˜l  0 AK " f simulation`  ¦ à º' Ÿ  # Œ > í ß –ô  Ç   õ  SiH 4 ü < GeH 4 _  Û ¼q \    " f Ge † < ÊÄ »| ¾ ӓ É r 17 % ∼ 37 % s “ ¦, Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  ¿ ºa   H 7.6 nm ∼ 17 nme ” `  ¦ S X ‰ “   ½ + É Ã º e ” % 3  . : £ ¤ y , GeH 4 ü < SiH 4 _  Û ¼q 

 4.2 %ü < 5 %“   r « Ñ[ þ t \ " f  H Fig. 1(b)_  é ß –€   TEM

 

õ \ " f › ' a8 £ ¤ ) a SiGe € ª œ Ä ºÓ ü t 8 £ x_  ¿ ºa ü < simulation

 

õ  ° ú כs  { 9 u    H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3  . Õ ªa Ë >\ " f GeH 4 õ  SiH 4 _  Û ¼q  7 £ x ½ + Éà º2 Ÿ ¤ Si (004) l ó ø ͒    ñ

\

 ¦ l ï  r Ü ¼– Ð Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  Ge † < ÊÄ »| ¾ Ós  7 £ x 

(3)

Fig. 3. SEM images for the gas ratio with 10 % and 20

% of in 10-staked Si 1 −x Ge x quantum well.

“ ¦, Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  ¿ ºa  ¿ º 0 >t l  M :ë  H

\

 SL+1, SL-0ü < SL-1_  ’    ñ[ þ t s  & h & h  s 1 l x   H  כ s 



 Ò q ty Œ •÷ &# Q”   . ¢ ¸ô  Ç, GeH 4 õ  SiH 4 _  q  10 %s  © œ

\

" f  H Si 1 −x Ge x € ª œ Ä ºÓ ü t_  SL+1, SL-0ü < SL-1_  ’    

ñ[ þ t s  & h & h  €  • >       H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3   H X

<, s  כ “ É r Ge_  † < ÊÄ »| ¾ Ós  ´ ú § t €  " f Ge_  % ò † ¾ ÓÜ ¼– Ð Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  ¿ ºa  e ” >  ¿ ºa \  ¦ œ íõ  # Œ Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x õ  Si  © œ# 4 8 £ x[ þ t ç ß –_  Ô  ¦ç  H{ 9 ô  Ç > 

€ 

 © œI  M :ë  H s  “ ¦ ó ø Íé ß –÷ &# Q”   .

Fig. 2 \ " f_  Ge † < ÊÄ »| ¾ Ó_  7 £ x \     Si 1 −x Ge x € ª œ  Ä

ºÓ ü t 8 £ x õ  Si  © œ# 4 8 £ x õ _  > €    © œI \  ¦ S X ‰ “   l  0 AK " f é

ß –€   SEM`  ¦ 8 £ ¤& ñ # Œ Fig. 3\    ? /% 3  . Fig. 3(a)  H GeH 4 ü < SiH 4 _  Û ¼q \  ¦ 10 % – Ð “ ¦& ñ “ ¦ $ í  © œ ) a 10 Å Ò l

_  SiGe € ª œ Ä ºÓ ü t 8 £ x_  é ß –€   SEMs  . ' Í   P :ü < ¿ º

 

P : SiGe € ª œ Ä ºÓ ü t 8 £ x“ É r ç  H{ 9  >  $ í  © œs  ÷ &  [ j    P

: 8 £ x  Ò'  strain\  _ K " f SiGe € ª œ Ä ºÓ ü t 8 £ x \  islands + þ

AI – Ð + þ A$ í ÷ &  H  כ `  ¦ S X ‰ “  ½ + É Ã º e ” % 3  . s  Qô  Ç SEM _

   õ \  ¦ : Ÿ x K " f Fig. 2_  “ ¦ì  r K 0 p x X-‚    r] X    õ \ 

"

f GeH 4 ü < SiH 4 _  Û ¼q  10 % p ë ß –_  SiGe € ª œ Ä ºÓ ü t 8

£

x_  SL+1, SL-0ü < SL-1’    ñ[ þ t ˜ Ð  q “ §& h  €  • >  › ' a 8

£

¤ ÷ &  H  כ “ É r SiGe € ª œ Ä ºÓ ü t 8 £ x õ  Si  © œ# 4 8 £ x õ _  > €    © œ I

 a % ~ t  · ú §l  M :ë  H s  “ ¦ ó ø Íé ß –½ + É Ã º e ”  . ¢ ¸ô  Ç, Fig.

