• 검색 결과가 없습니다.

Development of Matrix for the Immobilization of High Level Radioactive Waste : Study on the Synthesis of Ce-pyrochlore

N/A
N/A
Protected

Academic year: 2021

Share "Development of Matrix for the Immobilization of High Level Radioactive Waste : Study on the Synthesis of Ce-pyrochlore"

Copied!
6
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1) , 35, 2 , 97-102, 2002 Econ. Environ. Geol., 35(2), 97-102, 2002.  

(2) . .  .    

(3)  . . . 

(4)

(5) . . . . . Development of Matrix for the Immobilization of High Level Radioactive Waste : Study on the Synthesis of Ce-pyrochlore Soo-Chun Chae1*, Youn-Nam Jang1, In-Kook Bae1 and Yudintsev, S.V2 1. Department of Geology Division, Korea Institute of Geoscience and Mineral Resources, Taejon 305-350, Korea Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry. 2. Ce-pyrochlore (CaCeTi2O7) was synthesized to study its properties and phase relations in CaO-CeO2-TiO2 system because Ce-pyrochlore was known as a promising material for the immobilization of radioactive actinide. The samples were prepared from the high purity starting materials under the pressure of 200~400 kg/cm2 at room temperature, and annealed at 1000~1500oC. The Synthesized samples were analysed and identified with XRD and SEM/EDS methods. The optimal formation condition of Ce-pyrochlore was at 1300oC under O2 atmosphere and the chemical composition of it was Ca1+xCe1-xTi2-yO7-x-2y (x=0.03~0.05, y=0.02~0.04). At temperature between 1300~ 1400oC, Ce-pyrochlore underwent rapidly the incongruent decomposition to perovskite. Ce-perovskite, a partial solid solution between perovskite and loparite (Ce0.66TiO3), was observed as a major phase above 1400oC..   pyrochlore, perovskite, immobilization, incongruent, loparite.  

(6)    

(7)        !" # $

(8) %& '() *+ , -

(9)  ./%01 2$3 4 '567 8 9:;

(10) )< =   >?67 @5A , B? # CDE7 

(11) %01 $

(12) 3 4   ! "#$#!"# F%& 'BGH IBG J%01 JK@H 8 LM $

(13) NOP Q B? %67 %  @%0 R0;S R8 TN

(14) P     &'% ' ;U VTWXM -

(15)  Y01  % 67 Z[ VN B\]' ^_`;S   '67 abcde()*f ge *

(16)    8 hB Fi +++a bcdej k';U *lm`1   abcde  VN ge . . .  . . . . .  . . . . . .

(17). . . . . . .  . FG HI JK C L(M N/& 8   % =O /! :;% P QR S TU2 VW X2Y :Z[\ ] ^D & 8G /! :;% _`12  ab Gc ?3 :Z [\d ]*@ e7 f gP 8G HI & '(  h% ij9)k  l  N/m n 8 ?3 :Z[\ o pq ?3r2st / u* vwr% x)2y2@z %

(18)  

(19)  0) . .       !" #  $% &'(  ) *+ ,  -. /! 012 &34 5 6) 7*& 819 /! :;. <) =>*" ?34*@ A% B/CD) E . 

(20)

(21) . . .  

(22)   . 

(23)  .  . . . !"##. . $. . *Corresponding author: chae@kigam.re.kr. . .

(24)  

(25)  :O /{ |12 B&*& 8G 7­& dʵ l Ë ÌÌ l )}. w ~% d l d% i )¾G ‚ Ì } _ °c l °°q j9)k M &7 € n 81 ‚ C ƒ  (Š „. . 4e h> `3 B JÍM )7­G )Ž% dʵ. /& 8G T†2 ‡%   