3(b) \ " f ˜ Ѝ  H  ü < ° ú  s  GeH 4 ü < SiH 4 _  Û ¼q  20

%“    â Ä º\   H Fig. 3(a)_  Û ¼q  10 %“   r « ј Ð • ¸ SiGe € ª œ Ä ºÓ ü t 8 £ x \ " f islands_  ì  r Ÿ í ´ ú §“ É r  כ `  ¦ S X ‰ “  

Fig. 4. Critical thickness as a function of germanium content. The closed box is experimental data and the curves are Matthews-Blakeslee and People-Bean models, respectively.

½ +

É Ã º e ” % 3 Ü ¼ 9, s  כ “ É r Ge † < ÊÄ »| ¾ Ó\     Si 1 −x Ge x 8 £ x s

 e ” > ¿ ºa \  ¦ œ íõ  # Œ ç  H{ 9 ô  Ç SiGe € ª œ Ä ºÓ ü t 8 £ x s  + þ A

$ í

÷ &t  · ú §  H  כ s “ ¦ [10], Ge\  _ K " f $ í  © œÒ  ¦ \   H % ò † ¾ Ó

`

 ¦ p • 2 ; “ ¦ ˜ Г ¦÷ &“ ¦ e ”   [11]. s X O >  islands– Ð + þ A$ í

÷

&  H SiGe € ª œ Ä ºÓ ü t 8 £ x“ É r Stranski-Krastanov (S-K) ~ ½ Ó d ”

\  _ K " f $ í  © œ÷ &% 3  “ ¦ Ò q ty Œ •÷ &# Qt  9, ‘ : r ƒ  ½ ¨\ " f



 H   ? /t  · ú §€ Œ ¤t ë ß – S-K ~ ½ Ód ” `  ¦ s 6   x # Œ Ge € ª œ & h  _

 $ í  © œ › ¸| Ü ¼– Ð  6   x½ + É Ã º e ” % 3  . ¢ ¸ô  Ç, Ge † < ÊÄ »| ¾ Ó\ 



 " f e ” > ¿ ºa \  ¦ › ¸] X K   ç  H{ 9 ô  Ç Si 1 −x Ge x € ª œ Ä ºÓ ü t 8

£

x`  ¦ $ í  © œ ½ + É Ã º e ”  “ ¦ ½ + É Ã º e ”  .

s

 Qô  Ç Ge † < ÊÄ »| ¾ Ó\    É r e ” > ¿ ºa _  ×  æ כ ¹$ í Ü ¼– Ð “   K

 “ ¦ì  r K 0 p x X-‚    r] X `  ¦ : Ÿ x K " f > í ß – ) a Ge_  † < ÊÄ »| ¾ Ó õ  Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  ¿ ºa \  ¦ s  : r& h Ü ¼– Ð Ge † < Ê Ä

»| ¾ Ó\    É r e ” > ¿ ºa ü < q “ § l  0 AK " f Matthews - Blakeslee (M-B) — ¸4 S q [12]õ  People - Bean (P-B) — ¸ 4

S q [13]`  ¦ & h 6   x # Œ Fig. 4\  • ¸d ”  % i  . M-B s  : r“ É r Si 1 −x Ge x _  \ x 8 £ x s  \ P % i † < Æ& h Ü ¼– Ð    & ñ ½ + Ë  © œI \  ¦ s  À

ғ ¦ e ” `  ¦ M :_  e ” > ¿ ºa \  ¦ ] jr  “ ¦ e ” Ü ¼ 9, e ” > ¿ ºa  (h c )_     o  H

h c ∼ =  b f

  1 4π(1 + ν)

  ln  h c

b

 + 1



(1)

s

“ ¦, # Œl " f bü < ν  H y Œ •y Œ • p ã ¼! 3  U  ´s ü < Poisson’s ra- tio s  . f  H Ge_  † < ÊÄ »| ¾ Ó\    É r Si l ó ø Íõ  Si 1 −x Ge x 8 £ x



s _       Ò& ñ ½ + Ë q – Ð+ ‹

f = (a si

10x

Ge

x

− a si )/a si = 0.042x (2)

s

 9, # Œl " f a Si

10x

Ge

x

ü < a si   H y Œ •y Œ • Si 1 −x Ge x ü < Si_    



  © œÃ ºs  .

(4)

Fig. 5. (a) PL spectra and (b) PL peak of 10-staked Si 1 −x Ge x quantum well with various germanium content.

ì

ø ̀  \ , P-B s  : r“ É r \ P % i † < Æ& h Ü ¼– Ð ï  rî ß –& ñ  © œI \ " f_  e ”

> ¿ ºa \  ¦ ] jr  “ ¦ e ” Ü ¼ 9, s  M :_  e ” > ¿ ºa  (h c )  H

h c ∼ =  0.019˚ A f 2

 ln  h c

4˚ A



(3)

–

Ð ³ ð‰ & ³ ) a  .

{ 9

ì ø Í& h Ü ¼– Ð, M-B s  : r“ É r Si õ  Ge_      s  ¢ - a`  ¦ 0 A ô 

Ç Ø  æì  rô  Ç  Ö ¸$ í  o \  -t   t  · ú §Ü ¼€   M-B s  : r _  e ” > ¿ ºa  s  © œ\ " f• ¸ { 9 & ñ ô  Ç Si 1 −x Ge x \ x 8 £ x`  ¦ % 3 

`

 ¦ à º e ”  “ ¦ · ú ˜ 94 R e ”  . s  Qô  Ç s  : r& h  e ” > ¿ ºa ü <

Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  ¿ ºa \  ¦ q “ §ô  Ç   õ , P-B s  : r _  e ” > ¿ ºa \   H p u t  3 l w % i t ë ß –, M-B s  : r \   Ø Ô

€ 

 GeH 4 ü < SiH 4 _  Û ¼q  15 % s  © œ“   r « Ñ[ þ t \ " f  H e ”

> ¿ ºa  & t   H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3  . s  כ “ É r e ” 

>

 ¿ ºa \  ¦ œ íõ  # Œ Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x s  ç  H{ 9  >  + þ

A$ í ÷ &t  · ú §“ ¦, islands– Ð $ í  © œ÷ &  H  כ `  ¦ s  : r& h Ü ¼– Ð S X ‰

“

  ½ + É Ã º e ” % 3  . ¢ ¸ô  Ç, Fig. 3(a)_  GeH 4 ü < SiH 4 _  Û ¼ q

 10 %“   r « Ñ\ " f  H ' Í   P :ü < ¿ º   P : SiGe € ª œ Ä º Ó

ü

t 8 £ x“ É r q “ §& h  ç  H{ 9  >  $ í  © œs  ÷ &% 3   H X <, Å Òl  7 £ x 

½ +

Éà º2 Ÿ ¤ Ge † < ÊÄ »| ¾ Ó\  _ K  ' Í   P :ü < ¿ º   P : SiGe € ª œ  Ä

ºÓ ü t 8 £ x_  strain\  _ K  e ” > ¿ ºa  ² ú ˜ ”   “ ¦ ˜ Г ¦÷ &

#

Qt “ ¦ e ”   [14].   " f 4 Ÿ ¤¸ ú šô  Ç ½ ¨› ¸\  ¦ $ í  © œ l  0 AK 

"

f  H œ íl _  SiGe € ª œ Ä ºÓ ü t 8 £ x_  strain_  % ò † ¾ ÓÜ ¼– Ð “   K

 Si  © œ# 4 8 £ x_  ¿ ºa \  ¦ † < Êa  “ ¦ 9K " f $ í  © œ`  ¦ K   ô  Ç 

“

¦ ó ø Íé ß –÷ &# Q”   .

10 Å Òl _  Si 1 −x Ge x € ª œ Ä ºÓ ü t ½ ¨› ¸\ " f F g† < Æ& h  : £ ¤$ í

`

 ¦ 0 A # Œ Fig. 5(a)ü < ° ú  s  10 K\ " f PL`  ¦ 8 £ ¤& ñ % i 



. › ' a8 £ ¤ ) a ’    ñ[ þ t \ " f 1126 nm (1.101 eV)_  ’    ñ  H ± ú 

“ É

r “ : r • ¸\ " f Ÿ í 7 H_  • ¸¹ ¡ §`  ¦ ~ à Î  …  ;s  (TO)  ) a Si õ  › ' a º 

 ) a ’    ñs “ ¦, Ì º§  >  Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x õ  › ' aº  

 )

a ¿ º> h_  ’    ñ\  ¦ › ' a8 £ ¤ % i  . › ' a8 £ ¤ ) a ’    ñ ×  æ \ " f, 



  H Ÿ í 7 H_  • ¸¹ ¡ §`  ¦ ~ à Ît  · ú §“ ¦ alloy fluctuation\  _ K  î

 r1 l x| ¾ Ó ˜ Д > r`  ¦ ë ß –7 á ¤ r v “ ¦ …  ;s   ) a (NP) ’    ñü <   Qt 

Fig. 6. PL peak and growth rate of Si 1 −x Ge x quantum well superlattice according to GeH 4 /SiH 4 gas ratio.