(26) +   Î%  ­1 Ïз( 

(27)    * ˆ !, ‰% -M &34 ­G  (Š x)2y2@M ‹e12 e7 Œ d 8 G )Ž 7F x)2y  . 2@% 4r. g( ) ) &7; h ˆ     pF ´ ‹ l —°(  ?žu l d N n 8G l < Ñ4 5" Tf T ­G Ì ‘ /! :Z[\’ =O  _“ ”O % N. ÒÓo KǺV% _e ÇºÔ 3u% •. &3PM dWG JKp   % &34M (Š 7* u2st ]Õe12 Ö ­G ·( ‹ o ?. ?3 :Z[\  ×2É\Ø)Z ÙÚq Û! 9)Z l x)2y 0% 612 –r* HI -. 6) ?3 :Z[\ 2@ 0) ¥Ü*¾G x)2y2@% N. ž  GÞ šß  M —˜e ™š2 –r+ e› |12 B&*& u a†“ Ýd­& }BG OÛ­G  ÙÚq) àI  8G &'(  % Kœ  ’ (d% ij ©& ×2É\Ø)Zz Û! 9)Z% N) 9)k _Š /{

(28) 

(29)   )žŸ=)   / GÞ žu% ?>z aám Ž dJ •. â  ) x)2y2@d ¡¢e :Z[\£ dCu ¤& ) ¥ B& ¦% § G ¨© ª  )x)2y2@M › “ ‹« `3}% ¬p ¥P l H _ “ & ­G .  . . !""". &'. &(. . B. . .8<.?98)/'00<C5. .?. !. 7.  . '0. 

(30) ;. . . .

(31)  . ;A. . .  ) *. (0. DD. 3/. . . ;A. 03:0(. . . !""#. /0 12

(32) )3/ -2

(33) )3/. 4 5 !3 7. 6  7. -. . 3( 7. 1. . -. . !. 7. E

(34)  !. . =?. .  ) 

(35) 

(36)  .  .

(37) 

(38) .

(39)    +.  .

(40) 

(41) . !""/. .

(42)  

(43) +. . E

(44)  ! !000:!!00 . !"#/. ).  

(45) . !""/. . 2

(46) . 2

(47) . 

(48) 

(49) F  .

(50)  

(51) +  

(52) .  

(53) F. ). ). .  !300 . .  !'00 . . . ). .  ). . . .  v® .. 

(54) . -

(55) *. 

(56)  . l 0 ¯n °P 4›  3±E²2 ¬“ x)2y2@ r 12 ³›­G ³›F ´ ž % µD12 p ¶ ·(  Ÿ¸ ¹G ?Ÿ¸. °(M rºm n 8 Itd J»F T¼Qp 2. < L` T½*¾G £s ´% =O  ˆ <L` ¿˜ Àd2 T ­G ›F ´% wn l L3 (“ Á š ^Â2Ãt d s»F  \ÄÅ % V °ÆǺ M 7­G αV ÈÉM (. 2

(57)  . 9  . 8*. 8

(58) .  . '.  . '. . 3. 2

(59) .  ). . 300:(00. . ;<. . . !000:!/00 . .  ;. /)/0. . .  "00:!!00 . /)!0. . .     . => . 8-?.

(60) 55   . -

(61)

(62) . =). =?. =) *. . )@. . .   .   Dependance of relative intensities of the stable phase assemblage with the sintering temperature (a) under air and (b) under O2 condition. Numbers in parenthesis indicate heating time (hours), and the rest of symbols without numbers indicate that heating time of 20 hours..

(63)

(64)         ! "# $%  B) Žã ) žud x)2y2@% äe  B“K& 8G äç6 7“ x)2y2 Jžu2 ågFG l æ žuM ç @% wnM ø3 ?> žu l °( ¨© Ð)d 819 _;e’ wn% ·(. 5" ~% x)2y2@d è“ ù12 x)2y2@%  A˒  éêe12 ë* ×2É\Ø)Zz ‡ ù ù % Û! 9)Zì) «­G )Ž Û! 9) z /­G Z% _e’ íÂ% Ôu ? < <. <12 Ýd îu Ñ4* ïðG — °(  ? 