 H TO ’    ñ[ þ t s “ ¦, Si l ó ø Í_  NPü < TO ’    ñ[ þ t \ " fü <

°

ú  s  Si 1 −x Ge x _  NPü < TO_  ç ß –  s  €  • 52 meV_   s

\  ¦ t “ ¦ e ” # Q NPü < TO ’    ñ[ þ t`  ¦ ½ ¨ì  r ½ + É Ã º e ” % 3 



 [15]. Õ ªa Ë >\ " f ^  ¦ à º e ” 1 p w s  GeH 4 ü < SiH 4 _  Û ¼q 

 7 £ x ½ + Éà º2 Ÿ ¤ Si l ó ø ͒    ñ\  ¦ l ï  r Ü ¼– Ð Si 1 −x Ge x € ª œ  Ä

ºÓ ü t 8 £ x_  NPü < TO ’    ñ[ þ t s  ± ú “ É r \  -t – Ð s 1 l x   H

 כ

`  ¦ S X ‰ “   ½ + É Ã º e ” % 3  . 7 £ ¤, GeH 4 ü < SiH 4 _  Û ¼q \   



 Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  NP ’    ñ[ þ t“ É r 1.035 eV \ " f 0.894 eV  t , TO ’    ñ[ þ t“ É r 0.980 eV \ " f 0.849 eV t  s

1 l x % i  .

› '

a8 £ ¤ ) a PL peak Ü ¼– РÒ'  \  -t   ½ ™× ¼Ì “ s (E g (x))`  ¦ >  í

ß – l  0 AK " f [16,17]

E g (x) = 1.17 − 0.896x + 0.396x 2 eV (4)

`

 ¦ s 6   x % i  . d ”  (4)  H Ge † < ÊÄ »| ¾ Ós  24 %s  \ " f & ñ S X

‰ô  Ç s  : rd ” Ü ¼– Ð+ ‹ x  H Ge_  † < ÊÄ »| ¾ Ó`  ¦    · p . Æ Ò

&

h Ü ¼– Ð, Ge † < ÊÄ »| ¾ Ó\     strain`  ¦ ~ à Γ ¦ e ”   H Si 1 −x Ge x

8

£

x \ " f_  \  -t   ½ ™× ¼Ì “ s [18–20]`  ¦ Fig. 5(b) \    ? /% 3 



. GeH 4 ü < SiH 4 _  Û ¼q  10 %s  \ " f  H strain \  _

ô  Ç \  -t   ½ ™× ¼Ì “ sõ  d ”  (4)  H Fig. 2_  > í ß – ) a Ge † < ÊÄ »

|

¾ Óõ   _  { 9 u    H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3 t ë ß –, 10 %s 

 ©

œ\ " f  H { 9 u  t  · ú §  H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3  . { 9 ì ø Í

&

h Ü ¼– Ð Ge € ª œ & h _   â Ä º, $ í  © œ ×  æ \  Ge_  S X ‰í ß –\  _ K 

"

f 0 Au \    " f Ge † < ÊÄ »| ¾ Ós   Ø Ô “ ¦ ˜ Г ¦÷ &“ ¦ e ”   [21].   " f, $ í  © œ ) a SiGe € ª œ Ä ºÓ ü t 8 £ x_  r « Ñ[ þ t \ " f Ge

† <

ÊÄ »| ¾ ӓ É r €  • 17 % ∼ 35 %Ü ¼– Ð > í ß – ) a  .

Fig. 6“ É r GeH 4 /SiH 4 _  Û ¼q \    " f Si 1 −x Ge x € ª œ



Ä ºÓ ü t 8 £ x_  $ í  © œÒ  ¦ ü < PL peak`  ¦ & ñ o ô  Ç Õ ªa Ë >s  . Fig.