(65)    

(66) . ´% =O x)2y2@d  ?F ´ K,‡= ) J»F 3 st ¥Ü*¾&  KF ) *ì Û! °q  %Š ¥Ü l °°q T ­ 9)Z ×2É\Ø)Z l ‡% ÙÚq) « G  ?F ´% =O s x ­G  ÙÚq) àI ©& )2y2@2 * µ )’ ×2É\Ø ×2É\Ø)Zz Û! 9)Zd ñÐ è ? )Zz µ )’ Û! 9)Zd ¥Ü*¾G )z _re12 >M B­1 ò st Û! 9)Zz ×  ?F ´% = 2É\Ø)Zd ñÐ Ýd*¾G O x)2y2@ _ú ×2É\Ø)Zd  ó ´2st x)2y2@ e@u sM p& µ )% Û! 9)Zz G%  * ¿­1 äe žu r ‹) —*@ 8¾G ô) õ S’­G ‚  ‹ o% Tf?> aŠ —°(  ? " Û! 9)Z l ×2É\Ø)Z% N) ,E ö •1U2 BG ¯n x)2y2@d › *¾G x)2y2@ _ ´ ÷æ  ÖF  §G  z % x)2y2@z ×2É\Ø)Z% ÒÓ . . ).  !(00. . ). . . !(/0 . . ). .  !/00 . !0!/3.  ). .  . . 22

(67) . . (!)'G' 6 !0!/G. 9-?  . /. (#. !0!'":. .   3')/G/ 6 !0!(/.

(68) . . . 5 .  6 300. <

(69) . . E

(70)  ! ). . !300 . . . .8. !!00 . .?. . .  !'00. ). . !'00 . . .  !/. . 3/. ).  !'/0. ). . =?. !'00 . ). . . . . ). !0. . E

(71)  (. . . ). ). E

(72) . !/00. .  ). . !000 . . '. . . !'00 . . ). . ).  ). =?.  E

(73)  3. ). ). . !'00 . . !(00  =?.   Scanning electron microphotograph of samples sintered at 1300oC..   XRD patterns of Ce-pyrochlore and Ce-perovskited wich are sintered at (a) 1300oC and (b) 1400oC..   Scanning electron microphotograph of sample sintered at 1500 oC..

(74)  

(75) . .

(76)   Chemical compositions of Ce-pyrochlore and Ce-perovskite. Heating No.. Temp.. hours. Under air atm. LGZ-73 1200 (air) LGZ-62 1300 (air) LGZ-96 1400 (air) LGZ-21 1450 (air) LGZ-15 1500 (air) LGZ-81 (air). 1500. Chemical composition*. 20 20 20. Composition. Ce-Perovskite. Ce/Ti. Ca/Ti. Ce/Ca. Composition. Ce/Ti. Ca/Ti Ce/Ca. Ca1.01Ce0.83Ti2.06O6.8 Ca1.02Ce0.79Ti2.1O6.8 Ca1.01Ce0.96Ti1.94O6.8 Ca0.98Ce0.95Ti1.97O6.8 Ca1.06Ce0.88Ti1.99O6.8 Ca1.04Ce0.87Ti2.01O6.8. 0.40 0.37 0.49 0.48 0.44 0.43. 0.49 0.50 0.52 0.49 0.53 0.51. 0.82 0.77 0.95 0.97 0.83 0.84. Ca0.84Ce0.15Ti0.97O3. 0.15. 0.87. 0.18. Ca0.7Ce0.24Ti0.97O3 Ca0.66Ce0.27Ti0.97O3 Ca0.57Ce0.32Ti0.98O3 Ca0.57Ce0.31Ti0.98O3 Ca0.55Ce0.32Ti0.98O3 Ca0.56Ce0.33Ti0.98O3 Ca0.55Ce0.33Ti0.97O3 Ca0.54Ce0.34Ti0.97O3 Ca0.56Ce0.33Ti0.97O3 Ca0.57Ce0.33Ti0.96O3 Ca0.56Ce0.33Ti0.97O3. 0.25 0.28 0.33 0.32 0.33 0.34 0.34 0.35 0.34 0.34 0.34. 0.72 0.68 0.58 0.58 0.56 0.57 0.57 0.56 0.58 0.59 0.58. 0.34 0.41 0.56 0.54 0.58 0.59 0.60 0.63 0.59 0.58 0.59. Ca1.04Ce0.87Ti2.01O6.8. 0.43. 0.51. 0.84. Ca1.05Ce0.94Ti2.04O7 Ca1.03Ce0.99Ti2O7 Ca1.07Ce0.97Ti1.99O7 Ca1.04Ce0.98Ti1.99O7 Ca1.06Ce0.97Ti2O7 Ca1.01Ce0.98Ti2.01O7 Ca1.02Ce0.99Ti2O7 Ca1.06Ce1.01Ti1.96O7. 0.46 0.49 0.48 0.49 0.48 0.48 0.49 0.51. 0.51 0.51 0.53 0.52 0.53 0.50 0.51 0.54. 0.90 0.96 0.91 0.94 0.92 0.97 0.97 0.95. Ca0.87Ce0.14Ti0.96O3 Ca0.85Ce0.13Ti0.97O3. 0.15 0.13. 0.91 0.88. 0.16 0.15. Ca0.81Ce0.18Ti0.96O3 Ca0.81Ce0.17Ti0.97O3 Ca0.78Ce0.2Ti0.96O3 Ca0.74Ce0.22Ti0.96O3 Ca0.76Ce0.2Ti0.97O3. 0.19 0.18 0.21 0.23 0.21. 0.84 0.84 0.81 0.77 0.78. 0.22 0.21 0.26 0.30 0.26. 5 5. 48. Under O2 atm. LGZ-77 1200 20 (O2) LGZ106 1270 40 (O2) LGZ128 (O2) LGZ109 (O2). Ce-pyrochlore. 1300. 20. 1350. 40. *Chemical compositions were analysed by EDS.. ›F )x)2y2@ l )×2É\Ø)ZM 2 3°q ?> 2  ! Ö ­G < 2