5 \ " f % ƒ! 3  GeH 4 /SiH 4 Û ¼q _  7 £ x   H Ge † < ÊÄ »| ¾ Ó_  7 £ x

\  ¦ _ p   9, Ge † < ÊÄ »| ¾ Ós  7 £ x † < Ê\    " f SiGe € ª œ



Ä ºÓ ü t õ  › ' aº   ) a NP ü < TO ’    ñ[ þ t s  ± ú “ É r \  -t – Ð s  1

l

x   H  כ `  ¦  r  ô  ǁ   S X ‰ “   ½ + É Ã º e ” % 3  . ¢ ¸ô  Ç, Õ ªa Ë >

(5)

p

• 2 ; “ ¦ ½ + É Ã º e  .   " f Fig. 3õ  õ \ " f

ƒ 

/ å LÙ þ ¡1 p w s  Si 1 −x Ge x 8 £ x \ " f e ” > ¿ ºa \  ¦ œ íõ  # Œ + þ A$ í

 )

a islands  H S-K mode \  _ K " f + þ A$ í  ) a  “ ¦ ½ + É Ã º e ” Ü ¼ 9, s  Qô  Ç strain\  _ K  + þ A$ í  ) a islands  H Ge € ª œ & h  ° ú  

“

É r 0 " é ¶ ½ ¨› ¸\  ¦ $ í  © œ½ + É Ã º e ”   H ž Ð@ /\  ¦  º  ½ + É Ã º e ”  

“

¦ Ò q ty Œ • ÷ &# Q”   .    : r& h Ü ¼– Ð, GeH 4 ü < SiH 4 _  Û ¼q  _  › ¸] X `  ¦ : Ÿ x K " f 10Å Òl _  SiGe € ª œ Ä ºÓ ü t 8 £ x_  \  -t 



½ ™× ¼Ì “ s`  ¦ › ¸] X ½ + É Ã º e ”   H \  -t   ½ ™× ¼Ì “ s \ t m # Qa As  Si > \ P \ " f• ¸ 0 p x    H  כ `  ¦ S X ‰ “   % i Ü ¼ 9, SiGe € ª œ



Ä ºÓ ü t 8 £ x_  ¿ ºa \  ¦ › ¸] X ½ + É Ã º e ”   H ž Ð@ /\  ¦  º   % i Ü ¼ 9, SiGe € ª œ Ä ºÓ ü t õ  € ª œ & h `  ¦ s 6   xô  Ç 4 Ÿ ¤¸ ú šô  Ç ™ è \  ¦ $ í



© œ l  0 AK " f  H Si 1 −x Ge x € ª œ Ä ºÓ ü t 8 £ x_  Ge † < ÊÄ »| ¾ Óõ  strain_  % ò † ¾ ÓÜ ¼– Ð “  K  Si  © œ# 4 8 £ x_  ¿ ºa \  ¦ † < Êa  “ ¦ 9K 

"

f $ í  © œ`  ¦ K   ô  Ç “ ¦ ] jî ß –ô  Ç .

IV. + s Ç Â ] Ø

‘

: r ƒ  ½ ¨\ " f  H / å L5 Å q\ P  o† < Æ7 £ x‚ à ÌZ O `  ¦ s 6   x # Œ Ge † < Ê Ä

»| ¾ Ó\     Si 1 −x Ge x € ª œ Ä ºÓ ü t ½ ¨› ¸\  ¦ $ í  © œ % i “ ¦, GeH 4 /SiH 4 _  Û ¼q \  ¦ : Ÿ x K  Si 1 −x Ge x € ª œ Ä ºÓ ü t ½ ¨› ¸ _  ¿ ºa ü < Ge † < ÊÄ »| ¾ Ó`  ¦ › ¸] X ½ + É Ã º e ” % 3  . GeH 4 /SiH 4 _ 

Û ¼q  5 %“   SiGe € ª œ Ä ºÓ ü t ½ ¨› ¸_  é ß –€   TEM`  ¦ : Ÿ x K

" f SiGe € ª œ Ä ºÓ ü t 8 £ x õ  Si  © œ# 4 8 £ x õ _  > €  s  ç  H{ 9  

>

 $ í  © œ ) a  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3 Ü ¼ 9, Ge_  † < ÊÄ »| ¾ Ós  7

£

x † < Ê\     SiGe € ª œ Ä ºÓ ü t 8 £ x_  > €  s  e ” > ¿ ºa \  ¦

œ

íõ  # Œ islands– Ð + þ A$ í ÷ &  H  כ `  ¦ s  : r& h , z  ´+ « >& h Ü ¼– Ð S X

‰ “   % i  . s  Qô  Ç islands  H Si õ  Ge_       Ò& ñ ½ + ËÜ ¼

–

ÐstrainÜ ¼– Ð “  K  S-K $ í  © œZ O Ü ¼– Ð $ í  © œ÷ &  H  כ `  ¦ S X ‰ “  

½ +

É Ã º e ” % 3  . ¢ ¸ô  Ç, SiGe € ª œ Ä ºÓ ü t 8 £ x_  F g† < Æ& h  : £ ¤$ í `  ¦ S X

‰ “   % i   H X <, Ge † < ÊÄ »| ¾ Ós  7 £ x † < Ê\    " f SiGe € ª œ



Ä ºÓ ü t 8 £ x_  NPü < TO ’    ñ ± ú “ É r \  -t  A á ¤ Ü ¼– Ð s 1 l x

  H  כ `  ¦ S X ‰ “   ½ + É Ã º e ” % 3  . s X O >  Ge_  † < ÊÄ »| ¾ Ó\   



" f SiGe € ª œ Ä ºÓ ü t 8 £ x_  \  -t   ½ ™× ¼Ì “ s_  s 1 l x`  ¦ e ” > 

¿

ºa \ " fü <  ð ø Ít – Ð s  : r& h Ü ¼– Ð z  ´+ « >& h Ü ¼– Ð S X ‰ “   ½ + É Ã

º e ” % 3  .

P c

p 8 ý ò k >

This work is supported by the National program for Tera level Nano Devices 2004 through MOST.

W. Huang, T. C. Chang, L. P. Chen and H. C. Lin, Appl. Phys. Lett. 67, 1092 (1995).

[3] P. Warren, M. Dutoit, P. Boucaud, J.-M. Lourtioz and F. H. Julien, Thin Solid Films 294, 125 (1997).

[4] R. C. Fitch, J. K. Gillespie, N. Moser, T. Jenkins, J. Sewell, D. Via, A. Crespo A. M. Dabiran, P. P.

Chow, A. Osinsky, J. R. La Roche, F. Ren and S. J.

Pearton, Appl. Phys. Lett. 84, 1495 (2004)

[5] H. C. Liu, C. Y. Song, A. J. Spring Thorpe and J.

C. Cao, J. Appl. Phys. 84, 4068 (2004)

[6] John D. Cressler and Giofu Niu, Silicon-Germanium Heterojunction Bipolar Transistor (Artech House, INC. Norwood, 2003).

[7] R. A. Soref, J. Schmidrchen and K. Petermann, IEEE. J. Quantum Electron. 27, 1971 (1991).

[8] E. Kasper, H. J. Herzog and H. Kibbel, Appl. Phys.

Lett. 8, 199 (1970).

[9] J. F. Gibbons, C. M. Gronet and K. E. Williams, Appl. Phys. Lett. 47, 721 (1985).

[10] H. Sunamura, Y. Shiraki and S. Fukatsu, Appl.

Phys. Lett. 66, 953 (1995).

[11] Bernard S. Meyerson, Kevin J. Uram and Francoise K. LeGoues, Appl. Phys. Lett. 53, 2555 (1988).

[12] J. W. Mattews, S. Mader and T. B. Light, J. Appl.

Phys. 41, 3800 (1970).

[13] R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).

[14] R. Hull, J. C. Bean, F. Cerdeira, A. T. Fiory and J.

M. Gibson, Appl. Phys. Lett. 48, 56 (1986).

[15] J. Weber and M. I. Alonso, Phys. Rev. B 40, 5683 (1989).

[16] D. J. Robbins, L. T. Canham, S. J. Barnett, A. D.

Pitt and P. Calcott, J. Appl. Phys. 71, 1407 (1992).

[17] P. Bouaud, L. Wu, C. Guedj, F. H. Julien, I. Sajnes, Y. Campidelli and L. Gaechery, J. Appl. Phys. 80, 1414 (1996).

[18] Chris G. Van de Walle and Richard M. Martin,

Phys. Rev. B. 34, 5621 (1986).

(6)

[19] Martin M. Rieger and P. Vogl, Phys. Rev. B. 48, 14276 (1993).