(77) l < a¢. !3,0)!'/0  ›F x )2y2@ dJ . â B)+ ) .?. . . ). E

(78)  /.  ,. Û! 9)Z l ×2É\Ø)Z% V ǺÔu% Ýè?>z £ÍG ûM }" Û! 9 )Z% ǺÔu  aŠ  ,E èM B)U2ü ) žu Û! 9)Z d x)2y2@ p (Š a*¾1  x)2y2@ N/ n 8 % ä_ÍM 9ýh |12 Šq) dCG  ‘ ×2É\Ø)Z% =O æ žuÝd a†“ > a¢. Ýd+ Ÿ“ a¢. èN12ü )ž) ×2É\Ø) Z ?3r2 )L*¾þ  G ÿ 9 ) )} â} )%  Ñ4M B) ïþ 12ü &7P uF |12 ågFG ‚ x)2y2@% =O ad °( ¨©  Ñ4M B) ïì ×2É\Ø)Z% a  —°( ?F ´d ‹ o% ´ ). =). . . . . !300 . !'00 . E

(79)  !. . ). . . !3,0:!'/0 . ). . . . ).  !(00 . <2

(80). <. <2

(81). . . . . . . .   Variation of Ce/Ca ratio with temperature in Cepyrochlores and Ce-perovskites.. !(00 . ). <.  ). <.

(82)

(83)         ! "# $%. .   Compositional variations of Ce-perovskites, a solid solution of loparite and CaTiO3 in the system CaO-Ce2O3-TiO2. Dotted line indicates imaginary solid solution boundary between perovskite and loparite. The symbols ( , , , , ) represent the samples treated in air and , , , under O2 atmosphere.. .  .  aŠ •ðG )  ?> °( ¨© x )2y2@% .  ì NF % N. Âö   ïG T  & 8G ÿ 9 )×2É\Ø)Z% =O ce’ " .  % Nu °( ¨© Âö   & 8þ B­G . . ). . E

(84)  /. .  8@ K m ñ. )×2É \Ø)Zz )x)2y2@% ¦L)G x)2y 2@% =O ) * ¿ s KF 12ü ¥Ü*Gd   àI ©U2 ?>e12 ar4 ° ŠH  9ýG ) ŸŠ ×2É\Ø)Z žu·(  `3)ì HI x)2y2@d ¤`3Š  )% &ž  KF 12 «  H  B’G )x)2y2@ _ 3°q ?> l BG s % N) ð1 ) % ?>z £ÍFG æ  °. x)2y2@%  (Š a *& )% &ž x)2y2@% ¤`3 Žã x)2y2@ h% °)  ). . !000 . . . . !300 .  !/00. . E

(85)  !. 