[20] D. V. Lang, R. People, J. C. Bean and A. M. Ser- gent, Appl. Phys. Lett. 47, 1333 (1985).

[21] X. Z. Lioa, J. Zou, D. J. H. Cockayne, J. Wan, Z.

M. Jiang, G. Jin and Kang L. Wang, Phys. Rev. B.

65, 153306 (2002)

Structural and Optical Properties for Multi-Staked Si 1 −x Ge x QWs Grown by Using RTCVD with various GeH 4 /SiH 4 Gas Ratios

C. J. Park and H. Y. Cho

Department of Physics, Dongguk University, Seoul 100-715

Yong-Deuk Woo

Department of Semiconductor Science, Woosuk University, Wanju Chunbuk 565-701 (Received 6 October 2004)

Ten-staked Si

1−x

Ge

x

quantum wells (QWs) have been grown on (100) n-Si substrates by using rapid-thermal chemical-vapor deposition (RTCVD). The Ge content and the thickness of Si

1−x

Ge

x

quantum well were controlled using the GeH

4

/SiH

4

gas ratio. To investigate the structural and the optical properties of ten-staked Si

1−x

Ge

x

QWs, we performed transmission electron microscopy (TEM), Sccnning electron microscopy (SEM), high resolution x-ray (HR-XRD), an photolumi- nescence (PL) measuremennts. For the SiGe QWs, when we used a gas ratio below 5 % in the cross-sectional TEM images we observed a uniform interface between the SiGe QWs and the Si barrier. On the other hand, for the SiGe QWs when we used gas ratios above 10 %, the ngerface was not niform and contained island formations. The M-B and P-B models confirmed theoretically that Si

1−x

Ge

x

QW layers with thicknessed above a critical thickness could form islands. In order to investigate the optical properties of the ten-staked Si

1−x

Ge

x

QWs, we performed PL measure- ment at 10 K. As the GeH

4

/SiH

4

gas ratio was increased, the NP and the TO signals of ten-staked Si

1−x

Ge

x

QWs were shifted to the lower energies were in the ranges from 1.035 to 0.894 eV and from 0.980 to 0.849 eV, respectively. From the PL data, the Ge contents was determined and wea calculated in the found to be in the range from 17 to 35 %.

PACS numbers: 61.72.-y, 61.82.Fk, 72.80.Ey, 81.65.-b

Keywords: Silicon Germanium (SiGe), Rapid thermal chemical vapor deposition (RTCVD), Photolumines- cence, DCRC

E-mail: hycho@dongguk.edu; Tel: +82-2-2260-3203

수치

Fig. 1. Schematic diagram of (a) p-i-n Si 1 −x Ge x struc- struc-ture and (b) cross-sectional TEM image of 10-staked SiGe quantum well.
Fig. 4. Critical thickness as a function of germanium content. The closed box is experimental data and the curves are Matthews-Blakeslee and People-Bean models, respectively
Fig. 5. (a) PL spectra and (b) PL peak of 10-staked Si 1 −x Ge x quantum well with various germanium content.

참조

관련 문서

To answer this question an aqueous fraction of the Pfzer, Moderna, Astrazeneca and Janssen vaccines were taken from each vile and then viewed separately under pHase

프로그램의 선두에서 시작하고자 하는 경우에는 EDIT 모드에서 RESET 을 누릅니 다... 미러이미지(Mirror Image)에서 오버런 이송시 방 향은

Although this energy can be released in the form of an emitted photon (X-ray fluorescence), the energy can also be transferred to another electron, which is ejected from

Surface morphology and chemical composition of samples were characterized by field emission scanning electron microscopy (FE-SEM), contact angle measurement and

XAFS: X-ray absorption fine structure XES: X-ray emission spectroscopy XRF: X-ray fluorescence.. Use of x-rays; a probe based

Electron probe micro-analyzer image of Zr-4%Si binary alloys; (a).. X-ray diffraction profiles of as-cast Zr-xSi binary alloys, which shows the dual phases.. Magnetic

Excitation Detection X-ray photoelectron spectroscopy (XPS) Photons(X-ray) Electrons UV photoelectron spectroscopy (UPS) Photons (UV) Electrons

Reciprocal Lattice.. Kittel, Introduction to Solid State Physics.. Hammond, The Basics of Crystallography and Diffraction.. Reciprocal Lattice Direction vs. Sherwood,