(86)   .  

(87) 

(88) . . .  ). !000:!/00 . . ). . !(00 . . . !(00 . !'00 . E

(89)  /. =?.  . . ). ). . . DA. DDD. . DDD. ). E

(90)  G. ))2

(91) ) * . . . . 2

(92) .

(93) . ×2É\Ø)Zz Û! 9)Z2 

(94) °* |12 ŠqFG )z ) x)2y2@ l ×2É \Ø)Z `3 % žu%«. % —4 l  > ¥Pd 8 |12ü !(00 )% &ž·(  BG d `3Š U2 žuÝ d ¨© ×2É\Ø)Z% 4r. % &7N) Ýd“ ñÐ 2x©)Z  12 )L* = B­G x)2y2@% äe rô’ ?žu l —°( g£% x)2y2@ d * ïð1  % 3 °q ?> a4ce r’  9ýh& 8G l  aŠ d v>12ü ?>e12 ×2É\Ø)Zz Û! 9)Zd ‹«ö F |)G 2 ? Œ =O ‚ ‹ o —°(% ´BG ×2É\Ø)Z% N ) .+ ) % —4uz ¥) 8G x)2y2@%  (“ d% ) œ* ì ‹ o £s ) d $2 F + ÿ ’) 8 |12 ´FG x)2y2@ ?3rM  P :Z[\ a 4ce r B) )  ?>2 É©) Z rM dW  ûM }@ ‚ 0) sne’ 12 I «. !300. . . .  !'00 . ). . !(00 . ). ). . ). ). . !'00 . . ). 2

(95) . . . CH00':00/ 2

(96). . .?.  

(97) 2

(98) 

(99) 

(100)

(101) . *H003:00(. .  . .  !'00 . E

(102)  !. . ). . ). . . . (. . . ). . '. . 2

(103).  

(104) . 1 -2

(105) . . . 12

(106) .

(107)  

(108) . . G. 

(109)   !"#/F.  . !""#F. . A. .  . . !"#GF. !""#F. .

(110) . . 

(111)  +. . ÿ 9 ª  n½F )x)2y2@ _ ›Tf )  É©)Z rM d W ) « ïðG ) É©)Z d ) ¤`3 Ž ã) ª Tf% žu·( É©)Z _ú ×2É\Ø)Z ÙÚq> Û! 9)Zd ‹«* |12 ågFG !""". . 2

(112)  F E

(113)  G 

(114) . ). . !000 . !"#(. ).  ). . . . . &'(  % &34M ( /{ :Z[\ ’ x)2y2@ M ›­1 .8 l .?M 7“ ?34e H  ?> Gþ> G )x)2y2@ ›rô. —4°(  ? |) dJ e›­1 )Ž % ×2É\Ø)Z l Û! 9)Z 0) ‹«­G x)2y2@% 4r. 12ü a4ce’ H  ) ñÐe12 ar4 °Š*@ ) ×2É\Ø)Z 2 )*¾G )×2É\Ø)Z !000:!/00  žu·( ` 3)¾& 2x©)Zz &7;M p& 8G H I ) ?žud ÝdN ¨© ñ Ð % &7N) Ýd" !/00    % N) ä& !!  7M 9ýh¾G ?¿˜ % )x)2y2@% äe rô l H ™. - 0 ij9)k P% } _ &7CD% dC> Q¤@ g¯ ?¿˜ %Š ›*U2 ›% 7) l =– SBm n 8G Jñ d& 8G 2

(115) . ). =?. . !'00  . . . ). DA).  

(116) 2

(117) 

(118) 

(119)

(120) . CH00':00/. *H003:00(. . . . !(00 . . !/00 . DDD). . . . !(00 . . . DDD. . . . . .  #,,- .) // 0- 1--,. 2 0-  #  3) *)-) 2 2-* - 4 5   0 -6 7- 8 9 !3 :: "**.) ; 5 .*-. . +, 9*- 5 ))) -6 +, 9*- <) * = =<:: 5 6-)> 5 .*-. )*, 9*- ? , 9*- 8)  <- 5 6-) !   7) -*- ! "-)6 , *  @" !*-* ; #- 7) -*- ! @"2 5)>  "9> : 1, #,,- .) // 0-1--,. 2 )- <3 0-  #  "*8* $72 3)*)-) 2 2 -6 3" --  -6 -6- 3 ::A  ; . *- ; *  , 9*- ;  .*-. +-> 5 6-) ; *  +-*-*- -;-  BC7 CC7 $&6 7)* $--* -6 #-(--* ) **- 7- 86)   - #-(--* .) - 2D !  ()-  =E. C. " D .  -6 - / ::A 2 *-6) - *--* , .)- 9 - * "-  +-> 5 6-) ; +-*-*- $*- - =.  -6 B96.) 7)* $--* " *. :A 2  - =.  " * C 4- 5 +C  A:A%% -86 2# :A !)) ;   ( -.  8)*>     ) *( $-   $. 9- ( : 5*   :FE -86 2# 1))- "# ( 1! C(-) !$ -6  #3 :AA "-

(121) 6 *( 7)* <) ; *  <.*. #6*6 , C.*9 7 -6 #8-  # )( =* B -6 2)*6 =* . -6)  %%%% " , - /4 :A "*.6 ; )-* )) -6*-) -6 ) *) ; * .** -6 *) . -  +-> 5*  $-  -6  !)*) <*8* - *  @-- )  6 1( =.( !. 5.,   %F - .))- ", ( +2 "*;-() "0 -6 C;-( <2 :: "-* *  *6  * 8)*;) +-> " -*; /)) ; =.  7)* --*0+++ $ " ") 5 6-) %% 5*   A%%A%A 0-  #  @G. * " 2-6)- ! -6 4 +$ :AE +, 9*- ; .-. .   (. -.  8)* +-> 26(- ) -  ) =.  7)* $--* 2 -  " * (   :A 7- " / /! 7- C$ #8-  7, 73 -6 4(-6- 1.** 10 ::: 6*- )*. , * ; 6 -. 9 -* 2 8)* ; ;  . *-. 6))*- 3 $* ) (   FF%. H.6-*)( "0 "*;-() "0 -6 #8-  ::: "*. *. -6 )*-  *-) ) - **-* )6  ) ;  *-6,- 8)*  , 9*- +-> *  5 6-) ; *  +-*-*- -;-  - 6 *( 7)* $--* -6 #-(--* 6*- +#$ :: 2 " * ; $ -  #--) =H !  ( )- ;  %F%6;. n o Fp q n o Ep rst. .

(122)

참조

관련 문서

In this study, the RESRAD-RECYCLE 3.10 computer code was used to evaluate individual and collective doses due to the recycling of radioactive metal waste

As a result, exhibition booth development was carried out the basis of the study results. On that account, the result of the exhibition booth

 In the present study, as a preliminary study, a LACC-based Compton CT was developed to estimate the activity of the spot inside the radioactive waste drum. To

Liquid radioactive waste system of a nuclear power plant is to remove the radioactive material collects various equipment and floor drainage, including

 Since the output impedance of bipolar cascode is higher than that of the CE stage, we would expect its voltage gain to be higher as well.... Alternate View

In this study, the usage of most common cement for the ground material was highly reduced, and developed a solidifying agent for organic and inorganic

The aim of this study was to determine the serum levels of the prohormone form of hepcidin, pro-hepcidin, and its relations with iron status and its

As the frequency of participation and the period of participation increased, the score for leisure satisfaction was high, and as the external motivation